General Trees and Binary Trees

EECS2011 N \& Z:
Fundamentals of Data Structures Winter 2022

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
- Terminologies: General Trees vs. Binary Trees
- Implementation of a Generic Tree
- Mathematical Properties of Binary Trees
- Tree Traversals

General Trees

- A linear data structure is a sequence, where stored objects can be related via notions of "predecessor" and "successor".
- e.g., arrays
- e.g., Singly-Linked Lists (SLLs)
- e.g., Doubly-Linked Lists (DLLs)
- The Tree ADT is a non-linear collection of nodes/positions.
- Each node stores some data object.
- Nodes in a tree are organized into levels: some nodes are "above" others, and some are "below" others.
- Think of a tree forming a hierarchy among the stored nodes.
- Terminology of the Tree ADT borrows that of family trees:
- e.g., root
- e.g., parents, siblings, children
- e.g., ancestors, descendants

General Trees: Terminology (1)

- top element of the tree
[root of tree]
e.g., root of the above family tree: David
- the node immediately above node n
e.g., parent of Vanessa: Elsa
- all nodes immediately below node n
[children of n]
e.g., children of Elsa: Shirley, Vanessa, and Peter
e.g., children of Ernesto: \varnothing

General Trees: Terminology (2)

- Union of n, n's parent, n's grand parent, ..., root [n's ancestors] e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David e.g., ancestors of David: David
- Union of n, n's children, n's grand children, ...
[n's descendants]
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree
- By the above definitions, a node is both its ancestor and descendant.

General Trees: Terminology (3)

- all nodes with the same parent as n's
[siblings of node n]
e.g., siblings of Vanessa: Shirley and Peter
- the tree formed by descendants of n
- nodes with no children
[subtree rooted at n]
[external nodes (leaves)]
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter
- nodes with at least one child
[internal nodes]
e.g., non-leaves of the above tree: David, Chris, Elsa

General Trees：Terminology（4）

－a pair of parent and child nodes ［ an edge of tree ］
e．g．，（David，Chris），（Chris，Elsa），（Elsa，Peter）are three edges
－a sequence of nodes where any two consecutive nodes form an edge ［ a path of tree ］
e．g．，〈 David，Chris，Elsa，Peter 〉 is a path
e．g．，Elsa＇s ancestor path：〈 Elsa，Chris，David 〉

General Trees: Terminology (5)

- number of edges from the root to node n
[depth of n] alternatively: number of n 's ancestors of n minus one e.g., depth of David (root): 0
e.g., depth of Shirley, Vanessa, and Peter: 3
- maximum depth among all nodes
[height of tree]
e.g., Shirley, Vanessa, and Peter have the maximum depth

General Trees: Example Node Depths

General Tree: Definition

A tree T is a set of nodes satisfying parent-child properties:

1. If T is empty, then it does not contain any nodes.
2. If T is nonempty, then:

- T contains at least its root (a special node with no parent).
- Each node \underline{n} of T that is not the root has a unique parent node \underline{w}.
- Given two nodes \underline{n} and \underline{w}, if \underline{w} is the parent of \underline{n}, then symmetrically, \underline{n} is one of \underline{w} 's children.

General Tree: Important Characteristics

There is a single, unique path from the root to any particular node in the same tree.

legal tree organization

illegal tree organization (nontrees)

General Trees: Ordered Trees

A tree is ordered if there is a meaningful linear order among the children of each internal node.

General Trees: Unordered Trees

A tree is unordered if the order among the children of each internal node does not matter.

