Review of Math

```
MEB: Chapter }
```

EECS3342 Z: System

YORK
 UN IVERS ITEE
 UN I VERSITY
 \square

 Specification and Refinement Winter 2022ChEN-WEI WANG

Propositional Logic (1)

- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements. - Unary logical operator: negation (\neg)

p	$\neg p$
true false	false true

- Binary logical operators: conjunction (\wedge), disjunction (\vee), implication (\Rightarrow), equivalence (\equiv), and if-and-only-if (\Longleftrightarrow)

p	q	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Longleftrightarrow q$	$p \equiv q$
true						
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

3 of 41

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$
[pronounced as "p implies q"]
- We call p the antecedent, assumption, or premise.
- We call q the consequence or conclusion.
- Compare the truth of $p \Rightarrow q$ to whether a contract is honoured:
- antecedent/assumption/premise $p \approx$ promised terms [e.g., salary]
- consequence/conclusion $q \approx$ obligations
[e.g., duties]
- When the promised terms are met, then the contract is:
- honoured if the obligations fulfilled. $\quad[($ true \Rightarrow true $) \Longleftrightarrow$ true $]$
- breached if the obligations violated. $\quad[$ (true \Rightarrow false $) \Longleftrightarrow$ false]
- When the promised terms are not met, then:
- Fulfilling the obligation (q) or not $(\neg q)$ does not breach the contract.

p	q	$p \Rightarrow q$
false	true	true
false	false	true

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$:

- q if p
q is true if p is true
- p only if q

If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true. Otherwise, if p is true but q is false, then (true \Rightarrow false) \equiv false.
Note. To prove $p \equiv q$, prove $p \Longleftrightarrow q$ (pronounced: "p if and only if q "):

- p if $q \quad[q \Rightarrow p]$
- p only if q
$[p \Rightarrow q]$
- p is sufficient for q

For q to be true, it is sufficient to have p being true.

- q is necessary for $p \quad$ [similar to p only if q]

If p is true, then it is necessarily the case that q is also true.
Otherwise, if p is true but q is false, then (true \Rightarrow false) \equiv false.

- q unless $\neg p$
[When is $p \Rightarrow q$ true?]
If q is true, then $p \Rightarrow q$ true regardless of p.
If q is false, then $p \Rightarrow q$ cannot be true unless p is false.

Propositional Logic: Implication (3)

Given an implication $p \Rightarrow q$, we may construct its:

- Inverse: $\neg p \Rightarrow \neg q \quad$ [negate antecedent and consequence]
- Converse: $q \Rightarrow p \quad$ [swap antecedent and consequence]
- Contrapositive: $\neg q \Rightarrow \neg p$
[inverse of converse]

Propositional Logic (2)

- Axiom: Definition of \Rightarrow
- Theorem: Identity of $\Rightarrow p \Rightarrow q \equiv \neg p \vee q$
- Theorem: Zero of \Rightarrow

$$
\text { true } \Rightarrow p \equiv p
$$

- Axiom: De Morgan

$$
\begin{aligned}
\neg(p \wedge q) & \equiv \neg p \vee \neg q \\
\neg(p \vee q) & \equiv \neg p \wedge \neg q
\end{aligned}
$$

- Axiom: Double Negation

$$
p \equiv \neg(\neg p)
$$

- Theorem: Contrapositive

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

7 of 41

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
- \mathbb{Z} : the set of integers
$[-\infty, \ldots,-1,0,1, \ldots,+\infty]$
$\circ \mathbb{N}$: the set of natural numbers $\quad[0,1, \ldots,+\infty]$
- Variable(s) in a predicate may be quantified:
- Universal quantification:

All values that a variable may take satisfy certain property. e.g., Given that i is a natural number, i is always non-negative.

- Existential quantification: Some value that a variable may take satisfies certain property. e.g., Given that i is an integer, i can be negative.

