Asymptotic Analysis of Algorithms

EECS2011 N \& Z: Fundamentals of Data Structures Winter 2022

CHFN-WFI WANG

This module is designed to help you learn about:

- Notions of Algorithms and Data Structures
- Measurement of the "goodness" of an algorithm
- Measurement of the efficiency of an algorithm
- Experimental measurement vs. Theoretical measurement
- Understand the purpose of asymptotic analysis.
- Understand what it means to say two algorithms are: - equally efficient, asymptotically
- one is more efficient than the other, asymptotically
- Given an algorithm, determine its asymptotic upper bound .

Algorithm and Data Structure

- A data structure is:
- A systematic way to store and organize data in order to facilitate access and modifications
- Never suitable for all purposes: it is important to know its strengths and limitations
- A well-specified computational problem precisely describes the desired input/output relationship.
- Input: A sequence of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
\circ Output: A permutation (reordering) $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$
- An instance of the problem: $\langle 3,1,2,5,4\rangle$
- An algorithm is:
- A solution to a well-specified computational problem
- A sequence of computational steps that takes value(s) as input and produces value(s) as output
- Steps in an algorithm manipulate well-chosen data structure(s). 4

1. Correctness:

- Does the algorithm produce the expected output?
- Use JUnit to ensure this.

2. Efficiency:

- Time Complexity: processor time required to complete
- Space Complexity: memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?

- Once the algorithm is implemented in Java:
- Execute the program on test inputs of various sizes and structures.
- For each test, record the elapsed time of the execution.

```
long startTime = System.currentTimeMillis();
7* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.
- To make sound statistical claims about the algorithm's running time, the set of input tests must be "reasonably" complete.

Zot 41

Example Experiment

- Computational Problem:
- Input: A character c and an integer n
- Output: A string consisting of n repetitions of character c e.g., Given input '*' and 15, output ***************.
- Algorithm 1 using String Concatenations:

```
public static String repeatl(char c, int n) {
    String answer = "";
    for (int i = 0; i<n; i ++) { answer += c; }
    return answer; }
```

- Algorithm 2 using StringBuilder append's:

```
public static String repeat2(char c, int n) {
    StringBuilder sb = new StringBuilder();
    for (int i = 0; i < n; i ++) { sb.append(c);
    return sb.toString(); }
```


Example Experiment: Detailed Statistics

n	repeat 1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
$1,600,000$	$2,847,968$	13
$3,200,000$	$12,809,631$	28
$6,400,000$	$59,594,275$	58
$12,800,000$	$265,696,421(\approx 3$ days)	135

- As input size is doubled, rates of increase for both algorithms are linear:
- Running time of repeat 1 increases by ≈ 5 times.
- Running time of repeat 2 increases by ≈ 2 times.

Example Experiment: Visualization

1. An algorithm must be fully implemented (i.e., translated into valid Java syntax) in order study its runtime behaviour experimentally.

- What if our purpose is to choose among alternative data structures or algorithms to implement?
- Can there be a higher-level analysis to determine that one algorithm or data structure is more superior than others?

2. Comparison of multiple algorithms is only meaningful when experiments are conducted under the same environment of:

- Hardware: CPU, running processes
- Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.

- What if "important" inputs were not included in the experiments?

11 of 41

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running times) of algorithms should be one that:
- Allows us to calculate the relative efficiency (rather than absolute elapsed time) of algorithms in a ways that is independent of the hardware and software environment.
- Can be applied using a high-level description of the algorithm (without fully implementing it).
- Considers all possible inputs (esp. the worst-case scenario).
- We will learn a better approach that contains 3 ingredients:

1. Counting primitive operations
2. Approximating running time as a function of input size
3. Focusing on the worst-case input (requiring the most running time)

A primitive operation corresponds to a low-level instruction with a constant execution time.

- Assignment
[e.g., x = 5;
- Indexing into an array
[e.g., a [i]]
- Arithmetic, relational, logical op. [e.g., a $+\mathrm{b}, \mathrm{z}>\mathrm{w}, \mathrm{b} 1 \quad \& \& \mathrm{~b} 2$]
- Accessing an attribute of an object
[e.g., acc.balance]
- Returning from a method
[e.g., return result;]
Q: Why is a method call in general not a primitive operation?
A: It may be a call to:
- a "cheap" method (e.g., printing Hello World), or
- an "expensive" method (e.g., sorting an array of integers)

Example: Counting Primitive Operations (2)

Count the number of primitive operations for

```
boolean foundEmptyString = false;
int i = 0;
while (!foundEmptyString && i < names.length) {
    if (names[i].length() == 0) {
        foundEmptyString = true.
    }
    i = i + 1;
}
```

- \# times the stay condition of the while loop is checked?
[between 1 and names.length + 1]
[worst case: names. length +1 times]
- \# times the body code of while loop is executed?
[between 0 and names.length]
[worst case: names.length times]
15 ot 47

From Absolute RT to Relative RT

- Each primitive operation (PO) takes approximately the same, constant amount of time to execute.
[say t]
The absolute value of t depends on the execution environment.
- The number of primitive operations required by an algorithm should be proportional to its actual running time on a specific environment.

$$
\begin{gathered}
\text { e.g., findMax (int [] a, int } n \text {) has } 7 n-2 \text { POs } \\
R T=(7 n-2) \cdot t
\end{gathered}
$$

Say two algorithms with RT $(7 n-2) \cdot t$ and $R T(10 n+3) \cdot t$. \Rightarrow It suffices to compare their relative running time:

$$
7 n-2 \text { vs. } 10 n+3
$$

- To determine the time efficiency of an algorithm, we only focus on their number of POs.

Example: Approx. \# of Primitive Operations

- Given \# of primitive operations counted precisely as $7 n-2$, we view it as

$$
7 \cdot n^{1}-2 \cdot n^{0}
$$

- We say
- n is the highest power
- 7 and 2 are the multiplicative constants
- 2 is the lower term
- When approximating a function (considering that input size may be very large):
- Only the highest power matters.
- multiplicative constants and lower terms can be dropped.
$\Rightarrow 7 n-2$ is approximately n
Exercise: Consider $7 n+2 n \cdot \log n+3 n^{2}$:
- highest power?
[n^{2}]
- multiplicative constants?
- lower terms?
$[7 n+2 n \cdot \log n]$

Approximating Running Time as a Function of Input Size

Given the high-level description of an algorithm, we associate it with a function f, such that $f(n)$ returns the number of primitive operations that are performed on an input of size n.

- $f(n)=5$
- $f(n)=\log _{2} n$
- $f(n)=4 \cdot n$
- $f(n)=n^{2}$
- $f(n)=n^{3}$
- $f(n)=2^{n}$
[constant]
[logarithmic]
[linear]
[quadratic]
[cubic]
[exponential]

Focusing on the Worst-Case Input LASSONDE

- Average-case analysis calculates the expected running times based on the probability distribution of input values.
- worst-case analysis or best-case analysis?
[100141

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour in the limit:
- How the running time of the algorithm under analysis changes as the input size changes without bound
- e.g., contrast $R T_{1}(n)=n$ with $R T_{2}(n)=n^{2}$
- Allows us to compare the relative performance of alternative algorithms:
- For large enough inputs, the multiplicative constants and lower-order terms of an exact running time can be disregarded.
- e.g., $R T_{1}(n)=3 n^{2}+7 n+18$ and $R T_{1}(n)=100 n^{2}+3 n-100$ are considered equally efficient, asymptotically.
- e.g., $R T_{1}(n)=n^{3}+7 n+18$ is considered less efficient than $R T_{1}(n)=100 n^{2}+100 n+2000$, asymptotically.

We may consider three kinds of asymptotic bounds for the running time of an algorithm:

- Asymptotic upper bound
- Asymptotic lower bound
- Asymptotic tight bound

From $n_{0}, f(n)$ is upper bounded by $c \cdot g(n)$, so $f(n)$ is $O(g(n))$.

10 0741

Asymptotic Upper Bound: Definition

- Let $f(n)$ and $g(n)$ be functions mapping positive integers (input size) to positive real numbers (running time).
- $f(n)$ characterizes the running time of some algorithm.
- $O(g(n))$:
- denotes a collection of functions
- consists of all functions that can be upper bounded by $g(n)$, starting at some point, using some constant factor
- $f(n) \in O(g(n))$ if there are:
- A real constant c>0
- An integer constant $n_{0} \geq 1$
such that:

$$
f(n) \leq c \cdot g(n) \quad \text { for } n \geq n_{0}
$$

- For each member function $f(n)$ in $O(g(n))$, we say that:
- $f(n) \in O(g(n))$
[$f(n)$ is a member of "big-O of $g(n)$ "]
- $f(n)$ is $O(g(n))$
[$f(n)$ is "big-O of $g(n)$ "]
$\stackrel{\circ}{ } f(n)$ is order of $g(n)$

Asymptotic Upper Bound: Example (1)

Prove: The function $8 n+5$ is $O(n)$.
Strategy: Choose a real constant $c>0$ and an integer constant
$n_{0} \geq 1$, such that for every integer $n \geq n_{0}$:

$$
8 n+5 \leq c \cdot n
$$

Can we choose $c=9$? What should the corresponding n_{0} be?

n	$8 \mathrm{n}+5$	9 n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

Therefore, we prove it by choosing $c=9$ and $n_{0}=5$.
We may also prove it by choosing $c=13$ and $n_{0}=1$. Why?

Prove: The function $f(n)=5 n^{4}+3 n^{3}+2 n^{2}+4 n+1$ is $O\left(n^{4}\right)$. Strategy: Choose a real constant $c>0$ and an integer constant $n_{0} \geq 1$, such that for every integer $n \geq n_{0}$:

$$
5 n^{4}+3 n^{3}+2 n^{2}+4 n+1 \leq c \cdot n^{4}
$$

$f(1)=5+3+2+4+1=15$
Choose $c=15$ and $n_{0}=1$!

Asymptotic Upper Bound: Proposition (1)

If $f(n)$ is a polynomial of degree d, i.e.,

$$
f(n)=a_{0} \cdot n^{0}+a_{1} \cdot n^{1}+\cdots+a_{d} \cdot n^{d}
$$

and $a_{0}, a_{1}, \ldots, a_{d}$ are integers, then $f(n)$ is $O\left(n^{d}\right)$.

- We prove by choosing

$$
\begin{aligned}
& c=\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{d}\right| \\
& n_{0}=1
\end{aligned}
$$

- We know that for $n \geq 1$:
$n^{0} \leq n^{1} \leq n^{2} \leq \cdots \leq n^{d}$
- Upper-bound effect: $n_{0}=1$? $\quad\left[f(1) \leq\left(\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{d}\right|\right) \cdot 1^{d}\right]$ $a_{0} \cdot 1^{0}+a_{1} \cdot 1^{1}+\cdots+a_{d} \cdot 1^{d} \leq\left|a_{0}\right| \cdot 1^{d}+\left|a_{1}\right| \cdot 1^{d}+\cdots+\left|a_{d}\right| \cdot 1^{d}$
- Upper-bound effect holds? $\quad\left[f(n) \leq\left(\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{d}\right|\right) \cdot n^{d}\right]$ $a_{0} \cdot n^{0}+a_{1} \cdot n^{1}+\cdots+a_{d} \cdot n^{d} \leq\left|a_{0}\right| \cdot n^{d}+\left|a_{1}\right| \cdot n^{d}+\cdots+\left|a_{d}\right| \cdot n^{d}$

Asymptotic Upper Bound: More Examples

- $5 n^{2}+3 n \cdot \log n+2 n+5$ is $O\left(n^{2}\right)$

$$
\begin{aligned}
& {\left[c=15, n_{0}=1\right]} \\
& {\left[c=35, n_{0}=1\right]} \\
& {\left[c=5, n_{0}=2\right]}
\end{aligned}
$$

- $20 n^{3}+10 n \cdot \log n+5$ is $O\left(n^{3}\right) \quad\left[c=35, n_{0}=1\right]$
- $3 \cdot \log n+2$ is $O(\log n)$
- Why can't n_{0} be 1 ?
- Choosing $n_{0}=1$ means $\Rightarrow f(\sqrt{1})$ is upper-bounded by $c \cdot \log 1$:
- We have $f(1)=3 \cdot \log 1+2$, which is 2 .
- We have $c \cdot \log [1$, which is 0 .
$\Rightarrow f\left(\begin{array}{l}1) \\ \text { is not upper-bounded by } c \cdot \log 1\end{array}\right.$
[Contradiction!]
- 2^{n+2} is $O\left(2^{n}\right)$
$\left[c=4, n_{0}=1\right]$
- $2 n+100 \cdot \log n$ is $O(n)$
$\left[c=102, n_{0}=1\right]$
- Use the big-O notation to characterize a function (of an algorithm's running time) as closely as possible.
For example, say $f(n)=4 n^{3}+3 n^{2}+5$:
- Recall: $O\left(n^{3}\right) \subset O\left(n^{4}\right) \subset O\left(n^{5}\right) \subset \ldots$
- It is the most accurate to say that $f(n)$ is $O\left(n^{3}\right)$.
- It is true, but not very useful, to say that $f(n)$ is $O\left(n^{4}\right)$ and that $f(n)$ is $O\left(n^{5}\right)$.
- It is false to say that $f(n)$ is $O\left(n^{2}\right), O(n)$, or $O(1)$.
- Do not include constant factors and lower-order terms in the big-O notation.
For example, say $f(n)=2 n^{2}$ is $O\left(n^{2}\right)$, do not say $f(n)$ is $O\left(4 n^{2}+6 n+9\right)$.

B1-at 41

Upper Bound of Algorithm: Example (1)

Classes of Functions

Upper Bound of Algorithm: Example (2)

```
int findMax (int[] a, int n) {
    currentMax = a[0];
    for (int i = 1; i<n; ) {
    if (a[i] > currentMax) {
        currentMax = a[i]; }
        i ++ }
return currentMax; }
```

```
int sumMaxAndCrossProducts (int[] a, int n) {
    int max = a[0];
    for(int i = 1; i < n; i ++) {
    if (a[i] > max) { max = a[i]; }
    }
    int sum = max;
    for (int j = 0; j<n; j ++)
        for (int k = 0; k< n; k ++) {
        sum += a[j] * a[k]; } }
    return sum; }
```

- \# of primitive operations $\approx\left(c_{1} \cdot n+c_{2}\right)+\left(c_{3} \cdot n \cdot n+c_{4}\right)$, where c_{1}, c_{2}, c_{3}, and c_{4} are some constants.
- Therefore, the running time is $O\left(n+n^{2}\right)=O\left(n^{2}\right)$.
- That is, this is a quadratic algorithm.
350.47

Upper Bound of Algorithm: Example (5)

```
int triangularSum (int[] a, int n) {
    int sum = 0;
    for (int i=0; i<n; i ++) {
        for (int j = i ; j < n; j ++) {
        sum += a[j]; } }
    return sum;
```

- Worst case is when we reach Line 8.
- \# of primitive operations $\approx c_{1}+n \cdot n \cdot c_{2}$, where c_{1} and c_{2} are some constants.
- Therefore, the running time is $O\left(n^{2}\right)$.
- That is, this is a quadratic algorithm.

```
```

boolean containsDuplicate (int[] a, int n)

```
```

boolean containsDuplicate (int[] a, int n)
for (int i = 0; i < n;) {
for (int i = 0; i < n;) {
for (int j = 0; j < n;) {
for (int j = 0; j < n;) {
if (i != j \&\& a[i] == a[j]) {
if (i != j \&\& a[i] == a[j]) {
return true; }
return true; }
j ++; }
j ++; }
i ++; }
i ++; }
return false; }

```
```

 return false; }
    ```
```

 operations is \(7 n-2\).
 - Therefore, the running time is $O(n)$.
- That is, this is a linear-time algorithm.

Upper Bound of Algorithm: Example (3)
.

