
Balanced Binary Search Trees

EECS2011 N & Z:
Fundamentals of Data Structures

Winter 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you understand:
● When the Worst-Case RT of a BST Search Occurs
● Height-Balance Property
● Performing Rotations to Restore Tree Balance

2 of 22

Balanced Binary Search Trees: Motivation

● After insertions into a BST, the worst-case RT of a search
occurs when the height h is at its maximum: O(n) :
○ e.g., Entries were inserted in an decreasing order of their keys

⟨100,75,68,60,50,1⟩
⇒ One-path, left-slanted BST

○ e.g., Entries were inserted in an increasing order of their keys
⟨1,50,60,68,75,100⟩

⇒ One-path, right-slanted BST
○ e.g., Last entry’s key is in-between keys of the previous two entries

⟨1,100,50,75,60,68⟩
⇒ One-path, side-alternating BST

● To avoid the worst-case RT (∵ a ill-balanced tree), we need to
take actions as soon as the tree becomes unbalanced .

3 of 22

Balanced Binary Search Trees: Definition
● Given a node p, the height of the subtree rooted at p is:

height(p) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if p is external
1 +MAX ({ height(c) ∣ parent (c) = p }) if p is internal

● A balanced BST T satisfies the height-balance property :
For every internal node n, heights of n’s child nodes differ ≤ 1.

2

AVL Trees

Binary Search Trees Binary Search Trees – better than “linear” dictionaries; however, the
worst–case performance of find, insert, remove
operations still linear (O(n))

HeightHeight--Balance PropertyBalance Property – for every internal node v of T, the heights
of the children of v can differ at most by 1;
if v has only one (internal node) child, its
height must be 1

44

5617

325 48

51

4

3

2 1

2

11 77

1

AVL Tree AVL Tree – any binary search tree T that satisfies the height-balance
property is said to be an AVL Tree

If an AVL tree has n nodes,
what is the cost of

find, insert, remove ??

Q: Is the above tree a balanced BST ? ✓

Q: Will the tree remain balanced after inserting 55? ×

Q: Will the tree remain balanced after inserting 63? ✓

4 of 22

Fixing Unbalanced BST: Rotations
A tree rotation is performed:
● When the latest insertion/deletion creates unbalanced nodes, along the

ancestor path of the node being inserted/deleted.
● To change the shape of tree, restoring the height-balance property

Rotate Node b

to the Rightc

 T1

b

a

 T2

 T3

 T4

c

 T1

a

 T2 T3 T4

b

h + 1 h

h + 2 h h + 1

h h

h + 3 h + 2

h + 1

h h

h h

Q. An in-order traversal on the resulting tree?
A. Still produces a sequence of sorted keys ⟨T1, c, T2, b, T3, a, T4⟩

○ After rotating node b to the right:
● Heights of descendants (b, c, T1, T2, T3) and sibling (T4) stay unchanged .
● Height of parent (a) is decreased by 1.
⇒ Balance of node a was restored by the rotation.

5 of 22

After Insertions:
Trinode Restructuring via Rotation(s)

After inserting a new node n:
● Case 1: Nodes on n’s ancestor path remain balanced .

⇒ No rotations needed

● Case 2: At least one of n’s ancestors becomes unbalanced .
1. Get the first/lowest unbalanced node a on n’s ancestor path.

2. Get a’s child node b in n’s ancestor path.

3. Get b’s child node c in n’s ancestor path.

4. Perform rotation(s) based on the alignment of a, b, and c:

● Slanted the same way⇒ single rotation on the middle node b

● Slanted different ways⇒ double rotations on the lower node c

6 of 22

Trinode Restructuring: Single, Left Rotation
a

 T1

b

c

 T2

 T3 T4

After a left rotation on the middle node b:

a

 T1

b

c

 T2 T3 T4

BST property maintained? ⟨T1, a, T2, b, T3, c, T4⟩
7 of 22

Left Rotation

● Insert the following sequence of nodes into an empty BST:
⟨44,17,78,32,50,88,95⟩

● Is the BST now balanced?
● Insert 100 into the BST.
● Is the BST still balanced?
● Perform a left rotation on the appropriate node.
● Is the BST again balanced?

8 of 22

Trinode Restructuring: Single, Right Rotation

c

 T1

b

a

 T2

 T3

 T4

After a right rotation on the middle node b:

c

 T1

b

a

 T2 T3 T4

BST property maintained? ⟨T1, a, T2, b, T3, c, T4⟩
9 of 22

Right Rotation

● Insert the following sequence of nodes into an empty BST:
⟨44,17,78,32,50,88,48⟩

● Is the BST now balanced?
● Insert 46 into the BST.
● Is the BST still balanced?
● Perform a right rotation on the appropriate node.
● Is the BST again balanced?

10 of 22

Trinode Restructuring: Double, R-L Rotations

a

 T1
c

b

 T2 T3

 T4

a

 T1

c

b

 T2

 T3 T4

a

 T1

c

b

 T2 T3 T4

Perform a Right Rotation on Node c Perform a Left Rotation on Node c After Right-Left Rotations

BST property maintained? ⟨T1, a, T2, c, T3, b, T4⟩

11 of 22

R-L Rotations

● Insert the following sequence of nodes into an empty BST:
⟨44,17,78,32,50,88,82,95⟩

● Is the BST now balanced?
● Insert 85 into the BST.
● Is the BST still balanced?
● Perform the R-L rotations on the appropriate node.
● Is the BST again balanced?