Predicate Logic (2.1): Universal Q. (\forall)

- A universal quantification has the form $(\forall X \bullet R \Rightarrow P)$
- X is a comma-separated list of variable names
- R is a constraint on types/ranges of the listed variables
- P is a property to be satisfied
- For all (combinations of) values of variables listed in X that satisfies R, it is the case that P is satisfied.
- $\forall i \bullet i \in \mathbb{N} \Rightarrow i \geq 0$
[true]
- $\forall i \bullet i \in \mathbb{Z} \Rightarrow i \geq 0$
[false]
- $\forall i, j \bullet i \in \mathbb{Z} \wedge j \in \mathbb{Z} \Rightarrow i<j \vee i>j$
[false]
- Proof Strategies

1. How to prove $(\forall X \bullet R \Rightarrow P)$ true?

- Hint. When is $R \Rightarrow P$ true?
- Show that for all instances of $x \in X$ s.t. $R(x), P(x)$ holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.

2. How to prove ($\forall X \bullet R \Rightarrow P$) false?

- Hint. When is $R \Rightarrow P$ false?
- Give a witness/counterexample of $x \in X$ s.t. $R(x), \neg P(x)$ holds.

Predicate Logic (2.2): Existential Q. (\exists)

- An existential quantification has the form $(\exists X \bullet R \wedge P)$
- X is a comma-separated list of variable names
- R is a constraint on types/ranges of the listed variables
- P is a property to be satisfied
- There exist (a combination of) values of variables listed in X that satisfy both R and P.
- $\exists i \bullet i \in \mathbb{N} \wedge i \geq 0$
- $\exists i \bullet i \in \mathbb{Z} \wedge i \geq 0$
- $\exists i, j \bullet i \in \mathbb{Z} \wedge j \in \mathbb{Z} \wedge i<j \vee i>j$
[true]
- Proof Strategies

1. How to prove $(\exists X \bullet R \wedge P)$ true?

- Hint. When is $R \wedge P$ true?
[true ^ true]
- Give a witness of $x \in X$ s.t. $R(x), P(x)$ holds.

2. How to prove $(\exists X \bullet R \wedge P)$ false?

- Hint. When is $R \wedge P$ false? true \wedge false, false \wedge _]
- Show that for all instances of $x \in X$ s.t. $R(x), \neg P(x)$ holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.
- A set is a collection of objects.
- Objects in a set are called its elements or members.
- Order in which elements are arranged does not matter.
- An element can appear at most once in the set.
- We may define a set using:
- Set Enumeration: Explicitly list all members in a set. e.g., $\{1,3,5,7,9\}$
- Set Comprehension: Implicitly specify the condition that all members satisfy. e.g., $\{x \mid 1 \leq x \leq 10 \wedge x$ is an odd number $\}$
- An empty set (denoted as $\}$ or \varnothing) has no members.
- We may check if an element is a member of a set:

e.g., $5 \in\{1,3,5,7,9\}$	$[$ true $]$
e.g., $4 \notin\{x \mid x \leq 1 \leq 10, x$ is an odd number $\}$	$[$ true $]$

- The number of elements in a set is called its cardinality. e.g., $|\varnothing|=0, \mid\{x \mid x \leq 1 \leq 10, x$ is an odd number $\} \mid=5$

13 of 41

$$
\begin{array}{lr}
? \subseteq S \text { always holds } & {[\varnothing \text { and } S \text {] }} \\
? \subset S \text { always fails } & {[S]} \\
? \subset S \text { holds for some } S \text { and fails for some } S & {[\varnothing]} \\
S_{1}=S_{2} \Rightarrow S_{1} \subseteq S_{2} \text { ? } & {[\mathrm{Yes}]} \\
S_{1} \subseteq S_{2} \Rightarrow S_{1}=S_{2} \text { ? } & {[\mathrm{No}]}
\end{array}
$$

Set Relations

Given two sets S_{1} and S_{2} :

- S_{1} is a subset of S_{2} if every member of S_{1} is a member of S_{2}.

$$
S_{1} \subseteq S_{2} \Longleftrightarrow(\forall x \bullet x \in S 1 \Rightarrow x \in S 2)
$$

- S_{1} and S_{2} are equal iff they are the subset of each other.