Beyond this lecture... $\underset{\text { LASSONDE }}{ }$

- You will be required to implement Java classes and methods, and to test their correctness using JUnit.
Review them if necessary:
https://www.eecs.yorku.ca/~jackie/teaching/
lectures/index.htmL\#EECS2030 F21

Also, make sure you know how to trace programs using a debugger:
https://www.eecs.yorku.ca/~jackie/teaching/
tutorials/index.html\#java from scratch w21
- Debugging actions (Step Over/Into/Return) [Parts C - E, Week 2]

3/ CO 411

Index (1)
LASSONDE
What You're Assumed to Know
Learning Outcomes
Algorithm and Data Structure
Measuring "Goodness" of an Algorithm
Measuring Efficiency of an Algorithm
Measure Running Time via Experiments
Example Experiment
Example Experiment: Detailed Statistics
Example Experiment: Visualization
Experimental Analysis: Challenges
Moving Beyond Experimental Analysis

Index (2)

Counting Primitive Operations
Example: Counting Primitive Operations (1)
Example: Counting Primitive Operations (2)
From Absolute RT to Relative RT
Example: Approx. \# of Primitive Operations
Approximating Running Time
as a Function of Input Size
Focusing on the Worst-Case Input
What is Asymptotic Analysis?
Three Notions of Asymptotic Bounds
Asymptotic Upper Bound: Definition
[9014]

Index (3)

Asymptotic Upper Bound: Visualization
Asymptotic Upper Bound: Example (1)
Asymptotic Upper Bound: Example (2)
Asymptotic Upper Bound: Proposition (1)
Asymptotic Upper Bound: Proposition (2)
Asymptotic Upper Bound: More Examples
Using Asymptotic Upper Bound Accurately
Classes of Functions
Rates of Growth: Comparison
Upper Bound of Algorithm: Example (1)
Upper Bound of Algorithm: Example (2)
400141

Index (4)
Upper Bound of Algorithm: Example (3)
Upper Bound of Algorithm: Example (4)
Upper Bound of Algorithm: Example (5)
Beyond this lecture

Background Study: Generics in Java

- It is assumed that, in EECS2030, you learned about the basics of Java generics:
。 General collection (e.g., Ob ject []) vs. Generic collection (e.g., E [])
- How using generics minimizes casts and instanceof checks
- How to implement and use generic classes
- If needed, review the above assumed basics from the relevant parts of EECS2030 (https://www.eecs.yorku.ca/~jackie/
teaching/lectures/index.html\#EECS2030_F21):
- Parts A1 - A3, Lecture 7, Week 10
- Parts B - C, Lecture 7, Week 11

Tips.

- Skim the slides: watch lecture videos if needing explanations.
- Ask questions related to the assumed basics of generics!
- Assuming that know the basics of Java generics, we will implement and use generic SLL and DLL. 2056

Learning Outcomes of this Lecture

Basic Data Structures:
 Arrays vs. Linked-Lists

EECS2011 N \& Z:

YORK
 UN IVERS I TÉ
 UN I VERS I T Y

Fundamentals of Data Structures Winter 2022

Basic Data Structure: Arrays

- An array is a sequence of indexed elements.
- Size of an array is fixed at the time of its construction.
- e.g., int[] numbers = new int[10];
- Heads-Up. Two resizing strategies: increments vs. doubling.
- Supported operations on an array:
- Accessing: e.g., int max = a[0]; Time Complexity: O(1) [constant-time op.]
- Updating: e.g., a[i] = a[i + 1]; Time Complexity: O(1) [constant-time op.]
- Inserting/Removing:
String[] insertAt(String[] a, int n, String e, int i)
\quad String[] result = new String $[n+1] ;$
for(int $j=0 ; j<=i-1 ; j++)\{\operatorname{result}[j]=a[j] ;\}$
result $[i]=e ;$
for(int $j=i+1 ; j<=n ; j++)\{\operatorname{result}[j]=a[j-1] ;\}$
return result;
[linear-time op.]

Array Case Study:

Comparing Two Sorting Strategies

- The Sorting Problem:

Input: An array a of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ (e.g., $\langle 3,4,1,3,2\rangle$)
Output: A permutation/reordering $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ of the input
sequence s.t. elements are arranged in a non-descending order (e.g., $\langle 1,2,3,3,4\rangle$): $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

Remark. Variants of the sorting problem may require different orderings:

- non-descending
- ascending/increasing
- non-ascending
- descending/decreasing
- Two alternative implementation strategies for solving this problem
- At the end, choose one based on their time complexities.

Sorting: Strategy 1 - Selection Sort

- Maintain a (initially empty) sorted portion of array a.
- From left to right in array a, select and insert the minimum element to the end of this sorted portion, so it remains sorted.

```
void selectionSort(int[] a, int n)
    for (int i = 0; i <= (n - 2); i ++)
        int minIndex = i;
        for (int j = i; j <= (n - 1); j ++)
        if (a[j] < a[minIndex]) { minIndex = j; }
    int temp = a[i];
    a[i] = a[minIndex];
    a[minIndex] = temp;
```

- How many times does the body of for-loop (L4) run? [($\mathrm{n}-1$ 1)]
- Running time?

- So selection sort is a quadratic-time algorithm.

20t56

Sorting: Strategy 2 - Insertion Sort

- Maintain a (initially empty) sorted portion of array a.
- From left to right in array a, insert one element at a time into the "correct" spot in this sorted portion, so it remains sorted.

```
void insertionSort(int[] a, int n)
    for (int i = 1; i < n; i ++)
        int current = a[i];
        int j = i;
        while (j> 0 && a[j - 1] > current)
            a[j] = a[j-1];
            j --;
            a[j] = current;
```

- while-loop (L5) exits when? [j <= o or a[j-1] <= current]
- Running time?

So insertion sort is a quadratic-time algorithm.

- In the Java implementations of selection sort and insertion sort, we maintain the "sorted portion" from the left end.
- For selection sort, we select the minimum element from the "unsorted portion" and insert it to the end of the "sorted portion".
- For insertion sort, we choose the left-most element from the "unsorted portion" and insert it at the "correct spot" in the "sorted portion".
- Exercise: Modify the Java implementations, so that the "sorted portion" is:
- arranged in a non-ascending order (e.g., (5, 4, 3, 2, 1)); and
- maintained and grown from the right end instead.

80t56

Comparing Insertion \& Selection Sorts

- Asymptotically , running times of selection sort and insertion sort are both $O\left(n^{2}\right)$.
- We will later see that there exist better algorithms that can perform better than quadratic: $O(n \cdot \log n)$.

Basic Data Structure: Singly-Linked Lists

- We know that arrays perform:
- well in indexing
- badly in inserting and deleting
- We now introduce an alternative data structure to arrays.
- A linked list is a series of connected nodes, forming a linear sequence.

Remark. At runtime, node connections are through reference aliasing.

- Each node in a singly-linked list (SLL) stores:
- reference to a data object; and
- reference to the next node in the list.

Contrast. relative positioning of LL vs. absolute indexing of arrays

- The last node in a singly-linked list is different from others. How so? Its reference to the next node is simply null.
100t56

Singly-Linked List: How to Keep Track?

- Due to its "chained" structure, a SLL, when first being created, does not need to be specified with a fixed length.
- We can use a SLL to dynamically store and manipulate as many elements as we desire without the need to resize by:
- e.g., creating a new node and setting the relevant references.
- e.g., inserting some node to the beginning/middle/end of a SLL
- e.g., deleting some node from the beginning/middle/end of a SLL
- Contrary to arrays, we do not keep track of all nodes in a SLL directly by indexing the nodes.
- Instead, we only store a reference to the head (i.e., first node), and find other parts of the list indirectly.

- Exercise: Given the head reference of a SLL, describe how we may:
- Count the number of nodes currently in the list. [Running Time?]
\circ Find the reference to its tail (i.e., last node) [Running Time?]

Singly-Linked List: Java Implementation
We first implement a SLL storing strings only.
public class Node
private String element;
private Node next;
public Node(String e, Node n) \{ element =e; next $=n$; \}
public String getElement() \{ return element; \}
public void setElement (String e) \{ element $=e ;$ \} public Node getNext() \{ return next; \}
public void setNext (Node n) \{ next $=n$; \}

\}

public class SinglyLinkedList
private Node head;
public void setHead(Node n) \{ head $=n$; \}
public int getSize() \{
public Node getTail()
public void addFirst(String e) \{ ... \}
public Node getNodeAt (int
public void addAt(int i, String e) \{ ... \}
public void removeLast() \{ ... \}
\}
$120+56$

Singly-Linked List:

Constructing a Chain of Nodes

Approach 1

```
Node tom = new Node("Tom", null)
Node mark = new Node("Mark", tom);
Node alan = new Node("Alan", mark)
```


Approach 2

```
Node alan = new Node("Alan", null)
Node mark = new Node("Mark", null)
Node tom = new Node("Tom", null);
alan.setNext (mark);
mark.setNext(tom);
```


Singly-Linked List: Setting a List's Head

Node tom $=$ new Node("Tom", null);
Node mark = new Node("Mark", tom);
Node alan = new Node("Alan", mark);
SinglyLinkedList list $=$ new SinglyLinkedList();
list. setHead(alan);

Approach 2

Node alan = new Node("Alan", null)
Node mark = new Node("Mark", null);
Node tom $=$ new Node("Tom", null);
alan. setNext (mark);
mark.setNext(tom)
SinglyLinkedList list = new SinglyLinkedList();
list. setHead(alan) ;
140156

Singly-Linked List: Counting \# of Nodes (1)

Problem: Return the number of nodes currently stored in a SLL.

- Hint. Only the last node has a null next reference.
- Assume we are in the context of class SinglyLinkedList.

```
int getSize()
    int size = 0
    Node current = head;
    while (current != null)
        current = current.getNext();
        size ++;
    }
    return size;
```

- When does the while-loop (L4) exit?
- RT of getSize: O(n)
- Contrast: RT of a.length: O(1)
[current == null]
[linear-time op.]
[constant-time op.]

Singly-Linked List: Counting \# of Nodes (2)


```
l
int getSize()
    Node current = head
    while (current != null
        current = current.getNext();
    }
```

Let's now consider list.getSize()

| current | current $!=$ null | End of Iteration | size |
| :---: | :---: | :---: | :---: |
| alan | true | 1 | 1 |
| mark | true | 2 | 2 |
| tom | true | 3 | 3 |
| null | false | - | - |

Singly-Linked List: Finding the Tail (1)

Problem: Retrieved the tail (i.e., last node) in a SLL.

- Hint. Only the last node has a null next reference.
- Assume we are in the context of class SinglyLinkedList.

```
Node getTail() {
    Node current = head;
    Node tail = null;
    while (current != null) {
        tail = current;
        current = current.getNext();
    }
    return tail;
```

- When does the while-loop (L4) exit?
[current == null]
- RT of getTail: O(n)
[linear-time op.]
- Contrast: RT of a [a.length - 1]: O(1) [constant-time op.]

Singly-Linked List: Finding the Tail (2)

Singly-Linked List: Can We Do Better?

- In practice, we may frequently need to:
- Access the tail of a list. [e.g., customers joining a service queue]
- Inquire the size of a list.
[e.g., the service queue full?]
Both operations cost $O(n)$ to run (with only head available).
- We may improve the RT of these two operations.

Principle. Trade space for time.

- Declare a new attribute tail pointing to the end of the list.
- Declare a new attribute size denoting the number of stored nodes.
- RT of these operations, accessing attribute values, are $O(1)$!
- Why not declare attributes to store references of all nodes between head and tail (e.g., secondNode, thirdNode)?
- No - at the time of declarations, we simply do not know how many nodes there will be at runtime.

190156

Problem: Insert a new string e to the front of the list.

- Hint. The list's new head should store e and point to the old head.
- Assume we are in the context of class SinglyLinkedList.

```
void addFirst (String e) {
    head = new Node(e, head);
    if (size == 0) {
        tail = head;
    }
}
```

- Remember that RT of accessing head or tail is $O(1)$
- RT of addFirst is $O(1)$ [constant-time op.]
- Contrast: Inserting into an array costs $O(n) \quad$ [linear-time op.]

Singly-Linked List: Inserting to the Front (2)

010156
See ExampleStringLinkedLists.zip.
Compare and contrast two alternative ways to constructing a SLL: testSLL_01 vs. testSLl_02.

- Complete the Java implementations, tests, and running time analysis for:
- void removeFirst()
- void addLast (String e)
- Question: The removeLast () method may not be completed in the same way as is void addLast (String e). Why?

Problem: Return the node at index i in the list.

- Hint. $0 \leq i<$ list.getSize()
- Assume we are in the context of class SinglyLinkedList.

```
Node getNodeAt (int i)
    if (i< 0 || i >= size)
            throw new IllegalArgumentException("Invalid Index");
        }
        lse
            int index = 0;
            Node current = head;
            while (index < i) { /* exit when index == i */
                index ++;
            /* current is set to node at index i
            * last iteration: index incremented from i - 1 to i
            current = current.getNext();
        }
            return current;
        }
```

 \}
 240156

Singly-Linked List: Accessing the Middle (3)
 LASSONDE

- What is the worst case of the index i for getNodeAt (i)?
- Worst case: list.getNodeAt (list.size - 1)
- RT of getNodeAt is $O(n)$
- Contrast: Accessing an array element costs O (1) [constant-time op.]

200t56

Singly-Linked List: Inserting to the Middle
Problem: Insert a new element at index i in the list.

- Hint $1.0 \leq i \leq$ list.getSize()
- Hint 2. Use getNodeAt (?) as a helper method.

```
void addAt (int i, String e)
```

 if (i<0 || i > size) \{
 throw new IllegalArgumentException("Invalid Index.");
 \}
 else
 if (i == 0) \{
 addFirst(e);
 els
 lse
 Node nodeBefore \(=\operatorname{getNodeAt}(i-1)\);
 Node newNode \(=\) new Node(e, nodeBefore.getNext());
 nodeBefore.setNext (newNode);
 size ++;
 \}
 \}
 \}
 Example. See testSLL_addAt in ExampleStringLinkedLists.zip.
 270156

Singly-Linked List: Inserting to the Middle

- A call to addAt (i, e) may end up executing:
- Line 3 (throw exception)
[$O(1)$]
- Line 7 (addFirst)
- Lines 10 (getNodeAt)
- Lines 11-13 (setting references)
- What is the worst case of the index i for addAt (i, e)?
A. list. addAt (list.getSize(), e)
which requires list.getNodeAt(list.getSize() - 1)
- RT of addAt is $O(n)$
[linear-time op.]
- Contrast: Inserting into an array costs $O(n)$ [linear-time op.]

For arrays, when given the index to an element, the RT of inserting an element is always $O(n)$

Singly-Linked List: Exercises

Consider the following two linked-list operations, where a reference node is given as an input parameter:

- void insertAfter(Node n, String e)
o Steps?
- Create a new node nn.
- Set nn's next to n's next.
- Set n's next to nn.
- Running time?
- void insertBefore(Node n, String e)
- Steps?
- Iterate from the head, until current. next == n.
- Create a new node nn.
- Set nn's next to current's next (which is n).
- Set current's next to nn.
- Running time?
- Complete the Java implementation, tests, and running time analysis for void removeAt (int i).

| Data Structure | | Array | Singly-Linked List |
| :---: | :---: | :---: | :---: |
| get size | | $\mathrm{O}(1)$ | |
| get first/last element | | | |
| get element at index i | | O(1) | |
| remove last element | | | |
| add/remove first element, add last element | | O(n) | |
| add/remove $i^{\text {th }}$ element | given reference to ($i-1)^{\text {th }}$ element | | |
| | not given | | $\mathrm{O}(\mathrm{n})$ |

Background Study: Generics in Java

- It is assumed that, in EECS2030, you learned about the basics of Java generics:
- General collection (e.g., Ob ject []) vs. Generic collection (e.g., E [])
- How using generics minimizes casts and instanceof checks
- How to implement and use generic classes
- If needed, review the above assumed basics from the relevant parts of EECS2030 (https://www.eecs.yorku.ca/~jackie/
teaching/lectures/index.html\#EECS2030_F21):
- Parts A1 - A3, Lecture 7, Week 10
- Parts B - C, Lecture 7, Week 11

Tips.

- Skim the slides: watch lecture videos if needing explanations.
- Ask questions related to the assumed basics of generics!
- Assuming that know the basics of Java generics, we will implement and use generic SLL and DLL.

