Priority Queues, Heaps, and Heap Sort

EECS2011 N \& Z:

YORK
 UN I VERS I TÉ
 UN I VERSITY U

 Fundamentals of Data Structures Winter 2022CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- The Priority Queue (PQ) ADT
- Time Complexities of List-Based $P Q$
- The Heap Data Structure (Properties \& Operations)
- Heap Sort
- Time Complexities of Heap-Based PQ
- Heap Construction Methods: Top-Down vs. Bottom-Up
- Array-Based Representation of a Heap

What is a Priority Queue?

- A Priority Queue (PQ) stores a collection of entries.

Each entry is a pair: an element and its key.

- The key of each entry denotes its element's "priority".
- Keys in a Priority Queue (PQ) are not used for uniquely identifying an entry.
- In a PQ, the next entry to remove has the "highest" priority.
- e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher priority to replace any cancelled seats.
- e.g., A network router, faced with insufficient bandwidth, may only handle real-time tasks (e.g., streaming) with highest priorities.

The Priority Queue (PQ) ADT

- min
[precondition: PQ is not empty]
[postcondition: return entry with highest priority in PQ]
- size
[precondition: none]
[postcondition: return number of entries inserted to PQ]
- isEmpty
[precondition: none]
[postcondition: return whether there is no entry in PQ]
- insert(k, v)
[precondition: PQ is not full]
[postcondition: insert the input entry into PQ]
- removeMin
[precondition: PQ is not empty]
[postcondition: remove and return a min entry in PQ]

Consider two strategies for implementing a $P Q$, where we maintain:

1. A list always sorted in a non-descending order [\approx INSERTIONSORT]
2. An unsorted list
[\approx SeLectionSort]

PQ Method	List Method			
	SORTED LIST	UNSORTED LIST		
size		list.size $O(1)$		
isEmpty		list.isEmpty $O(1)$		
min	list.first	$O(1)$	search min	$O(n)$
insert	insert to "right" spot	$O(n)$	insert to front	$O(1)$
removeMin	list.removeFirst	$O(1)$	search min and remove	$O(n)$

Heaps

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

2. Satisfies a relational property of stored keys
3. Satisfies a structural property of tree organization

Heap Property 1: Relational

Keys in a heap satisfy the Heap-Order Property :

- Every node \boldsymbol{n} (other than the root) is s.t. $\operatorname{key}(n) \geq \boldsymbol{k e y}(\operatorname{parent}(n))$
\Rightarrow Keys in a root-to-leaf path are sorted in a non-descending order e.g., Keys in entry path $\langle(4, C),(5, A),(9, F),(14, E)\rangle$ are sorted
\Rightarrow The minimal key is stored in the root.
e.g., Root ($4, C$) stores the minimal key 4
- Keys of nodes from different subtrees are not constrained at all.

$$
\text { e.g., For node (} 5, A \text {), key of its } L S T \text { 's root (15) is not minimal for its } R S T \text {. }
$$

7 of 31

Heap Property 2: Structural

A heap with height h satisfies the Complete BT Property

- Nodes with depth $\leq \mathrm{h}-2$ has two child nodes.
- Nodes with depth h-1 may have zero, one, or two child nodes.
- Nodes with depth h are filled from left to right.
Q. When the \# of nodes is n, what is h ?
Q. \# of nodes from Level 0 through Level $h-1$?
Q. \# of nodes at Level h ?
Q. Minimum \# of nodes of a complete BT?

$$
2^{\mathrm{h}+1}-1
$$

Q. Maximum \# of nodes of a complete BT?

Heaps: More Examples

- The smallest heap is just an empty binary tree.
- The smallest non-empty heap is a one-node heap. e.g.,
- Two-node and Three-node Heaps:

- These are not two-node heaps:

Heap Operations

- There are three main operations for a heap:

1. Extract the Entry with Minimal Key:

Return the stored entry of the root.
[O(1)]
2. Insert a New Entry:

A single root-to-leaf path is affected.
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected.
[$O(h)$ or $O(\log n)$]

After performing each operation, both relational and structural properties must be maintained.

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with height h :

1. Insert (k, v), possibly temporarily breaking the relational property.
1.1 Create a new entry $\mathbf{e}=(k, v)$.
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.

After steps 1.1 and 1.2, the structural property is maintained.
2. Restore the heap-order property (HOP) using Up-Heap Bubbling :
2.1 Let $c=n$.
2.2 While HOP is not restored and c is not the root:
2.2.1 Let p be c 's parent.
2.2.2 If $\operatorname{key}(p) \leq \operatorname{key}(c)$, then HOP is restored.

$$
\text { Else, swap nodes } c \text { and } p . \quad[\text { "upwards" along n's ancestor path] }
$$

Running Time?