$$
S_{1}=S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge S_{2} \subseteq S_{1}
$$

- S_{1} is a proper subset of S_{2} if it is a strictly smaller subset.

$$
S_{1} \subset S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge|S 1|<|S 2|
$$

Set Operations

Given two sets S_{1} and S_{2} :

- Union of S_{1} and S_{2} is a set whose members are in either.

$$
S_{1} \cup S_{2}=\left\{x \mid x \in S_{1} \vee x \in S_{2}\right\}
$$

- Intersection of S_{1} and S_{2} is a set whose members are in both.

$$
S_{1} \cap S_{2}=\left\{x \mid x \in S_{1} \wedge x \in S_{2}\right\}
$$

- Difference of S_{1} and S_{2} is a set whose members are in S_{1} but not S_{2}.

$$
S_{1} \backslash S_{2}=\left\{x \mid x \in S_{1} \wedge x \notin S_{2}\right\}
$$

The power set of a set S is a set of all S 's subsets.

$$
\mathbb{P}(S)=\{s \mid s \subseteq S\}
$$

The power set contains subsets of cardinalities $0,1,2, \ldots,|S|$. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality $0,1,2$, or 3 :

$$
\left\{\begin{array}{l}
\varnothing, \\
\{1\},\{2\},\{3\}, \\
\{1,2\},\{2,3\},\{3,1\}, \\
\{1,2,3\}
\end{array}\right\}
$$

Exercise: What is $\mathbb{P}(\{1,2,3,4,5\}) \backslash \mathbb{P}(\{1,2,3\})$?
[170 O 41

Set of Tuples

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$, a cross/Cartesian product of theses sets is a set of n-tuples.
Each n-tuple ($e_{1}, e_{2}, \ldots, e_{n}$) contains n elements, each of which a member of the corresponding set.

$$
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(e_{1}, e_{2}, \ldots, e_{n}\right) \mid e_{i} \in S_{i} \wedge 1 \leq i \leq n\right\}
$$

e.g., $\{a, b\} \times\{2,4\} \times\{\$, \&\}$ is a set of triples:

$$
\begin{aligned}
& \{a, b\} \times\{2,4\} \times\{\$, \&\} \\
= & \left\{\left(e_{1}, e_{2}, e_{3}\right) \mid e_{1} \in\{a, b\} \wedge e_{2} \in\{2,4\} \wedge e_{3} \in\{\$, \&\}\right\} \\
= & \left\{\begin{array}{l}
(a, 2, \$),(a, 2, \&),(a, 4, \$),(a, 4, \&), \\
(b, 2, \$),(b, 2, \&),(b, 4, \$),(b, 4, \&)
\end{array}\right\}
\end{aligned}
$$

A relation is a set of mappings, each being an ordered pair that maps a member of set S to a member of set T.
e.g., Say $S=\{1,2,3\}$ and $T=\{a, b\}$

- \varnothing is an empty relation.
- $S \times T$ is the maximum relation (say r_{1}) between S and T, mapping from each member of S to each member in T :

$$
\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
$$

- $\{(x, y) \mid(x, y) \in S \times T \wedge X \neq 1\}$ is a relation (say r_{2}) that maps only some members in S to every member in T :

$$
\{(2, a),(2, b),(3, a),(3, b)\}
$$

19 of 41

Relations (2.1): Set of Possible Relations

- We use the power set operator to express the set of all possible relations on S and T :

$$
\mathbb{P}(S \times T)
$$

Each member in $\mathbb{P}(S \times T)$ is a relation.

- To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$
r: \mathbb{P}(S \times T)
$$

- Or alternatively, we write:

$$
r: S \leftrightarrow T
$$

where the set $S \leftrightarrow T$ is synonymous to the $\operatorname{set} \mathbb{P}(S \times T)$

Enumerate $\{a, b\} \leftrightarrow\{1,2,3\}$.