Implementation: Generic Tree Nodes (1)

```
public class TreeNode<E> {
    private E element; / * data object */
    private TreeNode<E> parent; /* unique parent node */
    private TreeNode<E>[] children; /* list of child nodes */
    private final int MAX_NUM_CHILDREN = 10; /* fixed max */
    private int noc; /* number of child nodes */
    public TreeNode(E element) {
        this.element = element;
        this.parent = null;
        this.children = (TreeNode<E> [])
            Array.newInstance(this.getClass(), MAX_NUM_CHILDREN);
        this.nOC = 0;
    }
...
}
```

Replacing L13 with the following results in a ClassCastException:

```
this.children = (TreeNode<E>[]) new Object[MAX_NUM_CHILDREN];
```


Implementation: Generic Tree Nodes (2)

```
public class TreeNode<E> {
    private E element; /* data object */
    private TreeNode<E> parent; /* unique parent node */
    private TreeNode<E>[] children; /* list of child nodes */
    private final int MAX_NUM_CHILDREN = 10; /* fixed max */
    private int noc; /* number of child nodes */
    public E getElement() { ... }
    public TreeNode<E> getParent() { ... }
    public TreeNode<E>[] getChildren() { ... }
    public void setElement(E element) { ... }
    public void setParent(TreeNode<E> parent) { ... }
    public void addChild(TreeNode<E> child) { ... }
    public void removeChildAt(int i) { ... }
}
```

Exercise: Implement void removeChildAt (int i).

Testing: Connected Tree Nodes

Constructing a tree is similar to constructing a SLL:

```
@Test
public void test_general_trees_construction() {
    TreeNode<String> agnarr = new TreeNode<>("Agnarr");
    TreeNode<String> elsa = new TreeNode<>("Elsa");
    TreeNode<String> anna = new TreeNode<>("Anna");
    agnarr.addChild(elsa);
    agnarr.addChild(anna);
    elsa.setParent(agnarr);
    anna.setParent(agnarr);
    assertNull(agnarr.getParent());
    assertTrue(agnarr == elsa.getParent());
    assertTrue(agnarr == anna.getParent());
    assertTrue(agnarr.getChildren().length == 2);
    assertTrue(agnarr.getChildren()[0] == elsa);
    assertTrue(agnarr.getChildren()[1] == anna);
}
```


Problem: Computing a Node's Depth

- Given a node n, its depth is defined as:
- If n is the root, then n 's depth is 0 .
- Otherwise, n's depth is the depth of n's parent plus one.
- Assuming under a generic class TreeUtilities<E>:

```
public int depth(TreeNode<E> n) {
    if(n.getParent() == null) {
        return 0;
    }
    else {
        return 1 + depth(n.getParent());
    }
}
```


Testing: Computing a Node's Depth


```
@Test
public void test_general_trees_depths() {
    ... /* constructing a tree as shown above */
    TreeUtilities<String> u = new TreeUtilities<>();
    assertEquals(0, u.depth(david));
    assertEquals(1, u.depth(ernesto));
    assertEquals(1, u.depth(chris));
    assertEquals(2, u.depth(elsa));
    assertEquals(2, u.depth(anna));
    assertEquals(3, u.depth(shirley));
    assertEquals(3, u.depth(vanessa));
    assertEquals(3, u.depth(peter));
}
```


Unfolding: Computing a Node's Depth

depth(vanessa)
$=$ \{vanessa.getParent() == elsa \}
1 + depth(elsa)
$=$ \{ elsa.getParent() == chris \}
$1+1+$ depth(chris)
$=$ \{ chris.getParent() == david \}
$1+1+1+$ depth(David)
$=$ \{ David is the root \}
$1+1+1+0$

Problem: Computing a Tree's Height

- Given node n, the height of subtree rooted at n is defined as:
- If n is a leaf, then the height of subtree rooted at n is 0 .
- Otherwise, the height of subtree rooted at n is one plus the maximum height of all subtrees rooted at n 's children.
- Assuming under a generic class TreeUtilities<E>:

```
public int height(TreeNode<E> n) {
    TreeNode<E>[] children = n.getChildren();
    if(children.length == 0) { return 0; }
    else {
        int max = 0;
        for(int i = 0; i < children.length; i ++) {
            int h = 1 + height(children[i]);
            max = h > max ? h : max;
        }
        return max;
    }
}
```


