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Learning Outcomes of this Lecture

This module is designed to help you understand:

e Linar DS (e.g., arrays, LLs) vs. Non-Linear DS (e.g., trees)
Terminologies: General Trees vs. Binary Trees
Implementation of a Generic Tree

Mathematical Properties of Binary Trees
Tree Traversals
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General Trees LASSONDE

¢ A linear data structure is a sequence, where stored objects
can be related via notions of “predecessor” and “successor”.
o e.g., arrays
o e.g., Singly-Linked Lists (SLLs)
o e.g., Doubly-Linked Lists (DLLs)

e The Tree ADT is a non-linear collection of nodes/positions.

o Each node stores some data object.

o Nodes in a tree are organized into levels: some nodes are
“above” others, and some are “below” others.

o Think of a tree forming a hierarchy among the stored nodes.

e Terminology of the Tree ADT borrows that of family trees:
o e.g., root

o e.g., parents, siblings, children
o e.g., ancestors, descendants



General Trees: Terminology (1) LASSONDE

Ernesto

Shirley Vanessa

o fop element of the tree [ root of tree |

e.g., root of the above family tree: David

o the node immediately above node n [ parent of n]
e.g., parent of Vanessa: Elsa
o all nodes immediately below node n [ children of n]

e.g., children of Elsa: Shirley, Vanessa, and Peter
e.g., children of Ernesto: @

_



General Trees: Terminology (2) LASSONDE

Ernesto

Shirley Vanessa

o Union of n, n's parent, n's grand parent, ..., root [ n’s ancestors |
e.g., ancestors of Vanessa: Vanessa, Elsa, Chris, and David
e.g., ancestors of David: David

o Union of n, n’s children, n's grand children, ... [ n’s descendants ]
e.g., descendants of Vanessa: Vanessa
e.g., descendants of David: the entire family tree

o By the above definitions, a node is both its ancestor and descendant.

_



General Trees: Terminology (3) LASSONDE

Ernesto

Shirley Vanessa

o all nodes with the same parent as n’s [ siblings of node n ']
e.g., siblings of Vanessa: Shirley and Peter

o the tree formed by descendants of n [ subtree rooted at n ]

o nodes with no children [ external nodes (leaves) |
e.g., leaves of the above tree: Ernesto, Anna, Shirley, Vanessa, Peter

o nodes with at least one child [ internal nodes ]
e.g., non-leaves of the above tree: David, Chris, Elsa



General Trees: Terminology (4) LASSONDE

Ernesto

Shirley Vanessa

o a pair of parent and child nodes [ an edge of tree ]
e.g., (David, Chris), (Chris, Elsa), (Elsa, Peter) are three edges
o a sequence of nodes where any two consecutive nodes form an edge
[ a path of tree ]
e.g., ( David, Chris, Elsa, Peter ) is a path
e.g., Elsa’s ancestor path: ( Elsa, Chris, David )



General Trees: Terminology (5) LASSONDE

Ernesto

Shirley

Vanessa

o number of edges from the root to node n [ depth of n]
alternatively: number of n’s ancestors of n minus one
e.g., depth of David (root): 0
e.g., depth of Shirley, Vanessa, and Peter: 3

o maximum depth among all nodes [ height of tree ]
e.g., Shirley, Vanessa, and Peter have the maximum depth



General Trees: Example Node Depths S
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General Tree: Definition LASSONDE

A tree T is a set of nodes satisfying parent-child properties:

1. If T is empty, then it does not contain any nodes.

2. If T is nonempty, then:
e T contains at least its root (a special node with no parent).
e Each node nof T that is not the root has a unique parent node w.

¢ Given two nodes nand w,
if w is the parent of n, then symmetrically, n is one of w’s children.

niorasz



General Tree: Important Characteristics

et ae o

There is a single, unique path from the root to any particular

node in the same tree.

legal tree organization

illegal tree organization (nontrees)
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General Trees: Ordered Trees

Atree is ordered if there is a meaningful linear order among
the children of each internal node.