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take $O(1)$.
- Step 2.2 may be executed up to $O(h)(\operatorname{or} O(\log n))$ times.

11 of 31

Updating a Heap: Insertion Example (1.1)

(0) A heap with height 3.

(2) HOP violated $\because 2<20 \therefore$ Swap.

(1) Insert a new entry ($2, T$) as the right-most node at Level 3. Perform up-heap bubbling from here.

Updating a Heap: Insertion Example (1.2)

13 of 31

Updating a Heap: Deletion

To delete the root (with the minimal key) from a heap with height h :

1. Delete the root, possibly temporarily breaking HOP.
1.1 Let the right-most node at Level h be n.
1.2 Replace the root's entry by n's entry.
1.3 Delete n.

After steps 1.1 -1.3, the structural property is maintained.
2. Restore HOP using Down-Heap Bubbling :
2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:
2.2.1 IF p has no right child, let c be p 's left child.

Else, let c be p 's child with a smaller key value.
2.2.2 If $\operatorname{key}(p) \leq \operatorname{key}(c)$, then HOP is restored.

Else, swap nodes p and c. ["downwards" along a root-to-leaf path]
Running Time?

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
- Step 2.2 may be executed up to $O(h)($ or $O(\log n))$ times.

Updating a Heap: Deletion Example (1.1)

(0) Start with a heap with height 3.

(2) (13, W) becomes the root. Perform

(3) Child with smaller key is $(5, A)$. HOP violated $\because 13>5 \therefore$ Swap.

15 of 31

Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13, W)

(5) Child with smaller key is $(9, F)$. HOP violated $\because 13>9 \therefore$ Swap.
(6) After swap, entry (13,W)
demoted down.

(7) Child with smaller key is $(12, H)$.
HOP violated $\because 13>12 \therefore$ Swap.

(8) After swap, entry $(13, W)$ becomes an external node \therefore Done.

Top-Down Heap Construction:

List of Entries is Not Known in Advance

Problem: Build a heap out of N entires, supplied one at a time.

- Initialize an empty heap h.
- As each new entry $\mathbf{e}=(k, v)$ is supplied, insert \mathbf{e} into h.
- Each insertion triggers an up-heap bubbling step, which takes $O(\log n)$ time. $\quad[n=0,1,2, \ldots, N-1]$
- There are N insertions.
\therefore Running time is $O(N \cdot \log N)$

Bottom-Up Heap Construction:

List of Entries is Known in Advance

Problem: Build a heap out of N entires, supplied all at once.

- Assume: The resulting heap will be completely filled at all levels. $\Rightarrow N=2^{h+1}-1$ for some height $h \geq 1 \quad[h=(\log (N+1))-1]$
- Perform the following steps called Bottom-Up Heap Construction :

Step 1: Treat the first $\frac{N+1}{2^{1}}$ list entries as heap roots.
$\therefore \frac{N+1}{2^{1}}$ heaps with height 0 and size $2^{1}-1$ constructed.
Step 2: Treat the next $\frac{N+1}{2^{2}}$ list entries as heap roots.
\diamond Each root sets two heaps from Step 1 as its LST and RST.
\diamond Perform down-heap bubbling to restore HOP if necessary.
$\therefore \frac{N+1}{2^{2}}$ heaps, each with height 1 and size $2^{2}-1$, constructed.
Step $h+1$: Treat next $\frac{N+1}{2^{n+1}}=\frac{\left(2^{h+1}-1\right)+1}{2^{h+1}}=1$ list entry as heap root.
\diamond Each root sets two heaps from Step h as its LST and RST.
\diamond Perform down-heap bubbling to restore HOP if necessary.
$\therefore \frac{N+1}{2^{h+1}}=1$ heap, each with height h and size $2^{h+1}-1$, constructed.

Bottom-Up Heap Construction: Example (1.1)

- Build a heap from the following list of 15 keys:
$\langle 16,15,4,12,6,7,23,20,25,9,11,17,5,8,14\rangle$
- The resulting heap has:
- Size N is 15
- Height h is $(\log (15+1))-1=3$
- According to the bottom-up heap construction technique, we will need to perform $\boldsymbol{h}+1=4$ steps, utilizing 4 sublists:

$$
\langle\underbrace{\langle 16,15,4,12,6,7,23,20}_{\frac{15+1}{2^{1}}=8}, \underbrace{25,9,11,17}_{\frac{15+1}{2^{2}}=4}, \underbrace{5,8}_{\frac{15+1}{2^{3}}=2}, \underbrace{14}_{\frac{15+1}{2^{4}}=1}\rangle
$$

21 of 31

Bottom-Up Heap Construction: Example (1.2)ssowns

Bottom-Up Heap Construction: Example (1.3)/ssovos

RT of Bottom-Up Heap Construction

- Intuitively, the majority of the intermediate roots from which we perform down-heap bubbling are of very small height values:
- The first $\frac{n+1}{2}$ 1-node heaps with height 0 require no down-heap bubbling