Testing: Computing a Tree's Height


```
@Test
public void test_general_trees_heights() {
    ... /* constructing a tree as shown above */
    TreeUtilities<String> u = new TreeUtilities<>();
    /* internal nodes */
    assertEquals(3, u.height(david));
    assertEquals(2, u.height(chris));
    assertEquals(1, u.height(elsa));
    /* external nodes */
    assertEquals(0, u.height(ernesto));
    assertEquals(0, u.height(anna));
    assertEquals(0, u.height(shirley));
    assertEquals(0, u.height(vanessa));
    assertEquals(0, u.height(peter));
}
```


Unfolding: Computing a Tree's Height

height(subtree rooted at chris)
$=\{$ chris is not a leaf $\}$
$\operatorname{MAX}\binom{1+$ height(subtree rooted at elsa), }{$1+$ height(subtree rooted at anna) }
$=\{$ elsa is not a leaf, anna is a leaf $\}$
$\operatorname{MAX}\binom{1+\operatorname{MAX}\left(\begin{array}{l}1+\text { height(subtree rooted at shirley), } \\ 1+\text { height(subtree rooted at vanessa), } \\ 1+\text { height(subtree rooted at peter) }\end{array}\right.}{1+0}$,
$=$ \{shirley, vanessa, and peter are all leaves \}

$$
\operatorname{MAX}\binom{1+\operatorname{MAX}\left(\begin{array}{l}
1+0 \\
1+0 \\
1+0
\end{array}\right)}{1+0}
$$

Exercises on General Trees

- Implement and test the following recursive algorithm:

```
public TreeNode<E>[] ancestors(TreeNode<E> n)
```

which returns the list of ancestors of a given node n.

- Implement and test the following recursive algorithm:

```
public TreeNode<E>[] descendants(TreeNode<E> n)
```

which returns the list of descendants of a given node n.

Binary Trees (BTs): Definitions

A binary tree (BT) is an ordered tree satisfying the following:

1. Each node has at most two (≤ 2) children.
2. Each child node is labeled as either a left child or a right child.
3. A left child precedes a right child.

A binary tree (BT) is either:

- An empty tree; or
- A nonempty tree with a root node r which has:
- a left subtree rooted at its left child, if any
- a right subtree rooted at its right child, if any

BT Terminology: LST vs. RST

For an internal node (with at least one child):

- Subtree rooted at its left child, if any, is called left subtree.
- Subtree rooted at its right child, if any, is called right subtree. e.g.,

Node A has:

- a left subtree rooted at node B
- a right subtree rooted at node \underline{C}

BT Terminology: Depths, Levels

The set of nodes with the same depth d are said to be at the same leveld.

Level

Background: Sum of Geometric Sequence

- Given a geometric sequence of n terms, where the initial term is a and the common factor is r, the sum of all its terms is:

$$
\sum_{k=0}^{n-1}\left(a \cdot r^{k}\right)=a \cdot r^{0}+a \cdot r^{1}+a \cdot r^{2}+\cdots+a \cdot r^{n-1}=a \cdot\left(\frac{r^{n}-1}{r-1}\right)
$$

[See here to see how the formula is derived.]

- For the purpose of binary trees, maximum numbers of nodes at all levels form a geometric sequence :
- $a=1$
- $r=2$
[≤ 2 children for each internal node]
- e.g., Max total \# of nodes at levels 0 to $4=1+2+4+8+16=1 \cdot\left(\frac{2^{5}-1}{2-1}\right)=31$

BT Properties: Max \# Nodes at Levels

Given a binary tree with height h :

- At each level:
- Maximum number of nodes at Level 0:
$2^{0}=1$
- Maximum number of nodes at Level 1:
$2^{1}=2$
- Maximum number of nodes at Level 2:
$2^{2}=4$
- Maximum number of nodes at Level h :
- Summing all levels:

Maximum total number of nodes:

$$
\underbrace{2^{0}+2^{1}+2^{2}+\cdots+2^{h}}_{h+1 \text { terms }}=1 \cdot\left(\frac{2^{h+1}-1}{2-1}\right)=2^{h+1}-1
$$

BT Terminology: Complete BTs

A binary tree with height h is considered as complete if:

- Nodes with depth $\leq h-2$ has two children.
- Nodes with depth h - 1 may have zero, one, or two child nodes.
- Children of nodes with depth $h-1$ are filled from left to right.

