Balanced Binary Search Trees

EECS2011 N \& Z:
Fundamentals of Data Structures Winter 2022

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- When the Worst-Case RT of a BST Search Occurs
- Height-Balance Property
- Performing Rotations to Restore Tree Balance

Balanced Binary Search Trees: Motivation

- After insertions into a BST, the worst-case RT of a search occurs when the height h is at its maximum: $O(n)$:
- e.g., Entries were inserted in an decreasing order of their keys $\langle 100,75,68,60,50,1\rangle$
\Rightarrow One-path, left-slanted BST
- e.g., Entries were inserted in an increasing order of their keys
$\langle 1,50,60,68,75,100\rangle$
\Rightarrow One-path, right-slanted BST
- e.g., Last entry's key is in-between keys of the previous two entries

$$
\langle 1,100,50,75,60,68\rangle
$$

\Rightarrow One-path, side-alternating BST

- To avoid the worst-case RT (\because a ill-balanced tree), we need to take actions as soon as the tree becomes unbalanced.

Balanced Binary Search Trees: Definition

- Given a node p, the height of the subtree rooted at p is:

$$
\operatorname{height}(p)= \begin{cases}0 & \text { if } p \text { is external } \\ 1+\operatorname{MAX}(\{\operatorname{height}(c) \mid \text { parent }(c)=p\}) & \text { if } p \text { is internal }\end{cases}
$$

- A balanced BST T satisfies the height-balance property :

For every internal node n, heights of n 's child nodes differ ≤ 1.

Q: Is the above tree a balanced BST?
Q: Will the tree remain balanced after inserting 55 ?
Q: Will the tree remain balanced after inserting 63?

Fixing Unbalanced BST: Rotations

A tree rotation is performed:

- When the latest insertion/deletion creates unbalanced nodes, along the ancestor path of the node being inserted/deleted.
- To change the shape of tree, restoring the height-balance property

Q. An in-order traversal on the resulting tree?
A. Still produces a sequence of sorted keys $\quad\left\langle T_{1}, c, T_{2}, b, T_{3}, a, T_{4}\right\rangle$
- After rotating node b to the right:
- Heights of descendants (b, c, T_{1}, T_{2}, T_{3}) and sibling (T_{4}) stay unchanged.
- Height of parent (a) is decreased by 1.
\Rightarrow Balance of node a was restored by the rotation.

After Insertions:
 Trinode Restructuring via Rotation(s)

After inserting a new node n :

- Case 1: Nodes on n's ancestor path remain balanced.
\Rightarrow No rotations needed
- Case 2: At least one of n 's ancestors becomes unbalanced.

1. Get the first/lowest unbalanced node a on n's ancestor path.
2. Get a's child node b in n's ancestor path.
3. Get b's child node c in n's ancestor path.
4. Perform rotation(s) based on the alignment of a, b, and c :

- Slanted the same way \Rightarrow single rotation on the middle node b
- Slanted different ways \Rightarrow double rotations on the lower node c

Trinode Restructuring: Single, Left Rotation

After a left rotation on the middle node b :

BST property maintained?
$\left\langle T_{1}, a, T_{2}, b, T_{3}, c, T_{4}\right\rangle$

Left Rotation

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,95\rangle
$$

- Is the BST now balanced?
- Insert 100 into the BST.
- Is the BST still balanced?
- Perform a left rotation on the appropriate node.
- Is the BST again balanced?

Trinode Restructuring: Single, Right Rotatio ${ }_{\text {Sssonos }}$

After a right rotation on the middle node b :

BST property maintained?
$\left\langle T_{1}, a, T_{2}, b, T_{3}, c, T_{4}\right\rangle$

Right Rotation

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,48\rangle
$$

- Is the BST now balanced?
- Insert 46 into the BST.
- Is the BST still balanced?
- Perform a right rotation on the appropriate node.
- Is the BST again balanced?

Trinode Restructuring: Double, R-L Rotation SSSONDE

Perform a Right Rotation on Node c

Perform a Left Rotation on Node c

After Right-Left Rotations

BST property maintained?

```
\langleT},a,\mp@subsup{T}{2}{},c,\mp@subsup{T}{3}{},b,\mp@subsup{T}{4}{}
```


R-L Rotations

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,82,95\rangle
$$

- Is the BST now balanced?
- Insert 85 into the BST.
- Is the BST still balanced?
- Perform the R-L rotations on the appropriate node.
- Is the BST again balanced?