- Hints:
- You may enumerate all relations in $\mathbb{P}(\{a, b\} \times\{1,2,3\})$ via their cardinalities: $0,1, \ldots,|\{a, b\} \times\{1,2,3\}|$.
- What's the maximum relation in $\mathbb{P}(\{a, b\} \times\{1,2,3\})$?
$\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}$
- The answer is a set containing all of the following relations:
- Relation with cardinality 0: \varnothing
- How many relations with cardinality 1 ? $\quad\left[\binom{\{a, b\} \times\{1,2,3\} \mid}{ 1}=6\right]$
- How many relations with cardinality 2 ? $\left[(\underset{2}{\{\{a, b\} \times\{1,2,3\} \mid})=\frac{6 \times 5}{2!}=15\right]$
- Relation with cardinality $|\{a, b\} \times\{1,2,3\}|:$

$$
\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
$$

Relations (3.1): Domain, Range, Inverse

Given a relation

$$
r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}
$$

- domain of r : set of first-elements from r
- Definition: $\operatorname{dom}(r)=\left\{d \mid\left(d, r^{\prime}\right) \in r\right\}$
- e.g., $\operatorname{dom}(r)=\{a, b, c, d, e, f\}$
- ASCII syntax: dom (r)
- range of r : set of second-elements from r
- Definition: $\operatorname{ran}(r)=\left\{r^{\prime} \mid\left(d, r^{\prime}\right) \in r\right\}$
- e.g., $\operatorname{ran}(r)=\{1,2,3,4,5,6\}$
- ASCII syntax: ran (r)
- inverse of r : a relation like r with elements swapped
- Definition: $r^{-1}=\left\{\left(r^{\prime}, d\right) \mid\left(d, r^{\prime}\right) \in r\right\}$
- e.g., $r^{-1}=\{(1, a),(2, b),(3, c),(4, a),(5, b),(6, c),(1, d),(2, e),(3, f)\}$
- ASCII syntax: $r \sim$

Given a relation

$$
r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\}
$$

- domain subtraction of r over set $d s$: sub-relation of r with domain not $d s$.
- Definition: $d s \notin r=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge d \notin d s\right\}$
- e.g., $\{a, b\} \notin r=\{(\mathbf{c}, 3),(\mathbf{c}, 6),(\mathbf{d}, 1),(\mathbf{e}, 2),(\mathbf{f}, 3)\}$
- ASCII syntax: ds <<। r
- range subtraction of r over set $r s$: sub-relation of r with range not $r s$.

[^0]
Relations (3.5): Overriding

Given a relation

$$
r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}
$$

overriding of r with relation t : a relation which agrees with t within $\operatorname{dom}(t)$, and agrees with r outside $\operatorname{dom}(t)$

- Definition: $r \notin t=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in t \vee\left(\left(d, r^{\prime}\right) \in r \wedge d \notin \operatorname{dom}(t)\right)\right\}$ - e.g.,

$$
\begin{aligned}
& r \&\{(a, 3),(c, 4)\} \\
= & \underbrace{\{(a, 3),(c, 4)\}}_{\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in t\right\}} \underbrace{\{(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}}_{\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge d \notin \operatorname{dom}(t)\right\}} \\
= & \{(a, 3),(c, 4),(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}
\end{aligned}
$$

- ASCII syntax: r <+ t

Relations (4): Exercises

1. Define $r[s]$ in terms of other relational operations.

Answer: $r[s]=\operatorname{ran}(s \triangleleft r)$
e.g.,

$$
r[\underbrace{\{a, b\}}_{s}]=\operatorname{ran}(\underbrace{\{(\mathbf{a}, 1),(\mathbf{b}, 2),(\mathbf{a}, 4),(\mathbf{b}, 5)\}}_{\{a, b\} \triangleleft r})=\{1,2,4,5\}
$$