Q1: Minimum \# of nodes of a complete BT?
$\left(2^{h}-1\right)+1=2^{h}$
Q2: Maximum \# of nodes of a complete BT?
$2^{h+1}-1$

BT Terminology: Full BTs

A binary tree with height h is considered as full if:
Each node with depth $\leq h-1$ has two child nodes.
That is, all leaves are with the same depth h.

Q1: Minimum \# of nodes of a complete BT? $\quad 2^{h+1}-1$
Q2: Maximum \# of nodes of a complete BT? $\quad 2^{h+1}-1$

BT Properties: Bounding \# of Nodes

Given a binary tree with height h, the number of nodes n is bounded as:

$$
h+1 \leq n \leq 2^{h+1}-1
$$

- Shape of BT with minimum \# of nodes?

A "one-path" tree (each internal node has exactly one child)

- Shape of BT with maximum \# of nodes?

A tree completely filled at each level

BT Properties: Bounding Height of Tree

Given a binary tree with n nodes, the height h is bounded as:

$$
\log (n+1)-1 \leq h \leq n-1
$$

- Shape of BT with minimum height?

A tree completely filled at each level

$$
\begin{array}{ll}
& n \\
\Longleftrightarrow n+1 & =2^{h+1}-1 \\
\Longleftrightarrow \log (n+1) & =h+1 \\
\Longleftrightarrow \log (n+1)-1 & =h
\end{array}
$$

- Shape of BT with maximum height?

A "one-path" tree (each internal node has exactly one child)

BT Properties: Bounding \# of Ext. Nodes

Given a binary tree with height h, the number of external nodes n_{E} is bounded as:

$$
1 \leq n_{E} \leq 2^{h}
$$

- Shape of BT with minimum \# of external nodes?

A tree with only one node (i.e., the root)

- Shape of BT with maximum \# of external nodes?

A tree whose bottom level (with depth h) is completely filled

BT Properties: Bounding \# of Int. Nodes

Given a binary tree with height h, the number of internal nodes n_{l} is bounded as:

$$
h \leq n_{l} \leq 2^{h}-1
$$

- Shape of BT with minimum \# of internal nodes?
- Number of nodes in a "one-path" tree ($h+1$) minus one
- That is, the "deepest" leaf node excluded
- Shape of BT with maximum \# of internal nodes?
- A tree whose $\leq h-1$ levels are all completely filled
- That is: $\underbrace{2^{0}+2^{1}+\cdots+2^{h-1}}_{n \text { terms }}=2^{h}-1$

BT Terminology: Proper BT

A binary tree is proper if each internal node has two children.

BT Properties: \#s of Ext. and Int. Nodes

Given a binary tree that is:

- nonempty and proper
- with n_{l} internal nodes and n_{E} external nodes

We can then expect that: $n_{E}=n_{I}+1$
Proof by mathematical induction :

- Base Case:

A proper BT with only the root (an external node): $\mathrm{n}_{\mathrm{E}}=1$ and $\mathrm{n}_{\mathrm{I}}=0$.

- Inductive Case:
- Assume a proper BT with n nodes $(n>1)$ with n_{I} internal nodes and n_{E} external nodes such that $\mathrm{n}_{\mathrm{E}}=\mathrm{n}_{\mathrm{I}}+1$.
- Only one way to create a larger BT (with $n+2$ nodes) that is still proper (with $\mathrm{n}_{\mathrm{E}}^{\prime}$ external nodes and n_{1}^{\prime} internal nodes):
Convert an external node into an internal node.

$$
\mathbf{n}_{\mathbf{E}}^{\prime}=\left(n_{E}-1\right)+2=n_{E}+1 \wedge \mathbf{n}_{1}^{\prime}=n_{l}+1 \Rightarrow \mathbf{n}_{\mathbf{E}}^{\prime}=\mathbf{n}_{\mathbf{E}}^{\prime}+1
$$

Binary Trees: Application (1)

A decision tree is a proper binary tree used to to express the decision-making process:

- Each internal node denotes a decision point: yes or no.
- Each external node denotes the consequence of a decision.