330156

```
public class Node< E >
    private E element;
    private Node<E > next;
    public Node(E e, Node< E> n) { element = e; next = n; }
    public E getElement() { return element; }
    public void setElement(E e) { element = e; }
    public Node<E > getNext() { return next; }
    public void setNext(Node< E > n) { next = n; }
```

\}
public class SinglyLinkedList<E> \{
private Node< E > head;
private Node<E > tail;
private int size;
public void setHead(Node< $E>n)$ \{ head $=n$; \}
public void addFirst (E e) \{... \}
Node< E > getNodeAt (int i) \{ ... \}
void addAt (int i, E e) \{... \}
\}
[30156

Generic Classes: Singly-Linked List (2)

Approach 1

Node<String> tom = new Node<String>("Tom", null);
Node<String> mark = new Node<>("Mark", tom);
Node<String> alan = new Node<>("Alan", mark);
SinglyLinkedList<String> list = new SinglyLinkedList<>(); list.setHead(alan);

Approach 2

Node<String> alan = new Node<String>("Alan", null) Node<String> mark = new Node<>("Mark", null); Node<String> tom = new Node<>("Tom", null); alan.setNext (mark);
mark.setNext (tom) ;
SinglyLinkedList<String> list = new SinglyLinkedList<>(); list.setHead(alan);

Assume we are in the context of class SinglyLinkedList.

```
void addFirst (E e) {
    head = new Node< }E>(e, head)
    if (size == 0) { tail = head; }
    size ++;
```

\}
Node<E> getNodeAt (int i) \{
if (i < 0 || i >= size) \{
throw new IllegalArgumentException("Invalid Index"); \}
else \{
int index $=0$;
Node<E> current = head;
while (index < i) \{
index ++;
current $=$ current.getNext();
\}
return current;
\}
360156

- We know that singly-linked lists perform:
- Well:
[O(1)]
- inserting to the front/end
- removing from the front
[head]
- inserting/deleting the middle [given ref. to previous node]
- Poorly:
[$O(n)$]
- accessing the middle
- removing from the end
[getNodeAt(list.getSize() - 2)]
- We may again improve the performance by
trading space for time
just like how attributes size and tail were introduced.

380t56

Singly-Linked Lists: Handling Edge Cases

```
void addFirst (E e)
    head = new Node<E> (e, head);
    if (size == 0) {
        tail = head; } size ++; }
    void removeFirst ()
    if (size == 0) { /* error */ }
    else if (size == 1) {
        head = null; tail = null; size --; }
    else {
        Node<E> oldHead = head;
        head = oldHead.getNext();
        oldHead.setNext(null); size --;
    } }
- We have to explicitly deal with special cases where the current list or resulting list is empty.
- We can actually resolve this issue via a small extension!
```

```
public class Node<E> {
    private E element;
    private Node<E> next;
    public E getElement() { return element; }
    public void setElement(E e) { element = e; }
    public Node<E> getNext() { return next; }
    public void setNext(Node<E> n) { next = n;
    private Node<E> prev;
    public Node<E> getPrev() { return prev; }
    public void setPrev(Node<E> p) { prev = p;
    public Node(E e, Node<E> p, Node<E> n) {
        element = e;
        prev = p;
        next = n;
    }
}
```

- The prev reference helps improve the performance of removeLast ().
. The second last node can be accessed in constant time
[trailer.getPrev().getPrev()]
- The two sentinel/guard nodes (header and trailer) do not help improve the performance.
- Instead, they help simplify the logic of your code.
- Each insertion/deletion can be treated
- Uniformly : a node is always inserted/deleted in-between two nodes
- Without worrying about re-setting the head and tail of list

Generic Doubly-Linked Lists in Java (2)

```
public class DoublyLinkedList<E>
    private int size = 0;
    public void addFirst(E e) { ... }
    public void removeLast() { ... }
    public void addAt(int i, E e) { ... }
    private Node<E> header;
    private Node<E> trailer;
    public DoublyLinkedList() {
        header = new Node<> (null, null, null);
        trailer = new Node<>(null, header, null);
        header.setNext(trailer);
    }
}
```

 Lines 8 to 10 are equivalent to:
 header = new Node<>(null, null, null);
 trailer \(=\) new Node<>(null, null, null);
 header.setNext(trailer);
 trailer.setPrev(header);
 Doubly-Linked List: Inserting to Front/End

```
void addBetween(E e, Node<E> pred, Node<E> succ)
    Node<E> newNode = new Node<> (e, pred, succ);
    pred.setNext (newNode);
    succ.setPrev(newNode);
    size ++;
```

Running Time? O(1)
void addFirst(E e)
addBetween(e, header, header.getNext())
\}
Running Time? $O(1)$
void addLast (E e) \{
addBetween(e, trailer.getPrev(), trailer)
\}
Running Time? O(1)
440 C 56

Doubly-Linked List: Inserting to Middle

```
void addBetween(E e, Node<E> pred, Node<E> succ) {
    Node<E> newNode = new Node<> (e, pred, succ);
    pred.setNext (newNode);
    succ.setPrev(newNode);
    size ++;
Running Time? O(1)
addAt (int i, E e) {
    if (i< 0 | | i > size) {
        throw new IllegalArgumentException("Invalid Index.");
    else {
        Node<E> pred = getNodeAt(i - 1);
        Node<E> succ = pred.getNext();
        addBetween(e, pred, succ);
}
```

 Running Time? Still \(O(n)\) !!!
 40156

Doubly-Linked List: Removals

$460+56$

Doubly-Linked List: Removing from Front/Eledonos

```
void remove (Node<E> node) {
    Node<E> pred = node.getPrev()
    Node<E> succ = node.getNext();
    pred.setNext(succ); succ.setPrev(pred);
    node.setNext(null); node.setPrev(null);
    size --;
```

Running Time? O(1)
void removeFirst() \{
if (size == 0) \{ throw new IllegalArgumentException("Empty"); \}
else \{ remove (header.getNext()); \}
Running Time? O(1)
void removeLast()
if (size == 0) \{ throw new IllegalArgumentException("Empty"); \}
else $\{$ remove (trailer.getPrev()); \}
Running Time? Now $O(1)$!!!
$470+56$

```
void remove (Node<E> node)
    Node<E> pred = node.getPrev();
    Node<E> succ = node.getNext();
    pred.setNext(succ); succ.setPrev(pred);
    node.setNext(null); node.setPrev(null);
    size --;
}
Running Time? O(1)
removeAt (int i) {
    throw new IllegalArgumentException("Invalid Index."); }
    else {
        Node<E> node = getNodeAt(i);
        remove (node);
    }
```

Running Time? Still $O(n)!!!$
880156

Reference Node:

To be Given or Not to be Given

00156

Beyond this lecture ...

- In Eclipse, implement and test the assigned methods in SinglyLinkedList class and DoublyLinkedList class.
- Modify the insertion sort and selection sort implementations using a SLL or DLL.

Exercise 2: Compare the steps and running times of:

| Data Structure | | Array | Singly-Linked List | Doubly-Linked List |
| :---: | :---: | :---: | :---: | :---: |
| size | | O(1) | | |
| first/last element | | | | |
| element at index i | | O(1) | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ |
| remove last element | | O(n) | | |
| add/remove first elemen | add last element | | O(1) | O(1) |
| add/remove $i^{\text {th }}$ element | given reference to $(i-1)^{\text {th }}$ element not given | | | |

Exercise 1: Compare the steps and running times of:

- Not given a reference node:
- addNodeAt (int i, E e)
- Given a reference node:
- addNodeBefore (Node<E> n, E e) [SLL: O(n); DLL: O(1)]
- addNodeAfter(Node<E> n, E e) [O(1)]
- Not given a reference node:
- removeNodeAt (int i) [O(n)]
- Given a reference node:
- removeNodeBefore (Node<E> n)
[SLL: O(n); DLL: O(1)]
[SLL: O(n); DLL: O(1)]
- removeNodeAfter (Node<E> n)

| Index (1) | |
| :---: | :---: |
| Background Study: Generics in Java | |
| Learning Outcomes of this Lecture | |
| Basic Data Structure: Arrays | |
| Array Case Study: | |
| Comparing Two Sorting Strategies | |
| Sorting: Strategy 1 - Selection Sort | |
| Sorting: Strategy 2 - Insertion Sort | |
| Sorting: Alternative Implementations? | |
| Comparing Insertion \& Selection Sorts | |
| Basic Data Structure: Singly-Linked Lists | |
| Singly-Linked List: How to Keep Track? | |
| [2015 | |
| | |
| | |
| Index (2) | |
| Singly-Linked List: Java Implementation | |
| Singly-Linked List: | |
| Constructing a Chain of Nodes | |
| Singly-Linked List: Setting a List's Head | |
| Singly-Linked List: Counting \# of Nodes (1) | |
| Singly-Linked List: Counting \# of Nodes (2) | |
| Singly-Linked List: Finding the Tail (1) | |
| Singly-Linked List: Finding the Tail (2) | |
| Singly-Linked List: Can We Do Better? | |
| Singly-Linked List: Inserting to the Front (1) | |
| Singly-Linked List: Inserting to the Front (2) | |
| उ30156 | |

Index (3)

Exercise

Exercise
Singly-Linked List: Accessing the Middle (1)
Singly-Linked List: Accessing the Middle (2)
Singly-Linked List: Accessing the Middle (3)
Singly-Linked List: Inserting to the Middle (1)
Singly-Linked List: Inserting to the Middle (2)
Singly-Linked List: Removing from the End
Singly-Linked List: Exercises
Exercise
Arrays vs. Singly-Linked Lists
640t56

Index (4)

Background Study: Generics in Java
Generic Classes: Singly-Linked List (1)
Generic Classes: Singly-Linked List (2)
Generic Classes: Singly-Linked List (3)
Singly-Linked Lists: Handling Edge Cases
Basic Data Structure: Doubly-Linked Lists (1)
Basic Data Structure: Doubly-Linked Lists (2)
Generic Doubly-Linked Lists in Java (1)
Generic Doubly-Linked Lists in Java (2)
Header, Trailer, and prev Reference
Doubly-Linked List: Insertions
150156

Index (5)
Doubly-Linked List: Inserting to Front/End
Doubly-Linked List: Inserting to Middle
Doubly-Linked List: Removals
Doubly-Linked List: Removing from Front/End
Doubly-Linked List: Removing from Middle
Reference Node:
To be Given or Not to be Given
Arrays vs. (Singly- and Doubly-Linked) Lists
Beyond this lecture .

Learning Outcomes of this Lecture

This module is designed to help you learn about:

- The notion of Abstract Data Types (ADTs)
- The obligations of an ADT's supplier
- The benefits of an ADT's client
- Criterion of Modularity , Modular Design
- ADTs : Stack vs. Queue
- Implementing Stack and Queue in Java [interface, classes]
- Applications of Stack

Background Study: Interfaces in Java

- It is assumed that, in EECS2030, you learned about the basics of Java interfaces:
- How to declare an interface
- How to create a class implementing an interface
- How polymorphism and dynamic binding work
- If needed, review the above assumed basics from the relevant parts of EECS2030 (https://www.eecs.yorku.ca/~jackie/ teaching/lectures/index.html\#EECS2030_F21):
- Parts B1 - B3, Lecture 6, Week 10

Tips.

- Skim the slides: watch lecture videos if needing explanations.
- Ask questions related to the assumed basics of interfaces!
- Assuming that know the basics of Java interfaces, we will implement and use generic Stack and Queue.

Terminology: Contract, Client, Supplier

- A supplier implements/provides a service (e.g., microwave).
- A client uses a service provided by some supplier.
- The client is required to follow certain instructions to obtain the service (e.g., supplier assumes that client powers on, closes door, and heats something that is not explosive).
- If instructions are followed, the client would expect that the service does what is guaranteed (e.g., a lunch box is heated).
- The client does not care how the supplier implements it.
- What are the benefits and obligations of the two parties?

| | benefits | obligations |
| :---: | :---: | :---: |
| CLIENT | obtain a service | follow instructions |
| SUPPLIER | assume instructions followed | provide a service |

- There is a contract between two parties, violated if:
- The instructions are not followed.
[Client's fault]
- Instructions followed, but service not satisfactory. [Supplier's fault]

Client, Supplier, Contract in OOP (1)

```
class Microwave {
    private boolean on;
    private boolean locked;
    void power() {on = true;}
    void lock() {locked = true;}
    void heat (Object stuff) {
        * Assume: on && locked *
        /* Stuff not explosive. */
```


Method call m.heat(obj) indicates a client-supplier relation.

- Client: resident class of the method call [MicrowaveUser]
- Supplier: type of context object (or call target) m [Microwave]

Client, Supplier, Contract in OOP (2)
class MicrowaveUser
class Microwave
private boolean on
private boolean locked;
void power() \{on = true; \}
void lock() \{locked = true; \}
void heat (Object stuff)
main(...) \{
Microwave $\mathrm{m}=$ new Microwave();
Object obj = ??? ;
m.power(); m.lock();
m. heat (obj);

- The contract is honoured if:

Right before the method call:

- State of m is as assumed: m. on==true and m. locked==ture
- The input argument obj is valid (i.e., not explosive).

Right after the method call: obj is properly heated.

- If any of these fails, there is a contract violation.
- m.on orm.locked is false $\quad \Rightarrow$ MicrowaveUser's fault.
- obj is an explosive $\quad \Rightarrow$ MicrowaveUser's fault. A fault from the client is identified $\quad \Rightarrow$ Method call will not start. - Method executed but obj not properly heated $\quad \Rightarrow$ Microwave's fault

Modularity (1): Childhood Activity

Sources: https://commons.wikimedia.orq and https://www.wish.com

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUs).

Modularity (4): System Development
Safety-critical systems (e.g., nuclear shutdown systems) are built from function blocks.

100 O 58
Sources: https://plcopen.ora/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.

Design Principle: Modularity

- Modularity refers to a sound quality of your design:

1. Divide a given complex problem into inter-related sub-problems via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the game; 2) actor characterizations; and 3) presentation.
2. Specify each sub-solution as a module with a clear interface: inputs, outputs, and input-output relations.

- The UnIX principle: Each command does one thing and does it well.
- In objected-oriented design (OOD), each class serves as a module.

3. Conquer original problem by assembling sub-solutions.

- In OOD, classes are assembled via client-supplier relations (aggregations or compositions) or inheritance relations.
- A modular design satisfies the criterion of modularity and is:
- Maintainable: fix issues by changing the relevant modules only.
- Extensible: introduce new functionalities by adding new modules.
- Reusable: a module may be used in different compositions
- Opposite of modularity: A superman module doing everything.

Abstract Data Types (ADTs)

- Given a problem, decompose its solution into modules.
- Each module implements an abstract data type (ADT):
- filters out irrelevant details
- contains a list of declared data and well-specified operations

ADT

- Supplier's Obligations:
- Implement all operations
- Choose the "right" data structure [e.g., arrays vs. SLL vs. DLL]
- The internal details of an implemented $A D T$ should be hidden.
- Client's Benefits:
- Correct output
- Efficient performance

Java API Approximates ADTs (1)

```
Interface List<E>
E - the type of elements in this list
All Superinterfaces:
    Collection<E>, Iterable<E>
    All Known Implementing Classes:
Absraclist, Abstracsequelialist, Arrayist, AttributeList, CopyOnWriteArrayList, LimeaList, noleList,
RoleUnresolvedList, Stack, Vector
public interface List<E%
An ordered collection (also known as a sequence).The user of this interface has precise control over where in the list each element is
    inserted. The user can access elements by their integer index (position in the list), and search for elements in the list.
```

It is useful to have:

- A generic collection class where the homogeneous type of elements are parameterized as E .
- A reasonably intuitive overview of the ADT.

140158
Iava 8 list API

Java API Approximates ADTs (2)

Methods described in a natural language can be ambiguous.

160158

Building ADTs for Reusability

- ADTs are reusable software components that are common for solving many real-world problems.
e.g., Stacks, Queues, Lists, Tables, Trees, Graphs
- An ADT , once thoroughly tested, can be reused by:
- Clients of Applications
- Suppliers of other ADTs
- As a supplier, you are obliged to:
- Implement standard ADTs
[\approx lego building bricks]

Note. Recall the basic data structures: arrays vs. SLLs vs. DLLs

- Design algorithms using standard ADTs [\approx lego houses, ships]
- For each standard $A D T$, you should know its interface :
- Stored data
- For each operation manipulating the stored data
- How are clients supposed to use the method? [preconditions]
- What are the services provided by suppliers? [postconditions]
- Time (and sometimes space) complexity

160158 Tim sometime

The Stack ADT

- top
[precondition: stack is not empty]
[postcondition: return item last pushed to the stack]
- size
[precondition: none]
[postcondition: return number of items pushed to the stack]
- isEmpty
[precondition: none]
[postcondition: return whether there is no item in the stack]
- push(item)
[precondition: stack is not full]
[postcondition: push the input item onto the top of the stack]
- pop
[precondition: stack is not empty]
[postcondition: remove and return the top of stack]

Stack: Illustration

| OPERATION | RETURN VALUE | STACK CONTENTS |
| :---: | :---: | :---: |
| - | - | \varnothing |
| isEmpty | true | \varnothing |
| push(5) | - | 5 |
| push(3) | - | $\frac{3}{5}$ |
| push(1) | - | $\frac{1}{3}$ |
| size | 3 | $\frac{1}{3}$ |
| | | $\frac{1}{3}$ |
| top | 1 | $\frac{1}{5}$ |
| | | $\frac{3}{5}$ |
| pop | 1 | 5 |
| pop | 3 | \varnothing |
| pop | 5 | |

```
public interface Stack<E> {
    public int size();
    public boolean isEmpty();
    public E top();
    public void push(E e);
    public E pop();
```

The Stack ADT, declared as an interface, allows alternative implementations to conform to its method headers.