12 of 22

Trinode Restructuring: Double, L-R Rotations

b

 T1

c

a

 T2 T3

 T4 b

 T1

c

a

 T2

 T3

 T4
b

 T1

c

a

 T2 T3 T4

Perform a Left Rotation on Node c Perform a Right Rotation on Node c After Left-Right Rotations

BST property maintained? ⟨T1, b, T2, c, T3, a, T4⟩

13 of 22

L-R Rotations

● Insert the following sequence of nodes into an empty BST:
⟨44,17,78,32,50,88,48,62⟩

● Is the BST now balanced?
● Insert 54 into the BST.
● Is the BST still balanced?
● Perform the L-R rotations on the appropriate node.
● Is the BST again balanced?

14 of 22

After Deletions:
Continuous Trinode Restructuring
● Recall : Deletion from a BST results in

removing a node with zero or one internal child node.
● After deleting an existing node, say its child is n:

Case 1: Nodes on n’s ancestor path remain balanced . ⇒ No rotations
Case 2: At least one of n’s ancestors becomes unbalanced .
1. Get the first/lowest unbalanced node a on n’s ancestor path.
2. Get a’s taller child node b . [b /∈ n’s ancestor path]
3. Choose b’s child node c as follows:

● b’s two child nodes have different heights⇒ c is the taller child
● b’s two child nodes have same height⇒ a, b, c slant the same way

4. Perform rotation(s) based on the alignment of a, b, and c:
● Slanted the same way⇒ single rotation on the middle node b

● Slanted different ways⇒ double rotations on the lower node c
● As n’s unbalanced ancestors are found, keep applying Case 2,

until Case 1 is satisfied. [O(h) = O(log n) rotations]
15 of 22

Single Trinode Restructuring Step

● Insert the following sequence of nodes into an empty BST:
⟨44,17,62,32,50,78,48,54,88⟩

● Is the BST now balanced?
● Delete 32 from the BST.
● Is the BST still balanced?
● Perform a left rotation on the appropriate node.
● Is the BST again balanced?

16 of 22

Multiple Trinode Restructuring Steps

● Insert the following sequence of nodes into an empty BST:
⟨50,25,10,30,5,15,27,1,75,60,80,55⟩

● Is the BST now balanced?
● Delete 80 from the BST.
● Is the BST still balanced?
● Perform a right rotation on the appropriate node.
● Is the BST now balanced?
● Perform another right rotation on the appropriate node.
● Is the BST again balanced?

17 of 22

Restoring Balance from Insertions

b

 T1

c

a

 T2 T3

 T4h + 1

h h

h + 1

h + 2

h + 3

h + 1

Before Insertion into T3

b

 T1

c

a

 T2 T3

 T4h + 1

h h + 1

h + 2

h + 3

h + 4

h + 1

After Insertion into T3

b

 T1

c

a

 T2 T3 T4

h + 1 h

h + 2

h + 1 h + 1

h + 2

h + 3

After Performing L-R Rotations on Node c: Height of Subtree Being Fixed Remains h + 3

18 of 22

Restoring Balance from Deletions

c

 T1

b

a

 T2

 T3

 T4

Before Deletion from T4

h + 3

h + 2

h + 1

h h

h

h + 1

c

 T1

b

a

 T2

 T3

 T4

After Deletion from T4

h + 3

h + 2

h + 1

h h

h

h

c

 T1

b

a

 T2 T3 T4

After Performing Right Rotation on Node b: Height of Subtree Being Fixed Reduces its Height by 1!

h + 2

h + 1 h + 1

h h h h

19 of 22

Restoring Balance: Insertions vs. Deletions

● Each rotation involves only POs of setting parent-child references.

⇒ O(1) running time for each tree rotation
● After each insertion, a trinode restructuring step can restore the

balance of the subtree rooted at the first unbalanced node.

⇒ O(1) rotations suffices to restore the balance of tree

● After each deletion, one or more trinode restructuring steps may restore
the balance of the subtree rooted at the first unbalanced node.

⇒ May take O(log n) rotations to restore the balance of tree

20 of 22

Index (1)

Learning Outcomes of this Lecture

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

Fixing Unbalanced BST: Rotations
After Insertions:
Trinode Restructuring via Rotation(s)

Trinode Restructuring: Single, Left Rotation

Left Rotation

Trinode Restructuring: Single, Right Rotation

Right Rotation

Trinode Restructuring: Double, R-L Rotations
21 of 22

Index (2)
R-L Rotations

Trinode Restructuring: Double, L-R Rotations

L-R Rotations
After Deletions:
Continuous Trinode Restructuring

Single Trinode Restructuring Step

Multiple Trinode Restructuring Steps

Restoring Balance from Insertions

Restoring Balance from Deletions

Restoring Balance: Insertions vs. Deletions

22 of 22

	Learning Outcomes of this Lecture
	Balanced Binary Search Trees: Motivation
	Balanced Binary Search Trees: Definition
	Fixing Unbalanced BST: Rotations
	After Insertions: Trinode Restructuring via Rotation(s)
	Trinode Restructuring: Single, Left Rotation
	Left Rotation
	Trinode Restructuring: Single, Right Rotation
	Right Rotation
	Trinode Restructuring: Double, R-L Rotations
	R-L Rotations
	Trinode Restructuring: Double, L-R Rotations
	L-R Rotations
	After Deletions: Continuous Trinode Restructuring
	Single Trinode Restructuring Step
	Multiple Trinode Restructuring Steps
	Restoring Balance from Insertions
	Restoring Balance from Deletions
	Restoring Balance: Insertions vs. Deletions