Binary Trees: Application (2)

An infix arithmetic expression can be represented using a binary tree:

- Each internal node denotes an operator (unary or binary).
- Each external node denotes an operand (i.e., a number).

- To evaluate the expression that is represented by a binary tree, certain traversal over the entire tree is required.

Tree Traversal Algorithms: Definition

- A traversal of a tree T systematically visits all T 's nodes.
- Visiting each node may be associated with an action: e.g.,
- Print the node element.
- Determine if the node element satisfies certain property (e.g., positive, matching a key).
- Accumulate the node element values for some global result.

Tree Traversal Algorithms: Common Types

Three common traversal orders:

- Preorder: Visit parent, then visit child subtrees.

```
preorder (n)
    visit and act on position n
    for child c: children(n) { preorder (C) }
```

- Postorder: Visit child subtrees, then visit parent.

```
postorder (n)
    for child c: children(n) { postorder (C) }
    visit and act on position n
```

- Inorder (for BT): Visit left subtree, then parent, then right subtree.

```
inorder (n)
if (n has a left child lC) { inorder (lC) }
visit and act on position n
if (n has a right child rC) { inorder (rC) }
```


Tree Traversal Algorithms: Preorder

Preorder: Visit parent, then visit child subtrees.

```
preorder (n)
    visit and act on position n
    for child c: children(n) { preorder (C) }
```


Tree Traversal Algorithms: Postorder

Postorder: Visit child subtrees, then visit parent.

```
postorder (n)
    for child c: children(n) { postorder (C) }
    visit and act on position n
```


Tree Traversal Algorithms: Inorder

Inorder (for BT): Visit left subtree, then parent, then right subtree.

```
inorder (n)
    if (n has a left child lC) { inorder (/C) }
    visit and act on position n
    if ( }n\mathrm{ has a right child rC) { inorder (rC) }
```


Index (1)

Learning Outcomes of this Lecture
General Trees
General Trees: Terminology (1)
General Trees: Terminology (2)
General Trees: Terminology (3)
General Trees: Terminology (4)
General Trees: Terminology (5)
General Trees: Example Node Depths
General Tree: Definition
General Tree: Important Characteristics
General Trees: Ordered Trees

Index (2)

General Trees: Unordered Trees
Implementation: Generic Tree Nodes (1)
Implementation: Generic Tree Nodes (2)
Testing: Connected Tree Nodes
Problem: Computing a Node's Depth
Testing: Computing a Node's Depth
Unfolding: Computing a Node's Depth
Problem: Computing a Tree's Height
Testing: Computing a Tree's Height
Unfolding: Computing a Tree's Height
Exercises on General Trees

Index (3)

Binary Trees (BTs): Definitions

BT Terminology: LST vs. RST
BT Terminology: Depths, Levels
Background: Sum of Geometric Sequence
BT Properties: Max \# Nodes at Levels
BT Terminology: Complete BTs
BT Terminology: Full BTs
BT Properties: Bounding \# of Nodes
BT Properties: Bounding Height of Tree
BT Properties: Bounding \# of Ext. Nodes
BT Properties: Bounding \# of Int. Nodes

Index (4)

BT Terminology: Proper BT
BT Properties: \#s of Ext. and Int. Nodes
Binary Trees: Application (1)
Binary Trees: Application (2)
Tree Traversal Algorithms: Definition
Tree Traversal Algorithms: Common Types
Tree Traversal Algorithms: Preorder
Tree Traversal Algorithms: Postorder
Tree Traversal Algorithms: Inorder