2

Generic Stack: Architecture


```
public class ArrayStack<E> implements Stack<E> {
    private final int MAX_CAPACITY = 1000;
    private E[] data;
    private int t;
    public ArrayStack() f
    data = (E[]) new Object[MAX_CAPACITY];
    t = -1;
public int size() { return ( }t+1)\mathrm{ ; }
public boolean isEmpty() { return (t == -1); }
public E top() {
    if (isEmpty()) ( /* Precondition Violated */ )
    else { return data[t]; }
    public void push(E e) {
        if (size() == MAX_CAPACITY) { /* Precondition Violated
        else {t++; data[t] = e; }
    public E pop() {
        E result;
    if (isEmpty()) { /* Precondition Violated */
    else ( result = data[t]; data[t] = null; t --; }
    return result;
```

20158

Implementing Stack: Array (2)

- Running Times of Array-Based Stack Operations?

| ArrayStack Method | Running Time |
| :---: | :---: |
| size | $\mathrm{O}(1)$ |
| isEmpty | $\mathrm{O}(1)$ |
| top | $\mathrm{O}(1)$ |
| push | $\mathrm{O}(1)$ |
| pop | $\mathrm{O}(1)$ |

- Exercise This version of implementation treats the end of array as the top of stack. Would the RTs of operations change if we treated the beginning of array as the top of stack?
- Q. What if the preset capacity turns out to be insufficient?
A. IllegalArgumentException occurs and it takes $O(1)$ time to respond.
- At the end, we will explore the alternative of a dynamic array.

```
public class LinkedStack<E> implements Stack<E> {
    private SinglyLinkedList<E> list;
}
```

Question:

| Stack Method | Singly-Linked List Method | |
| :---: | :---: | :---: |
| | Strategy 1 | Strategy 2 |
| size | list.size | |
| isEmpty | list.isEmpty | |
| top | list.first | list.last |
| push | list.addFirst | list.addLast |
| pop | list.removeFirst | list.removeLast |

Which implementation strategy should be chosen?

```
aTest
public void testPolymorphicStacks() {
    Stack<String> s = new ArrayStack<>();
    s.push("Alan"); /* dynamic binding */
    s.push("Mark"); /* dynamic binding */
    s.push("Iom"); /* dynamic binding *
    assertTrue(s.size() == 3 && !s.isEmpty());
    assertEquals("Tom", s.top());
    s = new LinkedStack<>();
    s.push("Alan"); /* dynamic binding */
    s.push("Mark"); /* dynamic binding *
    s.push("Tom"); /* dynamic binding */
    assertTrue(s.size() == 3 && !s.isEmpty());
    assertEquals("Tom", s.top());
```

260 t 58

Implementing Stack: Singly-Linked List (2)

- If the front of list is treated as the top of stack, then: - All stack operations remain $O(1) \quad[\because$ removeFirst takes $O(1)]$
- If the end of list is treated as the top of stack, then: - The pop operation takes $O(n)$
$[\because$ removeLast takes $O(n)]$
- But in both cases, given that a linked, dynamic structure is used, no resizing is necessary!

Polymorphism \& Dynamic Binding

```
Stack<String> myStack;
myStack = new ArrayStack<String>();
myStack.push("Alan");
myStack = new LinkedStack<String>();
myStack.push("Alan");
```

- Polymorphism

An object may change its "shape" (i.e., dynamic type) at runtime.
Which lines? 2, 4

- Dynamic Binding

Effect of a method call depends on the "current shape" of the target object.
Which lines? 3, 5

Stack Application: Reversing an Array

- Implementing a generic algorithm:

```
public static <E> void reverse(E[] a),
    for (int i=0;i<a.length; i++){
    buffer.push(a[i]);
    for (int i=0; i<a.length; i ++) {
    for (int i=0; 1<a,
```

 \()^{a}\)
 - Testing the generic algorithm:

eTest

public void testReverseViaStack()
String [] names $=\{$ "Alan", "Mark", "Tom" $\}$;
String [] expectedReverseOfNames $=\{$ TTom", "Mark", "Alan" $\}$;
assertArrayEquals (expectedReverseofnames, names);
Integer [] numbers $=\{46,23,68\}$;
Integer [] expectedReverseofnumbers $=\{68,23,46\}$;
StackUtilities.reverse (numbers) ;
StackUtilities.reverse(numbers);
assertArrayEquals (expectedReverseofNumbers, numbers);
080158

Stack Application: Matching Delimiters (1)

- Problem

Opening delimiters: (, [, \{
Closing delimiters:),], \}
e.g., Correct: () (()) \{ ([()])\}
e.g., Incorrect: ($\{$ []) \}

- Sketch of Solution
- When a new opening delimiter is found, push it to the stack.
- Most-recently found delimiter should be matched first.
- When a new closing delimiter is found:
- If it matches the top of the stack, then pop off the stack.
- Otherwise, an error is found!
- Finishing reading the input, an empty stack means a success!

Stack Application: Matching Delimiters (2)

- Implementing the algorithm:

```
public static boolean isMatched(String expression)
    final String opening = "([{";
    Stack<Character> openings = new LinkedStack<Character>()
    int i=0;
    boolean foundError = false;
    while (!foundError && i < expression.length()) &
        char }c=\mathrm{ expression.charAt(i);
            M(opening.indexOf(c)!=-1) (openings.push(c);
            if(openings.isEmpty()) ( foundError = true;
            else {
                else { foundError = true;
    return !foundError && openings.isEmpty();
```

- Testing the algorithm:
@Test
public void testMatchingDelimiters() assertTrue (StackUtilities.isMatched("") assertTrue (StackUtilities.isMatched(" $\{[1\}(1\}) ")$); assertFalse (StackUtilities.isMatched (assertFalse(StackUtilities.isMatched ("\{[1\})")); assertFalse(StackUtilities.isMatched("(\{[]\}"));

30-0158

Stack Application: Postfix Notations (1)

Problem: Given a postfix expression, calculate its value.

| Infix Notation | Postfix Notation |
| :---: | :---: |
| Operator in-between Operands | Operator follows Operands |
| Parentheses force precedence | Order of evaluation embedded |
| 3 | 3 |
| $3+4$ | $34+$ |
| $3+4+5$ | $34+5+$ |
| $3+(4+5)$ | $345++$ |
| $3-4 \star 5$ | $345 *-$ |
| $(3-4) \star 5$ | $34-5 \star$ |

Sketch of Solution

- When input is an operand (i.e., a number), push it to the stack.
- When input is an operator, obtain its two operands by popping off the stack twice, evaluate, then push the result back to stack.
- When finishing reading the input, there should be only one number left in the stack.

- Error if:

- Not enough items left in the stack for the operator [e.g., 523+*+]
- When finished, two or more numbers left in stack [e.g., 53+6]
- first
\approx top of stack
[precondition: queue is not empty]
[postcondition: return item first enqueued]
- size
[precondition: none]
[postcondition: return number of items enqueued]
- isEmpty
[precondition: none]
[postcondition: return whether there is no item in the queue]
- enqueue(item)
\approx push of stack
[precondition: queue is not full]
[postcondition: enqueue item as the "last" of the queue]
- dequeue

$$
\approx \text { pop of stack }
$$

[precondition: queue is not empty]
[postcondition: remove and return the first of the queue]

What is a Queue?

- A queue is a collection of objects.
- Objects in a queue are inserted and removed according to the first-in, first-out (FIFO) principle.
- Each new element joins at the back/end of the queue.
- Cannot access arbitrary elements of a queue
- Can only access or remove the least-recently inserted (or longest-waiting) element

Queue: Illustration

| Operation | Return Value | Queue Contents |
| :---: | :---: | :---: |
| - | - | \varnothing |
| isEmpty | true | \varnothing |
| enqueue(5) | - | (5) |
| enqueue(3) | - | $(5,3)$ |
| enqueue(1) | - | $(5,3,1)$ |
| size | 3 | $(5,3,1)$ |
| dequeue | 5 | $(3,1)$ |
| dequeue | 3 | 1 |
| dequeue | 1 | \varnothing |

```
public interface Queue< E > {
    public int size();
    public boolean isEmpty();
    public E first();
    public void enqueue( E e);
    public E dequeue();
```

The Queue ADT, declared as an interface, allows alternative implementations to conform to its method headers.

Generic Queue: Architecture


```
public class ArrayQueue<E> implements Queue<E> {
    private final int MAX_CAPACITY = 1000;
    private E[] data;
    private int r;
    mivate int r; * rear index *
        data = (E[]) new Object [MAX_CAPACITY];
            r = -1;
    public int size() { return (r + 1); }
    public int sizelean isEmpty() { return (r == -1); }
    public E first()
        if (isEmpty()) { /* Precondition Violated */
        else { return data[0]; }
    public void enqueue(E e)
        if (size() == MAX CAPACITY) (* Precondition Violated
        else {r++; data[r] = e;
    public E dequeue()
        if (isEmpty()) { /* Precondition Violated */ }
        else
        for (int i data[0]; [ri i +) { data[i] = data[i + 1];
        data[r] = null; r --;
        return result;
```

380t 58

Implementing Queue ADT: Array (2)

- Running Times of Array-Based Queue Operations?

| ArrayQueue Method | Running Time |
| :---: | :---: |
| size | O(1) |
| isEmpty | $\mathrm{O}(1)$ |
| first | $\mathrm{O}(1)$ |
| enqueue | $\mathrm{O}(1)$ |
| dequeue | $O(n)$ |

- Exercise This version of implementation treats the beginning of array as the first of queue. Would the RTs of operations change if we treated the end of array as the first of queue?
- Q. What if the preset capacity turns out to be insufficient?
A. IllegalArgumentException occurs and it takes $O(1)$ time to respond.
- At the end, we will explore the alternative of a dynamic array.

```
public class LinkedQueue<E> implements Queue<E> {
    private SinglyLinkedList<E> list;
}
Question:
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Queue Method} & \multicolumn{2}{|l|}{Singly-Linked List Method} \\
\hline & Strategy 1 & Strategy 2 \\
\hline size isEmpty & \multicolumn{2}{|c|}{\[
\begin{gathered}
\hline \hline \text { list.size } \\
\text { list.isEmpty }
\end{gathered}
\]} \\
\hline first enqueue dequeue & list.first list.addLast list.removeFirst & list.last
list.addFirst \\
\hline
\end{tabular}
```

Which implementation strategy should be chosen?

Implementing Queue: Singly-Linked List (2)

- If the front of list is treated as the first of queue, then: - All queue operations remain O(1) [\because removeFirst takes $O(1)]$
- If the end of list is treated as the first of queue, then:
- The dequeue operation takes $O(n) \quad[\because$ removeLast takes $O(n)]$
- But in both cases, given that a linked, dynamic structure is used, no resizing is necessary!

```
@Test
public void testPolymorphicQueues()
    Queue<String> q = new ArrayQueue<> ();
    q.enqueue("Alan"); /* dynamic binding *
    q.enqueue("Mark"); /* dynamic binding *
    q.enqueue("Tom"); /* dynamic binding *
    assertTrue(q.size() == 3 && !q.isEmpty());
    assertEquals("Alan", q.first());
    q = new LinkedQueue<>();
    q.enqueue("Alan"); /* dynamic binding */
    q.enqueue("Mark"); /* dynamic binding */
    q.enqueue("Tom"); /* dynamic binding *
    assertTrue(q.size() == 3 && !q.isEmpty());
    assertEquals("Alan", q.first());
```

 420158
 Polymorphism \& Dynamic Binding

```
Queue<String> myQueue;
myQueue = new CircularArrayQueue<String>();
myQueue.enqueue("Alan");
myQueue = new LinkedQueue<String>();
myQueve.enqueue("Alan");
```

- Polymorphism

An object may change its "shape" (i.e., dynamic type) at runtime.
Which lines? 2, 4

- Dynamic Binding

Effect of a method call depends on the "current shape" of the target object.
Which lines? 3, 5

Implementing Queue ADT: Circular Array
$\underset{\text { LASSONDE }}{ }$

- Maintain two indices: f for front; r for next available slot.
- Maximum size: $N-1$
[N = data.length]
- Empty Queue: when $r=f$

| | \cdots | \cdots | | \cdots |
| :--- | :--- | :--- | :--- | :--- |
| f, r | f, r | | | |

- Full Queue: when $((r+1) \% N)=f$
- When $r>f$:
- When $r<f$:

- Size of Queue:
- If $r=f$: 0
- If $r>f: r-f$
- If $r<f: r+(N-f)$

440 O 58

Running Times of CircularArray-Based Queue Operations?

| CircularArrayQueue Method | Running Time |
| :---: | :---: |
| size | $\mathrm{O}(1)$ |
| isEmpty | $\mathrm{O}(1)$ |
| first | $\mathrm{O}(1)$ |
| enqueue | $\mathrm{O}(1)$ |
| dequeue | $\mathrm{O}(1)$ |

Exercise: Create a Java class CircularArrayQueue that implements the Queue interface using a circular array.

Exercise:

Implementing a Queue using Two Stacks

```
public class StackQueue<E> implements Queue<E> {
    private Stack<E> inStack;
    private Stack<E> outStack;
```

- For size, add up sizes of inStack and outStack.
- For isEmpty, are inStack and outStack both empty?
- For enqueue, push to instack.
- For dequeue:
- pop from outStack

If out Stack is empty, we need to first pop all items from inStack and push them to outStack.
Exercise: Why does this work? [implement and test]
Exercise: Running Time? [see analysis on dynamic arrays]
460158

Limitations of Queue

- Say we use a queue to implement a waiting list.
- What if we dequeue the front customer, but find that we need to put them back to the front (e.g., seat is still not available, the table assigned is not satisfactory, etc.)?
- What if the customer at the end of the queue decides not to wait and leave, how do we remove them from the end of the queue?
- Solution: A new ADT extending the Queue by supporting:
- insertion to the front
- deletion from the end

The Double-Ended Queue ADT

- Double-Ended Queue (or Deque) is a queue-like data structure that supports insertion and deletion at both the front and the end of the queue.

```
public interface Deque<E> {
    /* Queue operations */
    public int size();
    public boolean isEmpty();
    public E first();
    public void addLast(E e); /* enqueue */
    public E removeFirst(); /* dequeue *
    /* Extended operations */
    public void addFirst(E e);
    public E removeLast();
```

- Exercise: Implement Deque using a circular array.
- Exercise: Implement Deque using a SLL and/or DLL.

880158

Array Implementations: Stack and Queue

- When implementing stack and queue via arrays, we imposed a maximum capacity:

| ```public class ArrayStack<E> implements Stack<E> { private final int MAX_CAPACITY = 1000; private E[] data; .. public void push(E e) { if (size() == MAX_CAPACITY) { /* Precondition Violated */ } else { ... } }``` |
| :---: |
| |
| ```public class ArrayQueue<E> implements Queue<E> { private final int MAX_CAPACITY = 1000; private E[] data; ... public void enqueue(E e) { if (size() == MAX_CAPACITY) { /* Precondition Violated */ } else { ... }``` |
| |

- This made the push and enqueue operations both cost $O(1)$. 49058

Dynamic Array: Constant Increments

Implement stack using a dynamic array resizing itself by a constant increment:

```
public class ArrayStack<E> implements Stack<E>
    private int I;
    private int C;
    private int capaci
    private E[] data;
    I= 1000; /* arbitrary initial size */
    c= 500; /*
    capacity=I;
    t = -1;
    public void push(E e) {
    if (size() == capacity)
        E[] temp = (E[]) new Object[capacity + C];
        for(int i = 0; i < capacity; i++)
        temp[i] = data[i];
        data = temp;
        capacity = capacity + c
    }
    data[t] = e;
```

- This alternative strategy resizes the array, whenever needed by a constant amount.
- L17 - L19 make push cost O(n), in the worst case.
- However, given that resizing only happens rarely, how about the average running time?
- We will refer L14 - L22 as the resizing part and L23 - L24 as the update part.