2. Define $r \& t$ in terms of other relational operators.

Answer: $r \notin t=t \cup(\operatorname{dom}(t) \notin r)$
e.g.,

$$
\begin{aligned}
& r \& \underbrace{\{(a, 3),(c, 4)\}}_{t} \\
= & \underbrace{\{(a, 3),(c, 4)\}}_{t} \cup \underbrace{\operatorname{dom}(t)}_{\underbrace{\{(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}}_{\{a, c\}}} \triangleleft r
\end{aligned}
$$

$$
=\{(a, 3),(c, 4),(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}
$$

27 of 41

Functions (1): Functional Property

- A relation r on sets S and T (i.e., $r \in S \leftrightarrow T$) is also a function if it satisfies the functional property:
isFunctional(r)
$\forall s, t_{1}, t_{2} \bullet\left(s \in S \wedge t_{1} \in T \wedge t_{2} \in T\right) \Rightarrow\left(\left(s, t_{1}\right) \in r \wedge\left(s, t_{2}\right) \in r \Rightarrow t_{1}=t_{2}\right)$
- That is, in a function, it is forbidden for a member of S to map to more than one members of T.
- Equivalently, in a function, two distinct members of T cannot be mapped by the same member of S.
- e.g., Say $S=\{1,2,3\}$ and $T=\{a, b\}$, which of the following relations satisfy the above functional property?
- $S \times T$

Witness 1: $(1, a),(1, b)$; Witness 2: $(2, a),(2, b)$; Witness $3:(3, a),(3, b)$.

- $(S \times T) \backslash\{(x, y) \mid(x, y) \in S \times T \wedge x=1\}$

Witness 1: $(2, a),(2, b)$; Witness 2: $(3, a),(3, b)$

- $\{(1, a),(2, b),(3, a)\}$

Functions (2.1): Total vs. Partial
Given a relation $r \in S \leftrightarrow T$

- r is a partial function if it satisfies the functional property:

$$
r \in S \leftrightarrow T \Longleftrightarrow(\text { isFunctional }(r) \wedge \operatorname{dom}(r) \subseteq S)
$$

Remark. $r \in S \rightarrow T$ means there may (or may not) be $s \in S$ s.t.
$r(s)$ is undefined.

- e.g., $\{\{(\mathbf{2}, a),(\mathbf{1}, b)\},\{(\mathbf{2}, a),(\mathbf{3}, a),(\mathbf{1}, b)\}\} \subseteq\{1,2,3\} \leftrightarrow\{a, b\}$
- ASCII syntax: r : +->
- r is a total function if there is a mapping for each $s \in S$:

$$
r \in S \rightarrow T \Longleftrightarrow \text { (isFunctional }(r) \wedge \operatorname{dom}(r)=S \text {) }
$$

Remark. $r \in S \rightarrow T$ implies $r \in S \rightarrow T$, but not vice versa. Why?

- e.g., $\{(\mathbf{2}, a),(\mathbf{3}, a),(\mathbf{1}, b)\} \in\{1,2,3\} \rightarrow\{a, b\}$
- e.g., $\{(2, a),(\mathbf{1}, b)\} \notin\{1,2,3\} \rightarrow\{a, b\}$
- ASCII syntax: r : -->

29 of 41

Functions (2.2):

Relation Image vs. Function Application

- Recall: A function is a relation, but a relation is not necessarily a function.
- Say we have a partial function $f \in\{1,2,3\} \nrightarrow\{a, b\}$:

$$
f=\{(\mathbf{3}, \boldsymbol{a}),(\mathbf{1}, b)\}
$$

- With f wearing the relation hat, we can invoke relational images

$$
\begin{aligned}
f[\{3\}] & =\{a\} \\
f[\{1\}] & =\{b\} \\
f[\{2\}] & =\varnothing
\end{aligned}
$$

Remark. Given that the inputs are singleton sets (e.g., $\{3\}$), so are the output sets (e.g., $\{a\}$). \because Each member in the domain is mappe to at most one member in the range.