2ot/



General Trees: Unordered Trees

LASSONDE

A tree is unordered if the order among the children of each
internal node does not matter.

cs016/

grades

homeworks/

programs/

/user/rt/courses/

3otz

TRa.

papers/

cs252/

projects/

grades

demos/

\

buylow

sellhigh

market




Implementation: Generic Tree Nodes (1) LASSONDE

1 |public class TreeNode<E> {

2 private E element; /x data

3 private TreeNode<E> parent;

4 private TreeNode<E>[] children; /x* */
5

6 private final int MAX NUM_ CHILDREN = 10; /+ fixed max =/
7 private int noc; /x* f | n */

8

9 public TreeNode (E element) {

10 this.element = element;

11 this.parent = null;

12 this.children = (TreeNode<E>[])

13 Array.newInstance (this.getClass (), MAX _NUM_CHILDREN) ;
14 this.noc = 0;

15 }

16

17 |}

Replacing L13 with the following results in a ClassCastException:

this.children = (TreeNode<E>[]) new Object [MAX NUM_CHILDREN] ;



Implementation: Generic Tree Nodes (2) LASSONDE

public class TreeNode<E> {
private E element; /+ data
private TreeNode<E> parent;
private TreeNode<E>[] children;

private final int MAX NUM_CHILDREN = 10; /+ fixed max */
private int noc; /+* r

of child nodes */

public E getElement() { ... }
public TreeNode<E> getParent() { ... }
public TreeNode<E>[] getChildren() { ... }

public void setElement (E element) { ... }

public void setParent (TreeNode<E> parent) { ... }
public void addChild(TreeNode<E> child) { ... }
public void removeChildAt (int i) { ... }

Exercise: Implement void removeChildAt (int 1i).
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Testing: Connected Tree Nodes

Constructing a tree is similar to constructing a SLL :

@Test

public void test_general_ trees_construction() |
TreeNode<String> agnarr = new TreeNode<> ("Agnarr");
TreeNode<String> elsa = new TreeNode<>("Elsa");
TreeNode<String> anna = new TreeNode<> ("Anna");

agnarr.addChild(elsa);

agnarr.addChild(anna) ;

elsa.setParent (agnarr) ;
)

anna.setParent (agnarr

’

assertNull (agnarr.getParent());

assertTrue (agnarr == elsa.getParent());
assertTrue (agnarr == anna.getParent());
assertTrue (agnarr.getChildren() .length == 2);
assertTrue (agnarr.getChildren() [0] == elsa);
assertTrue (agnarr.getChildren() [1] == anna);

}

b oras
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Problem: Computing a Node’s Depth

e Given a node n, its depth is defined as:

o If nis the root, then n's depth is 0.
o Otherwise, n's depth is the depth of n's parent plus one.

e Assuming under a generic class TreeUtilities<E>:

public int depth (TreeNode<E> n) {
if (n.getParent() == null) {
return 0;
}
else {
return 1 + depth(n.getParent());
}
}

ONO O~ WN =

ot/



Testing: Computing a Node’s Depth

LASS

ONDE

Ernesto

@Test
assertEquals (0,

(
assertEquals (
assertEquals (
assertEquals (
assertEquals (
assertEquals (
assertEquals (

public void test_general trees_depths() {

.depth(shirley));
.depth(vanessa))
.depth (peter)) ;

TreeUtilities<String> u = new TreeUtilities<>();
u.

depth(david)) ;

(
u.depth(ernesto));
u.depth(chris));
u.depth(elsa));
u. (
u (
u (
u (

depth(anna)) ;

i
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Unfolding: Computing a Node’s Depth LASSONDE

9 or a7

Shirley

depth(vanessa)

{ vanessa.getParent () == elsa }
1+ depth(elsa)

{ elsa.getParent () == chris }
1+1+depth(chris)

{ chris.getParent () == david }
1+1+1+depth(David)

{ bavid is the root }

1+1+1+0

3
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Problem: Computing a Tree’s Height LASSONDE

e Given node n, the height of subtree rooted at n is defined as:
o If nis a leaf, then the height of subtree rooted at nis 0.
o Otherwise, the height of subtree rooted at n is one plus the
maximum height of all subtrees rooted at n’s children.

e Assuming under a generic class TreeUtilities<E>:

1 |public int height (TreeNode<E> n) {

2 TreeNode<E>[] children = n.getChildren();
3 if (children.length == 0) { return 0; }

4 else {

5 int max = 0;

6 for(int i = 0; i < children.length; 1 ++) {
7 int h = 1 + height(children[i]);

8 max = h > max 2 h : max;

9 }

10 return max;

11 }

12 |}

vl oras



Testing: Computing a Tree’s Height

LASSONDE

Shirley

@Test

public void test_ general trees helghtsH

TreeUtllltles<Str1ng> u = new TreeUt111t1es<>()

internal noc
assertEquals (3
assertEquals (2,
assertEquals (1

'+ external nodes

assertEquals (0
assertEquals (0
assertEquals (0,
assertEquals (0
assertEquals (0

[SEE SR S < o}

.height (david));
.height (chris));
.height (elsa));