Dynamic Array: Doubling

Implement stack using a dynamic array resizing itself by doubling:

```
public class ArrayStack<E> implements Stack<E>
    private int capacity;
    private E[] data;
    public ArrayStack()
    I= 1000; /*
    data = (E[]) new object[capacity]
    t = -1;
    public void push(E e)
        if (size() == capacity)
        E[] temp = (E[]) new Object[capacity * 2];
        for(int i = 0; i < capacity; i ++)
            temp[i] = data[i];
            data = temp;
            capacity = capacity * 2
        }
        t++;
}
```

- This alternative strategy resizes the array, whenever needed by doubling its current size.
- L15 - L17 make push cost $O(n)$, in the worst case.
- However, given that resizing only happens rarely, how about the average running time?
- We will refer L12 - L20 as the resizing part and L21 - L22 as the update part.

Avg. RT: Const. Increment vs. Doubling

- Without loss of generality, assume: There are n push operations, and the last push triggers the last resizing routine.

| | Constant Increments | Doubling |
| :---: | :---: | :---: |
| RT of exec. update part for n pushes | $O(n)$ | |
| RT of executing 1st resizing | I | |
| RT of executing 2nd resizing | $I+C$ | $2 \cdot I$ |
| RT of executing 3rd resizing | $I+2 \cdot C$ | $4 \cdot l$ |
| RT of executing 4th resizing | $I+3 \cdot C$ | $8 \cdot I$ |
| RT of executing $k^{\text {th }} \underline{\text { resizing }}$ | $I+(k-1) \cdot C$ | $2^{k-1} \cdot I$ |
| RT of executing last resizing | n | |
| \# of resizing needed (solve k for $R T=n)$ | $O(n)$ | $O\left(l_{2} n\right)$ |
| Total RT for n pushes | $O\left(n^{2}\right)$ | $O(n)$ |
| Amortized/Average RT over n pushes | $O(n)$ | $O(1)$ |

- Over n push operations, the amortized / average running time of the doubling strategy is more efficient.

- Attempt the exercises throughout the lecture.
- Implement the Postfix Calculator using a stack.

Index (1)

Learning Outcomes of this Lecture
Background Study: Interfaces in Java
Terminology: Contract, Client, Supplier
Client, Supplier, Contract in OOP (1)
Client, Supplier, Contract in OOP (2)
Modularity (1): Childhood Activity
Modularity (2): Daily Construction
Modularity (3): Computer Architecture
Modularity (4): System Development
Modularity (5): Software Design
Design Principle: Modularity
440158

Index (2)

```
Abstract Data Types (ADTs)
Java API Approximates ADTS (1)
Java API Approximates ADTs (2)
Building ADTs for Reusability
What is a Stack?
The Stack ADT
Stack:Illustration
Generic Stack:Interface
Generic Stack: Architecture
Implementing Stack: Array (1)
mplementing Stack: Array (2)
```

030158

- It is assumed that, in EECS2030, you learned about the basics of recursion in Java:
- What makes a method recursive?
- How to trace recursion using a call stack?
- How to define and use recursive helper methods on arrays?
- If needed, review the above assumed basics from the relevant parts of EECS2030 (https://www.eecs.yorku.ca/~jackie/
teaching/lectures/index.html\#EECS2030_F21):
- Parts A - C, Lecture 8, Week 12

Tips.

- Skim the slides: watch lecture videos if needing explanations.
- Recursion lab from EECS2030-F19: here [Solution: her
- Ask questions related to the assumed basics of recursion!
- Assuming that you know the basics of recursion in Java, we will proceed with more advanced examples.
20t36

Extra Challenging Recursion Problems

1. groupSum

- Problem Specification: here

Solution: here

- Solution Walkthrough: here
- Notes: here [pp. 7-10] \& here

2. parenBit

- Problem Specification: here

Solution: here

- Solution Walkthrough: here
- Notes: here [pp. 4-5]

3. climb

- Problem Specification: here

Solution: here

- Solution Walkthrough: here \& here
- Notes: here [pp. 7-8] \& here [p. 4]

4. climbStrategies

- Problem Specification: here

Solution: here

- Solution Walkthrough: here
- Notes: here [pp. 5-6]

This module is designed to help you:

- Know about the resources on recursion basics.
- Learn about the more intermediate recursive algorithms:
- Binary Search
- Merge Sort
- Quick Sort
- Tower of Hanoi
- Explore extra, challenging recursive problems.

Recursion: Binary Search (1)

- Searching Problem

Given a numerical key \underline{k} and an array \underline{a} of n numbers:
Precondition: Input array \underline{a} sorted in a non-descending order
i.e., $a[0] \leq a[1] \leq \ldots \leq a[n-1]$

Postcondition: Return whether or not \underline{k} exists in the input array \underline{a}.

- Q. RT of a search on an unsorted array?
A. $O(n)$ (despite being iterative or recursive)
- A Recursive Solution

Base Case: Empty array \longrightarrow false.

Recursive Case: Array of size $\geq 1 \longrightarrow$

- Compare the middle element of array \underline{a} against key \underline{k}.
- All elements to the left of middle are $\leq k$
- All elements to the right of middle are $\geq k$
- If the middle element is equal to key $k \longrightarrow$ true
- If the middle element is not equal to key \underline{k} :
- If $\boldsymbol{k}<$ middle, recursively search key \underline{k} on the left half.
- If $\boldsymbol{k}>$ middle, recursively search key \underline{k} on the right half.

Recursion: Binary Search (2)

Running Time: Binary Search (2)

```
boolean binarySearch(int[] sorted, int key)
    return binarySearchH(sorted, 0, sorted.length - 1, key);
boolean binarySearchH(int[] sorted, int from, int to, int key)
    if (from > to) { /* base case 1: empty range */
    return false;
    else if(from == to) { /* base case 2: range of one element *
    return sorted[from] == key; }
    else {
        int middle = (from + to) / 2;
        int middleValue = sorted[middle];
        if(key < middleValue) {
        return binarySearchH(sorted, from, middle - 1, key);
    }
    else if (key > middleValue)
        return binarySearchH(sorted, middle + 1, to, key);
        }
        else { return true; }
}
```

 50t36

Running Time: Binary Search (1)

We define $T(n)$ as the running time function of a binary search, where n is the size of the input array.

$$
\left\{\begin{array}{l}
T(0)=1 \\
T(1)=1 \\
T(n)=T\left(\frac{n}{2}\right)+1 \text { where } n \geq 2
\end{array}\right.
$$

To solve this recurrence relation, we study the pattern of $T(n)$ and observe how it reaches the base case(s).

Without loss of generality, assume $n=2^{i}$ for some $i \geq 0$.
$T(n)=T\left(\frac{n}{2}\right)+1$
$=\underbrace{\left(T\left(\frac{n}{4}\right)+1\right.}_{T\left(\frac{n}{2}\right)})+\underbrace{1}_{1 \text { time }}$
$=(\underbrace{\left(T\left(\frac{n}{8}\right)+1\right.}_{T\left(\frac{n}{4}\right)})+\underbrace{1)+1}_{2 \text { times }}$
$=\quad .$.
$=(((\underbrace{1}_{T\left(\frac{n}{2 \log n}\right)=T(1)})+\underbrace{1) \ldots)+1}_{\log n \text { times }}$
$\therefore T(n)$ is $O(\log n)$

Recursion: Merge Sort

- Sorting Problem

Given a list of \mathbf{n} numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$: Precondition: None
Postcondition: A permutation of the input list $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$
sorted in a non-descending order (i.e., $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$)

- A Recursive Algorithm

Base Case 1: Empty list \longrightarrow Automatically sorted.
Base Case 2: List of size $1 \longrightarrow$ Automatically sorted.
Recursive Case: List of size $\geq 2 \longrightarrow$

1. Split the list into two (unsorted) halves: L and R.
2. Recursively sort L and R, resulting in: sorted L and sorted R.
3. Return the merge of sortedL and sortedR.

Recursion: Merge Sort in Java (1)

```
/* Assumption: L and R are both already sorted. */
private List<Integer> merge(List<Integer> L, List<Integer> R) {
    List<Integer> merge = new ArrayList<>();
    if(L.isEmpty()||.isEmpty()) { merge.addAll(L); merge.addAll(R)
    else {
        int i = 0;
        int j = 0;
        while(i < L.size() && j < R.size()) {
        if(L.get(i) <= R.get(j)) { merge.add(L.get(i)); i ++; }
        else { merge.add(R.get(j)); j ++; }
    /* If i >= L.size(), then this for loop is skipped. *
        for(int k = i; k < L.size(); k ++) { merge.add(L.get(k)); }
        /* If j >= R.size(), then this for loop is skipped. *
        for(int k = j; k< R.size(); k ++) { merge.add(R.get(k)); }
```

 return merge;
 RT(merge)?
 [O(L.size() + R.size())]
 10 Ot 36

Recursion: Merge Sort in Java (2)

```
public List<Integer> sort(List<Integer> list) {
    List<Integer> sortedList;
    if(list.size() == 0) { sortedList = new ArrayList<>(); }
    else if(list.size() == 1) {
        sortedList = new ArrayList<>();
        sortedList.add(list.get(0));
    else
        int middle = list.size() / 2;
        List<Integer> left = list.subList(0, middle);
        List<Integer> right = list.subList(middle, list.size()),
        List<Integer> sortedLeft = sort(left);
        List<Integer> sortedRight = sort(right);
        sortedList = merge(sortedLeft, sortedRight);
    return sortedList;
```

Recursion: Merge Sort Example (1)

Recursion: Merge Sort Example (2)

(7) Return merged list of size 2

Recursion: Merge Sort Example (5)

Let's visualize the two critical phases of merge sort :

16 Ot 36

Recursion: Merge Sort Running Time (1)

Total time: $O(n \log n)$

$10.0+36$

- Base Case 1: Empty list \longrightarrow Automatically sorted. [O(1)]
- Base Case 2: List of size $1 \longrightarrow$ Automatically sorted. [O(1)]
- Recursive Case: List of size $\geq 2 \longrightarrow$

1. Split the list into two (unsorted) halves: L and R;
[O(1)]
2. Recursively sort L and R, resulting in: sorted L and sorted R
Q. \# times to split until L and R have size 0 or 1 ?
3. Return the merge of sorted L and sortedR.
A. $[O(\log n)]$

-

```
Running Time of Merge Sort
= (RT each RC) }\times(#\mathrm{ RCs)
= (RT merging sortedL and sortedR) × (# splits until bases)
=O(n\cdotlogn)
```


180136

Recursion: Merge Sort Running Time (3)

We define $T(n)$ as the running time function of a merge sort , where n is the size of the input array.

$$
\left\{\begin{array}{l}
T(0)=1 \\
T(1)=1 \\
T(n)=2 \cdot T\left(\frac{n}{2}\right)+n \text { where } n \geq 2
\end{array}\right.
$$

To solve this recurrence relation, we study the pattern of $T(n)$ and observe how it reaches the base case(s).

Without loss of generality, assume $n=2^{i}$ for some $i \geq 0$.
$T(n)=2 \times T\left(\frac{n}{2}\right)+n$
$=\underbrace{}_{2 \text { terms }}=2 \times(2 \times\left(\frac{n}{2}\right)+n .\left(\frac{n}{4}\right)+\underbrace{\left.\frac{n}{2}\right)+n}_{2 \text { terms }}$
$=\underbrace{2 \times(2 \times(2}_{3 \text { terms }} \times T\left(\frac{n}{8}\right)+\underbrace{\left.\left.\frac{n}{4}\right)+\frac{n}{2}\right)+n}_{3 \text { terms }}$
$=\underbrace{2 \times(2 \times(2 \times \cdots \times(2}_{\log n \text { terms }} \times T\left(\frac{n}{2^{\log n}}\right)+\underbrace{\left.\left.\left.\frac{n}{2^{(\log n)-1}}\right)+\cdots+\frac{n}{4}\right)+\frac{n}{2}\right)+n}_{\log n \text { terms }}$
$=2 \cdot \frac{n}{2}+2^{2} \cdot \frac{n}{4}+\cdots+2^{(\log n)-1} \cdot \frac{n}{2^{(\log n)-1}}+\underbrace{n}$

$$
\underbrace{2 \underbrace{\log n \cdot \frac{n}{2^{\log n}}}}
$$

$=n+n+\cdots+n+n$
$\log n$ terms
$\underbrace{n+n+\cdots+n+n}_{\log n \text { terms }}$
$\therefore T(n)$ is $O(n \cdot \log n)$
000 t 36

- Sorting Problem

Given a list of \mathbf{n} numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$: Precondition: NoNe Postcondition: A permutation of the input list $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ sorted in a non-descending order (i.e., $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$)

- A Recursive Algorithm

Base Case 1: Empty list \longrightarrow Automatically sorted.
Base Case 2: List of size $1 \longrightarrow$ Automatically sorted.
Recursive Case: List of size $\geq 2 \longrightarrow$

1. Choose a pivot element.
[ideally the median]
2. Split the list into two (unsorted) halves: L and R, s.t.: All elements in L are less than or equal to (\leq) the pivot. All elements in R are greater than (>) the pivot.
3. Recursively sort L and R: sortedL and sortedR;
4. Return the concatenation of: sortedL + pivot + sortedR.

Recursion: Quick Sort in Java (1)

```
List<Integer> allLessThanOrEqualTo(int pivotIndex, List<Integer> list)
    List<Integer> sublist = new ArrayList<>();
    int pivotValue = list.get(pivotIndex);
    for(int \(i=0 ; i<\) list.size(); \(i++\) )
    int \(v=\) list.get(i);
    if(i != pivotIndex \&\& \(v<=\) pivotValue) \{ sublist.add(v); \}
    return sublist;
List<Integer> allLargerThan(int pivotIndex, List<Integer> list) \{
    List<Integer> sublist \(=\) new ArrayList<>();
    int pivotValue \(=\) list.get(pivotIndex);
    for(int \(i=0 ; i<l i s t . s i z e() ; ~ i ~++) ~\{\)
    int \(v=\) list.get(i);
    if(i != pivotIndex \&\& v > pivotValue) \{ sublist.add(v); \}
    return sublist;
RT(allLessThanOrEqualTo)?
    RT(allLargerThan)?
                            [ \(O(n)\) ]
```


Recursion: Quick Sort in Java (2)

```
public List<Integer> sort(List<Integer> list)
    List<Integer> sortedList;
    if(list.size() == 0) { sortedList = new ArrayList<>(); }
    else if(list.size() == 1)
    sortedList = new ArrayList<>(); sortedList.add(list.get(0)); }
    else {
    int pivotIndex = list.size() - 1
    int pivotValue = list.get(pivotIndex);
    List<Integer> left = allLessThanOrEqualTo (pivotIndex, list);
    List<Integer> right = allLargerThan (pivotIndex, list);
    List<Integer> sortedLeft = sort(left);
    List<Integer> sortedRight = sort(right);
    sortedList = new ArrayList<>();
    sortedList.addAll(sortedLeft);
    sortedList.add(pivotValue);
    sortedList.addAll(sortedRight);
    return sortedList;
```

\}
$230+36$

Recursion: Quick Sort Example (1)

Recursion: Quick Sort Example (2)

Recursion: Quick Sort Running Time (1)

1. Split using pivot x

Recursion: Quick Sort Running Time (2)

- Base Case 1: Empty list \longrightarrow Automatically sorted. [O(1)]
- Base Case 2: List of size $1 \longrightarrow$ Automatically sorted. [O(1)]
- Recursive Case: List of size $\geq 2 \longrightarrow$

1. Choose a pivot element (e.g., rightmost element)
2. Split the list into two (unsorted) halves: L and R, s.t.: All elements in L are less than or equal to (\leq) the pivot. All elements in R are greater than ($>$) the pivot.
3. Recursively sort L and R : sorted L and sortedR;
Q. \# times to split until L and R have size 0 or 1 ? A. $O(\log n)$ [if pivots chosen are close to median values] 4. Return the concatenation of: sortedL + pivot + sortedR. [O(1)]

Running Time of Quick Sort
$=(R T$ each $R C) \times(\# R C s)$
$=(R T$ splitting into L and $R) \times(\#$ splits until bases)
$=O(n \cdot \log n)$

Recursion: Quick Sort Running Time (3)

- We define $T(n)$ as the running time function of a quick sort , where n is the size of the input array.
- Worst Case
- If the pivot is s.t. the two sub-arrays are "unbalanced" in sizes:
e.g., rightmost element in a reverse-sorted array
("unbalanced" splits/partitions: 0 vs. $n-1$ elements)

$$
\begin{aligned}
T(0) & =1 \\
T(1) & =1 \\
T(n) & =T(n-1)+n \quad \text { where } n \geq 2
\end{aligned}
$$

- As efficient as Selection/Insertion Sorts: $O\left(n^{2}\right)$
[Exercise]
- Best Case