- With f wearing the function hat, we can invoke functional applications:
$f(3)=a$
$f(1)=b$
$f(2)$ is undefined
$f(2)$ is undefined

Functions (3.1): Injective Functions

Given a function f (either partial or total):

- f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T.
isInjective (f)
\Longleftrightarrow
$\forall s_{1}, s_{2}, t \bullet\left(s_{1} \in S \wedge s_{2} \in S \wedge t \in T\right) \Rightarrow\left(\left(s_{1}, t\right) \in f \wedge\left(s_{2}, t\right) \in f \Rightarrow s_{1}=s_{2}\right)$
- If f is a partial injection, we write: $f \in S \rtimes T$
- e.g., $\{\varnothing,\{(1, \mathbf{a})\},\{(2, \mathbf{a}),(3, \mathbf{b})\}\} \subseteq\{1,2,3\} \rightarrow\{a, b\}$
- e.g., $\{(1, \mathbf{b}),(2, a),(3, \mathbf{b})\} \notin\{1,2,3\} \nrightarrow\{a, b\}$
[total, not inj.]
\circ e.g., $\{(1, \mathbf{b}),(3, \mathbf{b})\} \notin\{1,2,3\} \nrightarrow\{a, b\}$ [partial, not inj.]
- ASCII syntax: f: >+>
- If f is a total injection, we write: $f \in S \gtrdot T$
- e.g., $\{1,2,3\} \mapsto\{a, b\}=\varnothing$
- e.g., $\{(2, d),(1, a),(3, c)\} \in\{1,2,3\} \rightarrow\{a, b, c, d\}$
\circ e.g., $\{(\mathbf{2}, d),(\mathbf{1}, c)\} \notin\{1,2,3\} \rightarrow\{a, b, c, d\}$
[not total, inj.]
- e.g., $\{(2, d),(1, c),(3, d)\} \notin\{1,2,3\} \mapsto\{a, b, c, d\}$
[total, not inj.]
- ASCII syntax: f : >->
[32 of 41

Given a function f (either partial or total):

- f is surjective/onto/a surjection if f maps to all members of T.

$$
\text { isSurjective }(f) \Longleftrightarrow \operatorname{ran}(f)=T
$$

- If f is a partial surjection, we write: $f \in S \nrightarrow T$
- e.g., $\{\{(1, \mathbf{b}),(2, \mathbf{a})\},\{(1, \mathbf{b}),(2, \mathbf{a}),(3, \mathbf{b})\}\} \subseteq\{1,2,3\} \nrightarrow\{\mathbf{a}, \boldsymbol{b}\}$
- e.g., $\{(2, \mathbf{a}),(1, \mathbf{a}),(3, \mathbf{a})\} \notin\{1,2,3\} \rightarrow\{a, b\} \quad[$ total, not sur.]
- e.g., $\{(2, \mathbf{b}),(1, \mathbf{b})\} \notin\{1,2,3\} \nrightarrow\{\mathbf{a}, b\}$ [partial, not sur.]
- ASCII syntax: f : +->>
- If f is a total surjection, we write: $f \in S \rightarrow T$
- e.g., $\{\{(2, a),(1, b),(3, a)\},\{(2, b),(1, a),(3, b)\}\} \subseteq\{1,2,3\} \rightarrow\{a, b\}$
\circ e.g., $\{(2, a),(3, b)\} \notin\{1,2,3\} \rightarrow\{a, b\}$
[not total, sur.]
- e.g., $\{(2, \mathbf{a}),(3, \mathbf{a}),(1, \mathbf{a})\} \notin\{1,2,3\} \rightarrow\{a, b\}$
[total., not sur]
- ASCII syntax: $£$: -->>

Functions (3.3): Bijective Functions

Given a function f :
f is bijective/a bijection/one-to-one correspondence if f is total, injective, and surjective.

- e.g., $\{1,2,3\} \mapsto\{a, b\}=\varnothing$
- e.g., $\{\{(1, a),(2, b),(3, c)\},\{(2, a),(3, b),(1, c)\}\} \subseteq\{1,2,3\} \mapsto\{a, b, c\}$
- e.g., $\{(\mathbf{2}, b),(\mathbf{3}, c),(4, a)\} \notin\{1,2,3,4\} \mapsto\{a, b, c\}$
[not total, inj., sur.]
- e.g., $\{(1, \mathbf{a}),(2, b),(3, c),(4, \mathbf{a})\} \notin\{1,2,3,4\} \rightsquigarrow\{a, b, c\}$
[total, not inj., sur.]
- e.g., $\{(1, \mathbf{a}),(2, \mathbf{c})\} \notin\{1,2\} \mapsto\{a, b, c\}$
[total, inj., not sur.]
- ASCII syntax: f : >->>