About 50\% of the list entries processed]

- Next $\frac{n+1}{4}$ 3-node heaps with height 1 require down-heap bubbling.
[Another 25\% of the list entries processed]
- Next $\frac{n+1}{8}$ 7-node heaps with height 2 require down-heap bubbling
[Another 12.5% of the list entries processed]
- Next two $\frac{\mathrm{N}-1}{2}$-node heaps with height $(\mathrm{h}-1)$ require down-heap
- Final one N-node heaps with height h requires down-heap bubbling.
- Running Time of the Bottom-Up Heap Construction takes only $O(n)$

The Heap Sort Algorithm

Sorting Problem

Given a list of \mathbf{n} numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$:
Precondition: NONE
Postcondition: A permutation of the input list $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ sorted in a non-descending order (i.e., $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$)

The Heap Sort algorithm consists of two phases:

1. Construct a heap of size N out of the input array.

- Approach 1: Top-Down "Continuous-Insertions"
$[O(N \cdot \log N)]$
- Approach 2: Bottom-Up Heap Construction

2. Delete N entries from the heap.

- Each deletion takes $\mathbf{O}(\log N)$ time.
- 1st deletion extracts the minimum, 2nd deletion the 2nd minimum, ...
\Rightarrow Extracted minimums from N deletions form a sorted sequence.
\therefore Running time of the Heap Sort algorithm is $\mathbf{O}(N \cdot \boldsymbol{\operatorname { l o g }} N)$
25 of 31

The Heap Sort Algorithm: Exercise

Sort the following array of integers

$$
\langle 16,15,4,12,6,7,23,20,25,9,11,17,5,8,14\rangle
$$

into a non-descending order using the Heap Sort Algorithm . Demonstrate:

1. Both top-down and bottom-up heap constructions in Phase 1
2. Extractions of minimums in Phase 2

Array-Based Representation of a CBT (1)

$$
\operatorname{index}(x)= \begin{cases}0 & \text { if } x \text { is the root } \\ 2 \cdot \operatorname{index}(\operatorname{parent}(x))+1 & \text { if } x \text { is a left child } \\ 2 \cdot \operatorname{index}(\operatorname{parent}(x))+2 & \text { if } x \text { is a right child }\end{cases}
$$

$(4, \mathrm{C})$	$(5, \mathrm{~A})$	$(6, \mathrm{Z})$	$(15, \mathrm{~K})$	$(9, \mathrm{~F})$	$(7, \mathrm{Q})$	$(20, \mathrm{~B})$	$(16, \mathrm{X})$	$(25, \mathrm{~J})$	$(14, \mathrm{E})$	$(12, \mathrm{H})$	$(11, \mathrm{~S})$	$(13, \mathrm{~W})$
0	1	2	3	4	5	6	7	8	9	10	11	12

27 of 31

Array-Based Representation of a CBT (2)

\section*{| $(4, \mathrm{C})$ | $(5, \mathrm{~A})$ | $(6, \mathrm{Z})$ | $(15, \mathrm{~K})$ | $(9, \mathrm{~F})$ | $(7, \mathrm{Q})$ | $(20, \mathrm{~B})$ | $(16, \mathrm{X})$ | $(25, \mathrm{~J})$ | $(14, \mathrm{E})$ | $(12, \mathrm{H})$ | $(11, \mathrm{~S})$ | $(13, \mathrm{~W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |}

- Q1: Where are nodes at Levels $0 \ldots h-1$ stored in the array? Indices 0 .. $\left(2^{h}-2\right) \equiv 0$.. $\left(2^{\left[\log _{2} N\right]}-2\right) \quad$ [e.g., Indices 0 .. $\left.2^{3}-2\right]$
- Q2: Where are nodes at Level h stored in the array?

Indices $2^{h}-1 \ldots(N-1) \equiv 2^{\left\lfloor\log _{2} N\right\rfloor}-1 \ldots(N-1)$
[e.g., Indices 7 .. 12]

- Q3: How do we determine if a non-root node x is a left or right child?

IF index $(x) \% 2==1$ THEN left ELSE right

- Q4: Given a non-root node x, how do we determine the index of x 's parent? IF index $(x) \% 2==1$ THEN $\frac{\text { index }(x)-1}{2}$ ELSE $\frac{\text { index }(x)-2}{2}$

Index (3)

Bottom-up Heap Construction: Example (1.3)
RT of Bottom-up Heap Construction
The Heap Sort Algorithm
The Heap Sort Algorithm: Exercise
Array-Based Representation of a CBT (1)
Array-Based Representation of a CBT (2)