If the pivot is s.t. it is close to the median value:

$$
\left\{\begin{array}{l}
T(0)=1 \\
T(1)=1 \\
T(n)=2 \cdot T\left(\frac{n}{2}\right)+n \quad \text { where } n \geq 2
\end{array}\right.
$$

- As efficient as Merge Sort: $O(n \cdot \log n)$
- Even with partitions such as $\frac{n}{10}$ vs. $\frac{9 \cdot n}{10}$ elements, RT remains $O(n \cdot \log n)$. [20응

- Notes on Recursion: https://www.eecs.yorku.ca/~jackie/teaching/ 1ectures/2021/F/EECS2030/notes/EECS2030 F21 Notes Recursion.pdf
- The best approach to learning about recursion is via a functional programming language:
Haskell Tutorial: https://www.haskell.ora/tutorial/

Index (1)
Background Study: Basic Recursion
Extra Challenging Recursion Problems
Learning Outcomes of this Lecture
Recursion: Binary Search (1)
Recursion: Binary Search (2)
Running Time: Binary Search (1)
Running Time: Binary Search (2)
Recursion: Merge Sort
Recursion: Merge Sort in Java (1)
Recursion: Merge Sort in Java (2)
Recursion: Merge Sort Example (1)
34 Ot 36

Index (3)

Recursion: Quick Sort Example (1)

Recursion: Quick Sort Example (2)
Recursion: Quick Sort Example (3)
Recursion: Quick Sort Example (4)
Recursion: Quick Sort Example (5)
Recursion: Quick Sort Example (6)
Recursion: Quick Sort Running Time (1)
Recursion: Quick Sort Running Time (2)
Recursion: Quick Sort Running Time (3)
Beyond this lecture

General Trees and Binary Trees

EECS2011 N \& Z:

| UN IVERSS I T EE |
| :--- |
| $U N$ I VEER I T Y |

Fundamentals of Data Structures
Winter 2022
CHEN-WFIWANG

This module is designed to help you understand:

- Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
- Terminologies: General Trees vs. Binary Trees
- Implementation of a Generic Tree
- Mathematical Properties of Binary Trees
- Tree Traversals

Rot 47

- A linear data structure is a sequence, where stored objects can be related via notions of "predecessor" and "successor".
- e.g., arrays
- e.g., Singly-Linked Lists (SLLs)
- e.g., Doubly-Linked Lists (DLLs)
- The Tree ADT is a non-linear collection of nodes/positions.
- Each node stores some data object.
- Nodes in a tree are organized into levels: some nodes are "above" others, and some are "below" others.
- Think of a tree forming a hierarchy among the stored nodes.
- Terminology of the Tree ADT borrows that of family trees:
- e.g., root
- e.g., parents, siblings, children
- e.g., ancestors, descendants

General Trees: Terminology (3)

- all nodes with the same parent as n's e.g., siblings of Vanessa: Shirley and Peter
- the tree formed by descendants of n
- nodes with no children external nodes (leaves)
- nodes with at least one child Shirley, Vanessa, Peter
e.g., non-leaves of the above tree: David, Chris, Elsa

A tree T is a set of nodes satisfying parent-child properties:

1. If T is empty, then it does not contain any nodes.
2. If T is nonempty, then:

- T contains at least its root (a special node with no parent).
- Each node \underline{n} of T that is not the root has a unique parent node \underline{w}.
- Given two nodes \underline{n} and \underline{w},
if \underline{w} is the parent of \underline{n}, then symmetrically, \underline{n} is one of \underline{w} 's children.

General Tree: Important Characteristics

There is a single, unique path from the root to any particular node in the same tree.

illegal tree organization (nontrees)

Implementation: Generic Tree Nodes (1)

```
public class TreeNode<E> {
    private E element; /* data object */
    private TreeNode<E> parent; /* unique parent node */
    private TreeNode<E>[] children; /* list of child nodes */
    private final int MAX_NUM_CHILDREN = 10; /* fixed max */
    private int noc; /* number of child nodes */
    public TreeNode(E element) {
        this.element = element;
        this.parent = null;
    this.children = (TreeNode<E>[])
        Array.newInstance(this.getClass(), MAX_NUM_CHILDREN);
    this.noc = 0;
    }
}
```

Replacing L13 with the following results in a ClassCastException:
this.children $=($ TreeNode<E>[]) new Object[MAX_NUM_CHILDREN];

Implementation: Generic Tree Nodes (2)

```
```

public class TreeNode<E>

```
```

public class TreeNode<E>
private E element; /* data object */
private E element; /* data object */
private TreeNode<E> parent; /* unique parent node */
private TreeNode<E> parent; /* unique parent node */
private TreeNode<E>[] children; /* list of child nodes */
private TreeNode<E>[] children; /* list of child nodes */
private final int MAX_NUM_CHILDREN = 10; /* fixed max */
private final int MAX_NUM_CHILDREN = 10; /* fixed max */
private int noc; /* number of child nodes */
private int noc; /* number of child nodes */
public E getElement() { ... }
public E getElement() { ... }
public TreeNode<E> getParent() { ... }
public TreeNode<E> getParent() { ... }
public TreeNode<E>[] getChildren() {... }
public TreeNode<E>[] getChildren() {... }
public void setElement(E element) {
public void setElement(E element) {
public void setParent(TreeNode<E> parent) { ... }
public void setParent(TreeNode<E> parent) { ... }
public void addChild(TreeNode<E> child) { ... }
public void addChild(TreeNode<E> child) { ... }
public void adic void removeChildAt(int i) { ...}

```
    public void adic void removeChildAt(int i) { ...}
```

```
    public void setElement(E element) {... }
```

```
    public void setElement(E element) {... }
```

Exercise: Implement void removeChildAt (int i).

Testing: Connected Tree Nodes
Constructing a tree is similar to constructing a SLL:
@Test
public void test_general_trees_construction() \{ TreeNode<String> agnarr = new TreeNode<>("Agnarr"); TreeNode<String> elsa = new TreeNode<>("Elsa") TreeNode<String> anna $=$ new TreeNode<>("Anna");
agnarr.addChild(elsa);
agnarr.addChild(anna);
elsa.setParent(agnarr)
anna.setParent(agnarr)
assertNull(agnarr.getParent()) ;
assertTrue(agnarr == elsa.getParent());
assertTrue(agnarr == anna.getParent());
assertTrue(agnarr.getChildren().length $==2$);
assertTrue(agnarr.getChildren()[0] == elsa);
assertTrue(agnarr.getChildren()[1] == anna);
\}
16 ot 44

Problem: Computing a Node's Depth

- Given a node n, its depth is defined as:
- If n is the root, then n 's depth is 0 .
- Otherwise, n's depth is the depth of n's parent plus one.
- Assuming under a generic class TreeUtilities<E>:
}

```
```

```
```

public int depth(TreeNode<E> n) {

```
```

```
public int depth(TreeNode<E> n) {
```

```
```

public int depth(TreeNode<E> n) {
if(n.getParent() == null) {
if(n.getParent() == null) {
if(n.getParent() == null) {
return 0;
return 0;
return 0;
}
}
}
else {
else {
else {
return 1 + depth(n.getParent());
return 1 + depth(n.getParent());
return 1 + depth(n.getParent());
}

```
```

 }
    ```
```

 }
    ```
```

Testing: Computing a Node's Depth
David

Test
ublic void test_general_trees_depths() |
TreeUtilities<String> $u=$ new TreeUtilities<>();
assertEquals (0, u.depth(david));
assertEquals (1, u.depth(ernesto))
assertEquals (1, u.depth(chris));
assertEquals (2, u.depth(elsa));
assertEquals (2, u. depth (elsa));
assertEquals ($2, u \cdot d e p t h(a n n a)) ;$
assertEquals (3, u. depth(shirley))
assertEquals ($3, u$. depth (vanessa));
assertEquals (3 , u.depth(peter));

18 of 41

Problem: Computing a Tree's Height

- Given node n, the height of subtree rooted at n is defined as:
- If n is a leaf, then the height of subtree rooted at n is 0 .
- Otherwise, the height of subtree rooted at n is one plus the maximum height of all subtrees rooted at n 's children.
- Assuming under a generic class TreeUtilities<E>:

```
public int height(TreeNode<E> n)
    TreeNode<E>[] children = n.getChildren();
    if(children.length == 0) { return 0; }
    else {
        int max = 0;
        for(int i = 0; i < children.length; i ++) {
        int h = 1 + height(children[i]);
        max = h > max ? h : max;
    }
        return max;
    }
```

2
01014

Testing: Computing a Tree's Height
David


```
@Test
public void test_general_trees_heights()
    TreeUtilities<String> u = new TreeUtilities<>();
    /* internal nodes */ 
    assertEquals (2, u.height(chris));
    assertEquals(1, u.height(elsa));
    /* external nodes */ (assertEquals (0, u. height (ernesto)),
    assertEquals(0, u.height (anna));
    assertEquals (0, u.height (shirley));
    assertEquals(0, u.height(vanessa));
    assertEquals(0, u.height (vanessa)
```

O+47

Unfolding: Computing a Tree's Height

height(subtree rooted at chris)
$=$ \{ chris is not a leaf
$\operatorname{MAX}\binom{1+$ height(subtree rooted at elsa), }{$1+$ height(subtree rooted at anna) }

$$
=\text { \{ olsa is not a leaf anna is a leaf \} }
$$

\{ elsa
$\operatorname{MAX}\binom{1+\operatorname{MAX}\left(\begin{array}{c}1+\text { height(subtree rooted at shirley), } \\ 1+\text { height(subtree rooted at vanessa), } \\ 1+\text { height(subtree rooted at peter) }\end{array}\right.}{1+0}$,
$=$ \{ shirley, vanessa, and peter are all leaves \}
$\operatorname{MAX}\left(\begin{array}{l}1+\operatorname{MAX}\left(\begin{array}{l}1+0, \\ 1+0 \\ 1+0\end{array}\right),\end{array}\right)$
$220+47$ $=2$

Exercises on General Trees

- Implement and test the following recursive algorithm:
public TreeNode<E>[] ancestors(TreeNode<E> n)
which returns the list of ancestors of a given node n.
- Implement and test the following recursive algorithm:
public TreeNode $\langle E\rangle[]$ descendants(TreeNode $\langle E\rangle n$)
which returns the list of descendants of a given node n.

Binary Trees (BTs): Definitions

A binary tree $(B T)$ is an ordered tree satisfying the following:

1. Each node has at most two (≤ 2) children.
2. Each child node is labeled as either a left child or a right child.
3. A left child precedes a right child.

A binary tree $(B T)$ is either:

- An empty tree; or
- A nonempty tree with a root node r which has:
- a left subtree rooted at its left child, if any
- a right subtree rooted at its right child, if any

24 ot 47

BT Terminology: LST vs. RST

For an internal node (with at least one child):

- Subtree rooted at its left child, if any, is called left subtree.
- Subtree rooted at its right child, if any, is called right subtree. e.g.,

Node A has:

- a left subtree rooted at node B
- a right subtree rooted at node \underline{C}

BT Terminology: Depths, Levels

BT Properties: Max \# Nodes at Levels

The set of nodes with the same depth d are said to be at the same leveld

26 ot 41

Background: Sum of Geometric Sequence

- Given a geometric sequence of n terms, where the initial term is a and the common factor is r, the sum of all its terms is:

$$
\sum_{k=0}^{n-1}\left(a \cdot r^{k}\right)=a \cdot r^{0}+a \cdot r^{1}+a \cdot r^{2}+\cdots+a \cdot r^{n-1}=a \cdot\left(\frac{r^{n}-1}{r-1}\right)
$$

[See here to see how the formula is derived.]

- For the purpose of binary trees, maximum numbers of nodes at all levels form a geometric sequence :
- $a=1$
[the root at Level 0]
- $r=2$
[≤ 2 children for each internal node]
- e.g., Max total \# of nodes at levels 0 to $4=1+2+4+8+16=1 \cdot\left(\frac{2^{5}-1}{2-1}\right)=31$

Given a binary tree with height h :

- At each level:
- Maximum number of nodes at Level 0: $\quad 2^{0}=1$
- Maximum number of nodes at Level 1: $2^{1}=2$
- Maximum number of nodes at Level 2:
- Maximum number of nodes at Level h :
- Summing all levels:

Maximum total number of nodes:

$$
\underbrace{2^{0}+2^{1}+2^{2}+\cdots+2^{h}}_{h+1 \text { terms }}=1 \cdot\left(\frac{2^{h+1}-1}{2-1}\right)=2^{h+1}-1
$$

28 ot 47

BT Terminology: Complete BTs

A binary tree with height h is considered as complete if:

- Nodes with depth $\leq h-2$ has two children.
- Nodes with depth $h-1$ may have zero, one, or two child nodes.
- Children of nodes with depth $h-1$ are filled from left to right.

Q1: Minimum \# of nodes of a complete BT? $\quad\left(2^{h}-1\right)+1=2^{h}$
Q2: Maximum \# of nodes of a complete BT? $\quad 2^{h+1}-1$

BT Properties: Bounding Height of Tree

A binary tree with height h is considered as full if: Each node with depth $\leq h-1$ has two child nodes. That is, all leaves are with the same depth h.

Q1: Minimum \# of nodes of a complete BT? $\quad 2^{h+1}-1$
Q2: Maximum \# of nodes of a complete BT? $\quad 2^{h+1}-1$
30014]

BT Properties: Bounding \# of Nodes

Given a binary tree with height h, the number of nodes n is bounded as:

$$
h+1 \leq n \leq 2^{h+1}-1
$$

- Shape of BT with minimum \# of nodes?

A "one-path" tree (each internal node has exactly one child)

- Shape of BT with maximum \# of nodes?

A tree completely filled at each level

Given a binary tree with n nodes, the height h is bounded as:

$$
\log (n+1)-1 \leq h \leq n-1
$$

- Shape of BT with minimum height?

A tree completely filled at each level

$$
\begin{aligned}
n & =2^{h+1}-1 \\
\Longleftrightarrow n+1 & =2^{h+1} \\
\Longleftrightarrow \log (n+1) & =h+1 \\
\Longleftrightarrow \log (n+1)-1 & =h
\end{aligned}
$$

- Shape of BT with maximum height?

A "one-path" tree (each internal node has exactly one child)
[32014]

BT Properties: Bounding \# of Ext. Nodes

Given a binary tree with height h, the number of external nodes n_{E} is bounded as:

$$
1 \leq n_{E} \leq 2^{h}
$$

- Shape of BT with minimum \# of external nodes? A tree with only one node (i.e., the root)
- Shape of BT with maximum \# of external nodes?

A tree whose bottom level (with depth h) is completely filled

Given a binary tree with height h, the number of internal nodes n_{l} is bounded as:

$$
h \leq n_{l} \leq 2^{h}-1
$$

- Shape of BT with minimum \# of internal nodes?
- Number of nodes in a "one-path" tree ($h+1$) minus one
- That is, the "deepest" leaf node excluded
- Shape of BT with maximum \# of internal nodes?
- A tree whose $\leq h-1$ levels are all completely filled
- That is: $\underbrace{2^{0}+2^{1}+\cdots+2^{h-1}}=2^{h}-1$
n terms

340147

BT Terminology: Proper BT
A binary tree is proper if each internal node has two children.

BT Properties: \#s of Ext. and Int. Nodes

Given a binary tree that is:

- nonempty and proper
- with n_{l} internal nodes and n_{E} external nodes

We can then expect that: $n_{E}=n_{I}+1$
Proof by mathematical induction :

- Base Case:

A proper BT with only the root (an external node): $\mathrm{n}_{\mathrm{E}}=1$ and $\mathrm{n}_{\mathrm{I}}=0$.

- Inductive Case:
- Assume a proper BT with n nodes $(n>1)$ with n_{I} internal nodes and n_{E} external nodes such that $\mathrm{n}_{\mathrm{E}}=\mathrm{n}_{\mathrm{I}}+1$.
- Only one way to create a larger BT (with $n+2$ nodes) that is still proper (with $\mathrm{n}_{\mathrm{E}}^{\prime}$ external nodes and n_{1}^{\prime} internal nodes): Convert an external node into an internal node.

$$
\mathbf{n}_{E}^{\prime}=\left(n_{E}-1\right)+2=n_{E}+1 \wedge \mathbf{n}_{I}^{\prime}=n_{l}+1 \Rightarrow \mathbf{n}_{E}^{\prime}=\mathbf{n}_{E}^{\prime}+1
$$

[6014]

Binary Trees: Application (1)

A decision tree is a proper binary tree used to to express the decision-making process:

- Each internal node denotes a decision point: yes or no.
- Each external node denotes the consequence of a decision.