Functions (4.2): Modelling Decisions

1. Should an array a declared as "String[] a" be modelled/formalized as a partial function (i.e., $a \in \mathbb{Z} \rightarrow$ String) or a total function (i.e., $a \in \mathbb{Z} \rightarrow$ String)?
Answer. $a \in \mathbb{Z} \rightarrow$ String is not appropriate as:

- Indices are non-negative (i.e., $a(i)$, where $i<0$, is undefined).
- Each array size is finite: not all positive integers are valid indices.

2. What does it mean if an array is modelled/formalized
as a partial injection (i.e., $a \in \mathbb{Z} \Uparrow$ String)?
Answer. It means that the array does not contain any duplicates.
3. Can an integer array "int [] a" be modelled/formalized as a partial surjection (i.e., $a \in \mathbb{Z} \nrightarrow \mathbb{Z}$)?
Answer. Yes, if a stores all 2^{32} integers (i.e., $\left[-2^{31}, 2^{31}-1\right]$).
4. Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., $a \in \mathbb{Z} \nrightarrow$ String)?
Answer. No $\because \#$ possible strings is ∞.
5. Can an integer array "int []" storing all 2^{32} values be modelled/formalized as a bijection (i.e., $a \in \mathbb{Z} \leadsto \mathbb{Z}$)?
Answer. No, because it cannot be total (as discussed earlier).

Beyond this lecture ... LASSONDE

- For the where_is \in Employee \rightarrow Location model, what does it mean when it is:
- Injective [where_is \in Employee \gg Location]
- Surjective [where_is \in Employee \rightarrow Location]
- Bijective [where_is \in Employee \mapsto Location]
- Review examples discussed in your earlier math courses on logic and set theory.
- Ask questions in the Q\&A sessions to clarify the reviewed concepts.

37 of 41


```
Learning Outcomes of this Lecture
```

Learning Outcomes of this Lecture
Propositional Logic (1)
Propositional Logic (1)
Propositional Logic: Implication (1)
Propositional Logic: Implication (1)
Propositional Logic: Implication (2)
Propositional Logic: Implication (2)
Propositional Logic: Implication (3)
Propositional Logic: Implication (3)
Propositional Logic (2)
Propositional Logic (2)
Predicate Logic (1)
Predicate Logic (1)
Predicate Logic (2.1): Universal Q. (\forall)
Predicate Logic (2.1): Universal Q. (\forall)
Predicate Logic (2.2): Existential Q. (\exists)
Predicate Logic (2.2): Existential Q. (\exists)
Predicate Logic (3): Exercises
Predicate Logic (3): Exercises
Predicate Logic (4): Switching Quantifications
Predicate Logic (4): Switching Quantifications
38 of 41

```

Index (2)
Sets: Definitions and Membership

\section*{Set Relations}

Set Relations: Exercises
Set Operations
Power Sets
Set of Tuples
Relations (1): Constructing a Relation
Relations (2.1): Set of Possible Relations
Relations (2.2): Exercise
Relations (3.1): Domain, Range, Inverse
Relations (3.2): Image

Index (4)
Functions (3.3): Bijective Functions
Functions (4.1): Exercises
Functions (4.2): Modelling Decisions
Beyond this lecture ...

41 of 41```


[^0]:    - Definition: $r \triangleright r s=\left\{\left(d, r^{\prime}\right) \mid\left(d, r^{\prime}\right) \in r \wedge r^{\prime} \notin r s\right\}$
    - e.g., $r \triangleright\{1,2\}=\{\{(c, \mathbf{3}),(\mathbf{a}, \mathbf{4}),(b, \mathbf{5}),(c, \mathbf{6}),(f, \mathbf{3})\}\}$
    - ASCII syntax: $r$ | >> rs