Trinode Restructuring: Double, L-R Rotation SSSONDE

Perform a Left Rotation on Node c

Perform a Right Rotation on Node c

After Left-Right Rotations

BST property maintained? $\left\langle T_{1}, b, T_{2}, c, T_{3}, a, T_{4}\right\rangle$

L-R Rotations

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,78,32,50,88,48,62\rangle
$$

- Is the BST now balanced?
- Insert 54 into the BST.
- Is the BST still balanced?
- Perform the L-R rotations on the appropriate node.
- Is the BST again balanced?

After Deletions: Continuous Trinode Restructuring

- Recall : Deletion from a BST results in removing a node with zero or one internal child node.
- After deleting an existing node, say its child is n :

Case 1: Nodes on n's ancestor path remain balanced. \Rightarrow No rotations
Case 2: At least one of n 's ancestors becomes unbalanced.

1. Get the first/lowest unbalanced node a on n's ancestor path.
2. Get a's taller child node b.
[b \notin n's ancestor path]
3. Choose b's child node c as follows:

- b 's two child nodes have different heights $\Rightarrow c$ is the taller child
- b 's two child nodes have same height $\Rightarrow a, b, c$ slant the same way

4. Perform rotation(s) based on the alignment of a, b, and c :

- Slanted the same way \Rightarrow single rotation on the middle node b
- Slanted different ways \Rightarrow double rotations on the lower node c
- As n's unbalanced ancestors are found, keep applying Case 2, until Case 1 is satisfied.

$$
[O(h)=O(\log n) \text { rotations }]
$$

Single Trinode Restructuring Step

- Insert the following sequence of nodes into an empty BST:

$$
\langle 44,17,62,32,50,78,48,54,88\rangle
$$

- Is the BST now balanced?
- Delete 32 from the BST.
- Is the BST still balanced?
- Perform a left rotation on the appropriate node.
- Is the BST again balanced?

Multiple Trinode Restructuring Steps

- Insert the following sequence of nodes into an empty BST:

$$
\langle 50,25,10,30,5,15,27,1,75,60,80,55\rangle
$$

- Is the BST now balanced?
- Delete 80 from the BST.
- Is the BST still balanced?
- Perform a right rotation on the appropriate node.
- Is the BST now balanced?
- Perform another right rotation on the appropriate node.
- Is the BST again balanced?

Restoring Balance from Insertions

Before Insertion into T3

After Insertion into T3

After Performing L-R Rotations on Node c: Height of Subtree Being_Fixed Remains h+3

Restoring Balance from Deletions

Before Deletion from T4

After Deletion from T4

After Performing Right Rotation on Node b: Height of Subtree Being_Fixed Reduces its Height by 1!

Restoring Balance: Insertions vs. Deletions

- Each rotation involves only POs of setting parent-child references.
$\Rightarrow O(1)$ running time for each tree rotation
- After each insertion, a trinode restructuring step can restore the balance of the subtree rooted at the first unbalanced node.
$\Rightarrow O(1)$ rotations suffices to restore the balance of tree
- After each deletion, one or more trinode restructuring steps may restore the balance of the subtree rooted at the first unbalanced node.
\Rightarrow May take $O(\log n)$ rotations to restore the balance of tree

Index (1)

Learning Outcomes of this Lecture

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition
Fixing Unbalanced BST: Rotations

After Insertions:
 Trinode Restructuring via Rotation(s)

Trinode Restructuring: Single, Left Rotation
Left Rotation
Trinode Restructuring: Single, Right Rotation

Right Rotation

Trinode Restructuring: Double, R-L Rotations

Index (2)

R-L Rotations
Trinode Restructuring: Double, L-R Rotations
L-R Rotations
After Deletions:
Continuous Trinode Restructuring
Single Trinode Restructuring Step
Multiple Trinode Restructuring Steps
Restoring Balance from Insertions
Restoring Balance from Deletions
Restoring Balance: Insertions vs. Deletions