Binary Trees: Application (2)

An infix arithmetic expression can be represented using a binary tree:

- Each internal node denotes an operator (unary or binary).
- Each external node denotes an operand (i.e., a number).

- To evaluate the expression that is represented by a binary tree, certain traversal over the entire tree is required.
[80147

Tree Traversal Algorithms: Definition

- A traversal of a tree T systematically visits all T's nodes.
- Visiting each node may be associated with an action: e.g.,
- Print the node element.
- Determine if the node element satisfies certain property
(e.g., positive, matching a key).
- Accumulate the node element values for some global result.

Tree Traversal Algorithms: Common Types

Three common traversal orders:

- Preorder: Visit parent, then visit child subtrees.

```
preorder (n)
visit and act on position n
    for child c: children(n) { preorder (C) }
```

- Postorder: Visit child subtrees, then visit parent.

```
postorder (n)
        for child c: children(n) { postorder (C) }
        visit and act on position n
```

 - Inorder (for BT): Visit left subtree, then parent, then right subtree.
    ```
inorder (n)
        if (n has a left child lC) { inorder (lC) }
        visit and act on position n
        if (n has a right child rc) { inorder (rc) }
```

40 Ot 47

Tree Traversal Algorithms: Preorder

Preorder: Visit parent, then visit child subtrees.
preorder (n)
visit and act on position n for child c: children(n) \{ preorder (C) \}

Tree Traversal Algorithms: Postorder LASSONDE
Postorder: Visit child subtrees, then visit parent.
postorder (n)
for child c : children(n) \{ postorder (C) \}
visit and act on position n

42 of 47

Tree Traversal Algorithms: Inorder
Inorder (for BT): Visit left subtree, then parent, then right subtree.

```
inorder (n)
    if (n has a left child lC) { inorder (IC) }
    visit and act on position n
    if (n has a right child rC) { inorder (rC) }
```


Index (3)
Binary Trees (BTs): Definitions
BT Terminology: LST vs. RST
BT Terminology: Depths, Levels
Background: Sum of Geometric Sequence
BT Properties: Max \# Nodes at Levels
BT Terminology: Complete BTs
BT Terminology: Full BTs
BT Properties: Bounding \# of Nodes
BT Properties: Bounding Height of Tree
BT Properties: Bounding \# of Ext. Nodes
BT Properties: Bounding \# of Int. Nodes
46 아 41

Index (4)
LASSONDE
BT Terminology: Proper BT
BT Properties: \#S of Ext. and Int. Nodes
Binary Trees: Application (1)
Binary Trees: Application (2)
Tree Traversal Algorithms: Definition
Tree Traversal Algorithms: Common Types
Tree Traversal Algorithms: Preorder
Tree Traversal Algorithms: Postorder
Tree Traversal Algorithms: Inorder

EECS2011 N \& Z:

Fundamentals of Data Structures Winter 2022

CHFN-WFI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- Binary Search Trees (BSTs) = BTs + Search Property
- Implementing a Generic BST in Java
- BST Operations:
- Searching: Implementation, Visualization, RT
- Insertion: (Sketch of) Implementation, Visualization, RT
- Deletion: (Sketch of) Implementation, Visualization, RT

A Binary Search Tree ($B S T$) is a $B T$ satisfying the search property:
Each internal node p stores an entry, a key-value pair (k, v), such that:

- For each node n in the LST of $p: \operatorname{key}(n)<\operatorname{key}(p)$
- For each node n in the RST of $p: \operatorname{key}(n)>\operatorname{key}(p)$

BST: Internal Nodes vs. External Nodes

- We store key-value pairs only in internal nodes.
- Recall how we treat header and trailer in a DLL.
- We treat external nodes as sentinels, in order to simplify the coding logic of BST algorithms.

BST: Sorting Property

- An in-order traversal of a BST will result in a sequence of nodes whose keys are arranged in an ascending order.
- Unless necessary, we may only show keys in BST nodes:

- In-Order Traversal: Visit LST, then root, then RST. - Search Property of BST: keys in LST/RST </ > root's key
$20+24$

Implementation: Generic BST Nodes

```
public class BSTNode<E>
    Mrivate int key;
    private BSTNode<E> parent; /* unique parent node *\
    private BSTNode<E> left;,
    public BSTNode()
    public BSTNode(int key, E value) {
    ublic boolean isExternal()
    return this.getLeft() == null && this.getRight() == null;
    public boolean isInternal()
    return !this.isExternal();
    public int getKey()
    public void setKey(in
    M,
    public BSTNode<E> getParent)
    public void setParent (BSTNode<E> parent)
    ublic BSTNode<E> getLeft()
    public void setLeft (BSTNode<E\...}
    ublu
    public void setRight (BSTNode<E> right)
```

Implementation: BST Utilities - Traversal

```
import java.util.ArrayList;
public class BSTUtilities<E> {
    public ArrayList<BSTNode<E>> inOrderTraversal(BSTNode<E> root)
        ArrayList<BSTNode<E>> result = null;
        if(root.isInternal()) {
        result = new ArrayList<>();
        if(root.getLeft().isInternal) {
            result.addAll(inOrderTraversal(root.getLeft()));
        }
            result.add(root);
        if(root.getRight().isInternal) {
            result.addAll(inOrderTraversal(root.getRight()))
        }
        return result;
}
    ZO+27
```


Testing: Connected BST Nodes

Constructing a BST is similar to constructing a General Tree

```
public void test_binary_search_trees_construction()
    BSTNode<String> n28 = new BSTNOde<>(28, "alan");
    BSTNode<String> n21 = new BSTNode<> (21, "mark")
    BSTNode<String> n35=new BSTNode<> (35, "tom");
    BSTNode<String> extN2 = new BSTNode<>();
    BSTNode<String> extN3 = new BSTNode<>();
    BSTNode<String> extN4 = new BSTNode<>();
    n28.setLeft(n21); n21.setParent(n28);
    n28.setRight (n35); n35.setParent (n28);
    n21.setRight(extN2); extN2.setParent(n21);
    n35.setLeft(extN3); extN3.setParent(n35);
    n35.setRight (extN4); extN4.setParent(n35);
    BSTUtilities<String> u = new BSTUtilities<>();
    ArrayList<BSTNode<String>> inOrderList = u.inOrderTraversal(n28)
    assertEquals(21, inOrderList.get(0).getKey());
    assertEquals("mark", inOrderList.get(0).getValue());
    assertEquals(28, inOrderList.get(1).getKey());
    assertEquals("alan", inOrderList.get(1).getValue());
    assertEqual
assertEquals("tom", inOrderList.get(2).getValue());
\square
```


Implementing BST Operation: Searching

Given a $B S T$ rooted at node p, to locate a particular node
whose key matches \boldsymbol{k}, we may view it as a decision tree.

```
public BSTNode<E> search(BSTNode<E> p, int k) {
    BSTNode<E> result = null;
    if(p.isExternal())
        result = p; /* unsuccessful search *
    }
    else if(p.getKey() == k)
        result = p; /* successful search */
    }
    else if(k < p.getKey())
        result = search(p.getLeft(), k); /* recur on LST */
```



```
    else if(k > p.getKey()) {
        result = search(p.getRight(), k); /* recur on RST */
    }
    return result;
```

90124

Visualizing BST Operation: Searching (1)

A successful search for key 65:

The internal node storing key 65 is returned.

Visualizing BST Operation: Searching (2)

- An unsuccessful search for key 68:

The external, left child node of the internal node storing key 76 is returned.

- Exercise : Provide keys for different external nodes to be returned.
$10+27$

Testing BST Operation: Searching

```
aTest
    public void test_binary_search_trees_search() i
    BSTNode<String> n28= new BSTNode<>(28, "alan")
    BSTNode<String> n21 = new BSTNode<> (21, "mark");
    BSTNode<String> n35 = new BSTNode<> (35, "tom");
    BSTNode<String> extN1 = new BSTNode<>();
    BSTNode<String> extN2 = new BSTNode<>();
    BSTNode<String> extN4 = new BSTNode<>();
    n28.setLeft(n21); n21.setParent(n28);
    n28.setRight(n35); n35.setParent(n28);
    n21.setLeft(extN1); extN1.setParent(n21);
    n21.setRIght (extN2); extN2.setParent (n21);
    n35.setRight (extN4); extN4.setParent (n35);
    BSTUtilities<String> u = new BSTUtilities<>();
    assertTrue(n28 == u.search(n28, 28));
    assertTrue(n21 ==u.search (n28, 21));
    assertTrue(n35 == u.search(n28, 35));
    /* search non-existing keys *( 
    assertTrue(extN2 == u.search(n28, 23));
    ssertMrue(extN4 ==u.search(n28)
    assertTrue(extN4 == u.search(n28, 38));
```

RT of BST Operation: Searching (1)

Total time: $O(h)$
130 OH

RT of BST Operation: Searching (2)

- Recursive calls of search are made on a path which
- Starts from the root
- Goes down one level at a time

RT of deciding from each node to go to LST or RST?

- Stops when the key is found or when a leaf is reached

Maximum number of nodes visited by the search?
\therefore RT of search on a BST is $O(h)$

- Recall: Given a BT with n nodes, the height h is bounded as:

$$
\log (n+1)-1 \leq h \leq n-1
$$

- Best RT of a binary search is $O(\log (n))$
- Worst RT of a binary search is $O(n)$ [ill-balanced BST]
- Binary search on non-linear vs. linear structures:

	Search on a BST	Binary Search on a Sorted Array
START	Root of BST	Middle of Array
PROGRESS	LST or RST	Left Half or Right Half of Array
BEST RT	$O(\log (n))$	$(\log (n))$
WORST RT	$O(n)$	

To insert an entry (with key k \& value v) into a BST rooted at node n :

- Let node p be the return value from $\operatorname{search}(n, k)$.
- If p is an internal node
\Rightarrow Key k exists in the BST.
\Rightarrow Set p 's value to v.
- If p is an external node
\Rightarrow Key k deos not exist in the BST.
\Rightarrow Set p 's key and value to k and v.
Running time?
[$O(h)]$

Before inserting an entry with key 68 into the following BST:

Exercise: In BSTUtilities class, implement and test the void insert (BSTNode $\langle E\rangle p$, int $k, E \mathrm{~V}$) method.

Sketch of BST Operation: Deletion

To delete an entry (with key k) from a BST rooted at node n :
Let node p be the return value from search (n, k).

- Case 1: Node p is external.
k is not an existing key \Rightarrow Nothing to remove
- Case 2: Both of node p's child nodes are external. No "orphan" subtrees to be handled \Rightarrow Remove p
- Case 3: One of the node p's children, say r, is internal - r 's sibling is external \Rightarrow Replace node p by node r
- Case 4: Both of node p's children are internal.
- Let r be the right-most internal node p's LST.
$\Rightarrow r$ contains the largest key s.t. $\operatorname{key}(r)<\operatorname{key}(p)$.
Exercise: Can r contain the smallest key s.t. $k e y(r)>\operatorname{key}(p)$?
- Overwrite node p 's entry by node r's entry.
[Still BST?]
- r being the right-most internal node may have:
\diamond Two external child nodes \Rightarrow Remove r as in Case 2.
\diamond An external, RC \& an internal LC \Rightarrow Remove r as in Case 3.
Running time?
[$O(h)]$
19 ot 21

(Case 3) Before deleting the node storing key 32:

Visualizing BST Operation: Deletion (1.2) LASSONDE
(Case 3) After deleting the node storing key 32:

Visualizing BST Operation: Deletion (2.1)
(Case 4) Before deleting the node storing key 88:

$220+27$

This module is designed to help you understand:

- When the Worst-Case RT of a BST Search Occurs
- Height-Balance Property
- Performing Rotations to Restore Tree Balance

EECS2011 N \& Z:

Fundamentals of Data Structures
Winter 2022
CHEN-WFI WANG

02

Balanced Binary Search Trees: Motivation

- After insertions into a BST, the worst-case RT of a search occurs when the height h is at its maximum: $O(n)$:
- e.g., Entries were inserted in an decreasing order of their keys $\langle 100,75,68,60,50,1\rangle$
\Rightarrow One-path, left-slanted BST
- e.g., Entries were inserted in an increasing order of their keys

$$
\langle 1,50,60,68,75,100\rangle
$$

\Rightarrow One-path, right-slanted BST

- e.g., Last entry's key is in-between keys of the previous two entries

$$
\langle 1,100,50,75,60,68\rangle
$$

\Rightarrow One-path, side-alternating BST

- To avoid the worst-case RT (\because a ill-balanced tree), we need to take actions as soon as the tree becomes unbalanced.

Balanced Binary Search Trees: Definition

- Given a node p, the height of the subtree rooted at p is:

$$
\operatorname{height}(p)= \begin{cases}0 & \text { if } p \text { is external } \\ 1+\mathbf{M A X}(\{\operatorname{height}(c) \mid \text { parent }(c)=p\}) & \text { if } p \text { is internal }\end{cases}
$$

- A balanced BST T satisfies the height-balance property :

For every internal node n, heights of n 's child nodes differ ≤ 1.

Q: Is the above tree a balanced BST?
Q: Will the tree remain balanced after inserting 55 ?
Q: Will the tree remain balanced after inserting 63 ?

Fixing Unbalanced BST: Rotations

A tree rotation is performed:

- When the latest insertion/deletion creates unbalanced nodes, along the ancestor path of the node being inserted/deleted.
- To change the shape of tree, restoring the height-balance property

Q. An in-order traversal on the resulting tree?
A. Still produces a sequence of sorted keys $\quad\left\langle T_{1}, c, T_{2}, b, T_{3}, a, T_{4}\right\rangle$
- After rotating node b to the right:
- Heights of descendants ($b, c, T_{1}, T_{2}, T_{3}$) and sibling $\left(T_{4}\right)$ stay unchanged.
- Height of parent (a) is decreased by 1.
\Rightarrow Balance of node a was restored by the rotation.

After Insertions:

Trinode Restructuring via Rotation(s)
After inserting a new node n :

- Case 1: Nodes on n's ancestor path remain balanced.
\Rightarrow No rotations needed
- Case 2: At least one of n 's ancestors becomes unbalanced.

1. Get the first/lowest unbalanced node a on n's ancestor path.
2. Get a's child node b in n's ancestor path.
3. Get b's child node c in n's ancestor path.
4. Perform rotation(s) based on the alignment of a, b, and c :

- Slanted the same way \Rightarrow single rotation on the middle node b
- Slanted different ways \Rightarrow double rotations on the lower node c

5알

Trinode Restructuring: Single, Left Rotation

After a left rotation on the middle node b :

BST property maintained?
$\left\langle T_{1}, a, T_{2}, b, T_{3}, c, T_{4}\right\rangle$

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,95\rangle
$$

- Is the BST now balanced?
- Insert 100 into the BST.
- Is the BST still balanced?
- Perform a left rotation on the appropriate node.
- Is the BST again balanced?

80

Trinode Restructuring: Single, Right Rotatio

After a right rotation on the middle node b :

BST property maintained?
$\left\langle T_{1}, a, T_{2}, b, T_{3}, c, T_{4}\right\rangle$

Perform a Right Rotation on Node c

Perform a Left Rotation on Node c

After Right-Left Rotations
BST property maintained?

$$
\left\langle T_{1}, a, T_{2}, c, T_{3}, b, T_{4}\right\rangle
$$

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,82,95\rangle
$$

- Is the BST now balanced?
- Insert 85 into the BST.
- Is the BST still balanced?
- Perform the \boldsymbol{R} - L rotations on the appropriate node.
- Is the BST again balanced?

12 of 22

Trinode Restructuring: Double, L-R Rotation Sssonve

Perform a Left Rotation on Node c

Perform a Right Rotation on Node c

After Left-Right Rotations

BST property maintained?
$\left\langle T_{1}, b, T_{2}, c, T_{3}, a, T_{4}\right\rangle$

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,48,62\rangle
$$

- Is the BST now balanced?
- Insert 54 into the BST.
- Is the BST still balanced?
- Perform the L-R rotations on the appropriate node.
- Is the BST again balanced?

14 of 22

After Deletions:

Continuous Trinode Restructuring

- Recall : Deletion from a BST results in
removing a node with zero or one internal child node.
- After deleting an existing node, say its child is n :

Case 1: Nodes on n 's ancestor path remain balanced. \Rightarrow No rotations
Case 2: At least one of n 's ancestors becomes unbalanced.

1. Get the first/lowest unbalanced node a on n's ancestor path.
2. Get a's taller child node b.
[$b \notin$ n's ancestor path]
3. Choose b's child node c as follows:

- b 's two child nodes have different heights $\Rightarrow c$ is the taller child
- b 's two child nodes have same height $\Rightarrow a, b, c$ slant the same way

4. Perform rotation(s) based on the alignment of a, b, and c :

- Slanted the same way \Rightarrow single rotation on the middle node b
- Slanted different ways \Rightarrow double rotations on the lower node c
- As n's unbalanced ancestors are found, keep applying Case 2,
until Case 1 is satisfied.
[$O(h)=O(\log n)$ rotations]
15 OH 2
- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,62,32,50,78,48,54,88\rangle
$$

- Is the BST now balanced?
- Delete 32 from the BST.
- Is the BST still balanced?
- Perform a left rotation on the appropriate node.
- Is the BST again balanced?

After Performing L-R Rotations on Node c: Height of Subtree Being Fixed Remains $h+3$

Multiple Trinode Restructuring Steps

- Insert the following sequence of nodes into an empty BST:

$$
\langle 50,25,10,30,5,15,27,1,75,60,80,55\rangle
$$

- Is the BST now balanced?
- Delete 80 from the BST.
- Is the BST still balanced?
- Perform a right rotation on the appropriate node.
- Is the BST now balanced?
- Perform another right rotation on the appropriate node.
- Is the BST again balanced?

- Each rotation involves only POs of setting parent-child references.
$\Rightarrow O(1)$ running time for each tree rotation
- After each insertion, a trinode restructuring step can restore the balance of the subtree rooted at the first unbalanced node.
$\Rightarrow O(1)$ rotations suffices to restore the balance of tree
- After each deletion, one or more trinode restructuring steps may restore the balance of the subtree rooted at the first unbalanced node.
\Rightarrow May take $O(\log n)$ rotations to restore the balance of tree

Index (2)

B-L Rotations

Irinode Restructuring: Double, L-R Rotations
L-R Rotations
Atter Deletions:
Continuous Trinode Restructuring
Single Trinode Restructuring Step
Multiple Trinode Restructuring Steps
Restoring Balance from Insertions
Restoring Balance from Deletions
Restoring Balance: Insertions vs. Deletions
$220+22$

Priority Queues, Heaps, and Heap Sort

EECS2011 N \& Z:

Fundamentals of Data Structures
Winter 2022

The Priority Queue (PQ) ADT

- min

This module is designed to help you understand:

- The Priority Queue (PQ) ADT
- Time Complexities of List-Based PQ
- The Heap Data Structure (Properties \& Operations)
- Heap Sort
- Time Complexities of Heap-Based PQ
- Heap Construction Methods: Top-Down vs. Bottom-Up
- Array-Based Representation of a Heap
[precondition: PQ is not empty]
[postcondition: return entry with highest priority in PQ]
- size
[precondition: none]
[postcondition: return number of entries inserted to PQ]
- isEmpty
[precondition: none]
[postcondition: return whether there is no entry in PQ]
- insert(k, v)
[precondition: PQ is not full]
[postcondition: insert the input entry into PQ]
- removeMin
[precondition: PQ is not empty]
[postcondition: remove and return a min entry in PQ]

What is a Priority Queue?

- A Priority Queue (PQ) stores a collection of entries.

- Each entry is a pair: an element and its key.
- The key of each entry denotes its element's "priority".
- Keys in a

Priority Queue (PQ) are not used for uniquely identifying an entry.

- In a PQ, the next entry to remove has the "highest" priority.
- e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher priority to replace any cancelled seats.
- e.g., A network router, faced with insufficient bandwidth, may only handle real-time tasks (e.g., streaming) with highest priorities.

Heap Property 2: Structural

A heap with height h satisfies the Complete BT Property :

- Nodes with depth $\leq \mathrm{h}-2$ has two child nodes.
- Nodes with depth h-1 may have zero, one, or two child nodes.
- Nodes with depth h are filled from left to right.
Q. When the \# of nodes is n, what is h ?
Q. \# of nodes from Level 0 through Level $h-1$?
Q. \# of nodes at Level h ?
Q. Minimum \# of nodes of a complete BT?
Q. Maximum \# of nodes of a complete BT?

Heaps: More Examples

- The smallest heap is just an empty binary tree.
- The smallest non-empty heap is a one-node heap. e.g.,

- Two-node and Three-node Heaps:

- These are not two-node heaps:

- There are three main operations for a heap :

1. Extract the Entry with Minimal Key: Return the stored entry of the root.
[O(1)]
2. Insert a New Entry:

A single root-to-leaf path is affected. [$O(h)$ or $O(\log n)]$
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected.
[$O(h)$ or $O(\log n)$]

- After performing each operation, both relational and structural properties must be maintained.

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with height h :

1. Insert (k, v), possibly temporarily breaking the relational property.
1.1 Create a new entry $\mathbf{e}=(k, v)$.
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.

After steps 1.1 and 1.2, the structural property is maintained.
2. Restore the heap-order property (HOP) using Up-Heap Bubbling:
2.1 Let $c=n$.
2.2 While HOP is not restored and c is not the root:
2.2.1 Let p be c 's parent.
2.2.2 If $\operatorname{key}(p) \leq \operatorname{key}(c)$, then HOP is restored.

Else, swap nodes c and p. ["upwards" along n's ancestor path]
Running Time?

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take $O(1)$.
- Step 2.2 may be executed up to $O(h)(\operatorname{lor} O(\log n))$ times.
(0) A heap with height 3 .
 as the right-most node at Level 3. Perform up-heap bubbling from here.

Updating a Heap: Insertion Example (1.2)

(5) After swap, entry $(2, T)$ prompted up.
(6) HOP violated $\because 2<4 \therefore$ Swap.

(7) Entry ($2, T$) becomes root \therefore Done.

Updating a Heap: Deletion

To delete the root (with the minimal key) from a heap with height \boldsymbol{h} :

1. Delete the root, possibly temporarily breaking HOP.
1.1 Let the right-most node at Level h be n.
1.2 Replace the root's entry by n 's entry.
1.3 Delete n.

After steps 1.1-1.3, the structural property is maintained.
2. Restore HOP using Down-Heap Bubbling :
2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:
2.2.1 IF p has no right child, let c be p 's left child.

Else, let \bar{c} be p 's child with a smaller key value.
2.2.2 If $k e y(p) \leq \operatorname{key}(c)$, then HOP is restored.

Else, swap nodes p and c. ["downwards" along a root-to-leaf path]
Running Time?

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take $O(1)$.
- Step 2.2 may be executed up to $O(h)($ or $O(\log n))$ times.

14 ot 31
[$O(\log n)]$

Updating a Heap: Deletion Example (1.1)
(0) Start with a heap with height 3.

(2) $(13, W)$ becomes the root. Perform down-heap bubbling from here.

(1) Replace root with $(13, W)$ and delete right-most node from Level 3.

(3) Child with smaller key is $(5, A)$. HOP violated $\because 13>5 \therefore$ Swap.

Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13, W) demoted down.

(6) After swap, entry (13,W) demoted down.

160131

Updating a Heap: Deletion Example (1.3)
(8) After swap, entry $(13, W)$ becomes an external node \therefore Done.

PQ Method	Heap Operation	RT
min	root	$O(1)$
insert	insert then up-heap bubbling	$O(\log n)$
removeMin	delete then down-heap bubbling	$O(\log n)$

Top-Down Heap Construction:

List of Entries is Not Known in Advance

Bottom-Up Heap Construction:

List of Entries is Known in Advance

Problem: Build a heap out of N entires, supplied all at once.

- Assume: The resulting heap will be completely filled at all levels

$$
\Rightarrow N=2^{h+1}-1 \text { for some height } h \geq 1 \quad[h=(\log (N+1))-1]
$$

- Perform the following steps called Bottom-Up Heap Construction

Step 1: Treat the first $\frac{N+1}{2^{1}}$ list entries as heap roots.
$\frac{N+1}{2^{1}}$ heaps with height 0 and size $2^{1}-1$ constructed.
Step 2: Treat the next $\frac{N+1}{2^{2}}$ list entries as heap roots.
\diamond Each root sets two heaps from Step 1 as its LST and RST.
\diamond Perform down-heap bubbling to restore HOP if necessary
$\frac{N+1}{2^{2}}$ heaps, each with height 1 and size $2^{2}-1$, constructed.

Step $h+1$: Treat next $\frac{N+1}{2^{h+1}}=\frac{\left(2^{h+1}-1\right)+1}{2^{h+1}}=1$ list entry as heap root.
\diamond Each root sets two heaps from Step h as its LST and RST.
\diamond Perform down-heap bubbling to restore HOP if necessary.
$\frac{N+1}{2^{h+1}}=1$ heap, each with height h and size $2^{h+1}-1$, constructed.
00 Ot 31

Bottom-Up Heap Construction: Example (1.)Lssono

- Build a heap from the following list of 15 keys:
$\langle 16,15,4,12,6,7,23,20,25,9,11,17,5,8,14\rangle$
- The resulting heap has:
- Size N is 15
- Height h is $(\log (15+1))-1=3$
- According to the bottom-up heap construction technique, we will need to perform $h+1=4$ steps, utilizing 4 sublists:

$$
\langle\underbrace{\langle 16,15,4,12,6,7,23,20}_{\frac{15+1}{2^{1}}=8}, \underbrace{25,9,11,17}_{\frac{15+1}{2^{2}}=4}, \underbrace{5,8}_{\frac{15+1}{2^{3}}=2}, \underbrace{14}_{\frac{15+1}{2^{4}}=1}\rangle
$$

Bottom-Up Heap Construction: Example (1.2)

$$
\begin{aligned}
& \text { We know in advance to build a heap } \\
& \text { with height } 3 \text { and size } 2^{3+1}-1=15
\end{aligned}
$$

(Step 1) Treat first $\frac{15+1}{2^{1}}$ entries as roots. 8 one-node heaps.

(Step 2) Treat next $\frac{15+1}{2^{2}}$ entries as roots. Set LST and RST of each root

(Step 2 cont.) Down-heap bubbling. . 4 three-node heaps.

Bottom-Up Heap Construction: Example (1.3)

- Intuitively, the majority of the intermediate roots from which we perform down-heap bubbling are of very small height values:
- The first $\frac{n+1}{2} 1$-node heaps with height 0 require no down-heap bubbling.
[About 50% of the list entries processed]
- Next $\frac{n+1}{4} 3$-node heaps with height 1 require down-heap bubbling.
[Another 25% of the list entries processed]
- Next $\frac{n+1}{8} 7$-node heaps with height 2 require down-heap bubbling.
[Another 12.5% of the list entries processed]
- Next two $\frac{\mathrm{N}-1}{2}$-node heaps with height $(h-1)$ require down-heap
- Final one N-node heaps with height h requires down-heap bubbling.
- Running Time of the Bottom-Up Heap Construction takes only $O(n)$.

The Heap Sort Algorithm

Sorting Problem:

Given a list of \mathbf{n} numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$:
Precondition: None
Postcondition: A permutation of the input list $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ sorted in a non-descending order (i.e., $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$)

The Heap Sort algorithm consists of two phases:

1. Construct a heap of size N out of the input array.

- Approach 1: Top-Down "Continuous-Insertions"
- Approach 2: Bottom-Up Heap Construction
[$\mathrm{O}(N)$]

2. Delete N entries from the heap.

- Each deletion takes $\mathbf{O}(\log N)$ time.
- 1st deletion extracts the minimum, 2nd deletion the 2nd minimum, \Rightarrow Extracted minimums from N deletions form a sorted sequence.
\therefore Running time of the Heap Sort algorithm is $\mathbf{O}(N \cdot \boldsymbol{\operatorname { l o g }} N)$.

The Heap Sort Algorithm: Exercise LASSONDE

Sort the following array of integers

$$
\langle 16,15,4,12,6,7,23,20,25,9,11,17,5,8,14\rangle
$$

into a non-descending order using the Heap Sort Algorithm . Demonstrate:

1. Both top-down and bottom-up heap constructions in Phase 1
2. Extractions of minimums in Phase 2

Array-Based Representation of a CBT (1)

$$
\operatorname{index}(x)= \begin{cases}0 & \text { if } x \text { is the root } \\ 2 \cdot \operatorname{index}(\operatorname{parent}(x))+1 & \text { if } x \text { is a left child } \\ 2 \cdot \operatorname{index}(\operatorname{parent}(x))+2 & \text { if } x \text { is a right child }\end{cases}
$$

$(4, \mathrm{C})$	$(5, \mathrm{~A})$	$(6, \mathrm{Z})$	$(15, \mathrm{~K})$	$(9, \mathrm{~F})$	$(7, \mathrm{Q})$	$(20, \mathrm{~B})$	$(16, \mathrm{X})$	$(25, \mathrm{~J})$	$(14, \mathrm{E})$	$(12, \mathrm{H})$	$(11, \mathrm{~S})$	$(13, \mathrm{~W})$

Array-Based Representation of a CBT (2)

- Q1: Where are nodes at Levels $0 \ldots h-1$ stored in the array?

Indices $0 \ldots\left(2^{h}-2\right) \equiv 0 \ldots\left(2^{\left\lfloor\log _{2} N\right\rfloor}-2\right) \quad$ [e.g., Indices $0 . .2^{3}-2$]

- Q2: Where are nodes at Level h stored in the array?

Indices $2^{h}-1$.. $(N-1) \equiv 2^{\left[\log _{2} N\right]}-1 . .(N-1) \quad$ e.g., Indices 7

- Q3: How do we determine if a non-root node x is a left or right child? IF index $(x) \% 2==1$ THEN left ELSE right
- Q4: Given a non-root node x, how do we determine the index of x 's parent? IF index $(x) \% 2==1 \quad$ THEN $\frac{\operatorname{index}(x)-1}{2}$ ELSE $\frac{\operatorname{index}(x)-2}{2}$
280t31

Index (1)

Learning Outcomes of this Lecture
 What is a Priority Queue?
 The Priority Queue (PQ) ADT
 Two List-Based Implementations of a PQ
 Heaps
 Heap Property 1: Relational
 Heap Property 2: Structural
 Heaps: More Examples
 Heap Operations
 Updating a Heap: Insertion
 Updating a Heap: Insertion Example (1.1)
 200131

Index (2)

Updating a Heap: Insertion Example (1.2)
Updating a Heap: Deletion
Updating a Heap: Deletion Example (1.1)
Updating a Heap: Deletion Example (1.2)
Updating a Heap: Deletion Example (1.3)
Heap-Based Implementation of a PQ
Top-Down Heap Construction:
List of Entries is Not Known in Advance
Bottom-Up Heap Construction:
List of Entries is Known in Advance
Bottom-up Heap Construction: Example (1.1)
Bottom-up Heap Construction: Example (1.2)
30-0t31

Bottom-up Heap Construction: Example (1.3)
RT of Bottom-up Heap Construction
The Heap Sort Algorithm
The Heap Sort Algorithm: Exercise
Array-Based Representation of a CBT (1)
Array-Based Representation of a CBT (2)

EECS2011 N \& Z:
Fundamentals of Data Structures Winter 2022

CHEN-WFIWANG

What You Learned (1)

- Java Programming
- JUnit
- Recursion
- Generics

- Data Structures

- Arrays, Circular Arrays, Dynamic Arrays, Amortized RT Anaylsis
- Singly-Linked Lists and Doubly-Linked Lists
- Stacks, Queues, Double-Ended Queues
- Trees, Binary Trees, Binary Search Trees, Balanced BSTs
- Priority Queues and Heaps
- Algorithms
- Asymptotic Analysis
- Binary Search
- Trinode Restructuring Steps
- Insertion Sort, Selection Sort, Merge Sort, Quick Sort, Heap Sort
- Pre-order, in-order, and post-order traversals

BOT4

Beyond this course... (1)

Design Patterns

Elements of Reusable
Object-Oriented Software
Erich Gamma
Richard Helm
Ralph Johnso
Rahn Vlissides
John

- Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, etc.
- Pattern by Pattern:
- Understand the problem
- Read the solution (not in Java)
- Implement in Java
- Test in JUnit

需

아

Beyond this course... (3)

A tutorial on building a language compiler using Java (from

 EECS4302-W20):Using the ANTLR4 Parser Generator to Develop a Compiler

- Trees
- Recursion
- Visitor Design Pattern
- What you have learned will be assumed in the third year.
- Some topics we did not cover:
- Hash table
[See Weeks 10-11 of EECS2030-F19]
- Graphs
[EECS3101]
- Logic is your friend: Learn/Review EECS1019/EECS1090.
- Do not abandon Java during the break!!
- Feel free to get in touch and let me know how you're doing :D