.height (ernesto)) ;
.height (anna));
.height (shirley))
.height (vanessa)) ;
.height (peter));




Unfolding: Computing a Tree’s Height LASSONDE

height(subtree rooted at chris)
= { chris is not a leaf }
( 1+ height(subtree rooted at elsa), )
MAX ;
1+ height(subtree rooted at anna)
elsa is not a leaf, anna is a leaf }
1+ height(subtree rooted at shirley),
1+MAX 1+height(subtree rooted at vanessa), )
1+ height(subtree rooted at peter)
140
ley, vanessa, and peter are all leaves }
1+0,
1 +MAX 1+0, ),
1 +0

v oral
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Exercises on General Trees

¢ Implement and test the following recursive algorithm:

public TreeNode<E>[] ancestors (TreeNode<E> n)

which returns the list of ancestors of a given node n.
e Implement and test the following recursive algorithm:

public TreeNode<E>[] descendants (TreeNode<E> n)

which returns the list of descendants of a given node n.

v3ioras
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Blnal‘y Trees (BTS): Definitions LASSONDE

A binary tree (BT) is an ordered tree satisfying the following:

1. Each node has at most two (< 2) children.
2. Each child node is labeled as either a left child or a right child.

3. A left child precedes a right child.

A binary tree (BT) is either:

o An empty tree; or
o A nonempty tree with a root node r which has:

e a left subtree rooted at its left child, if any
e a right subtree rooted at its right child, if any

vaoras
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BT Terminology: LST vs. RST

For an internal node (with at least one child):
e Subtree rooted at its left child, if any, is called left subitree.
e Subtree rooted at its right child, if any, is called right subtree.

e.g.,

Node A has:

o a left subtree rooted at node B

o a right subtree rooted at node C
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BT Terminology: Depths, Levels LASSONDE

The set of nodes with the same depth d are said to be at the
same level d .

)

)

Vb ot/
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Background: Sum of Geometric Sequence |.assono:

e Given a geometric sequence of nterms, where the initial term
is a and the common factor is r, the sum of all its terms is:

nt -1
> (ar)=a-rP+ar'+a-rf+..+ar'-a
k=0 r-1

[ See here to see how the formula is derived. ]
e For the purpose of binary trees, maximum numbers of nodes
at all levels form a geometric sequence :

o ga=1 [ the root at Level 0]

or=2 [ < 2 children for each internal node ]
5

o e.g., Max total # of nodes at levels 0to4=1+2+4+8+16=1 (%) =31

vLoral
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BT Properties: Max # Nodes at Levels

Given a binary tree with height h:
e At each level:

o Maximum number of nodes at Level 0: 20 - 1
o Maximum number of nodes at Level T: 21=2
o Maximum number of nodes at Level 2: 22-4
o Maximum number of nodes at Level h: oh

e Summing all levels:

Maximum total number of nodes:

2h+1_1

P L, Ly L I
+2' +2°+---+ (2_1

):2h+1_1

h + 1 terms

v ot/



BT Terminology: Complete BTs

et ae o

A binary tree with height his considered as complete if:
¢ Nodes with depth < h -2 has two children.

¢ Nodes with depth h-1 may have zero, one, or two child nodes.
e Children of nodes with depth h -1 are filled from left to right.

Q1: Minimum # of nodes of a complete BT? (20 —-1)+1 =2"

Q2: Maximum # of nodes of a complete BT? 21 1

v9 ot/



BT Terminology: Full BTs

et ae o

A binary tree with height his considered as full if:

Each node with depth < h- 1 has two child nodes.

That is, all leaves are with the same depth h.

Q1: Minimum # of nodes of a complete BT? 21 — 1
Q2: Maximum # of nodes of a complete BT? 21 — 1

30 otz
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BT Properties: Bounding # of Nodes

Given a binary tree with height h, the number of nodes n is
bounded as:
h+1<n<2mt o

e Shape of BT with minimum # of nodes?

A “one-path” tree (each internal node has exactly one child)
e Shape of BT with maximum # of nodes?

A tree completely filled at each level

31 oras
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BT Properties: Bounding Height of Tree [ eono:

Given a binary tree with n nodes, the height h is bounded as:

log(n+1)-1<h<n-1

e Shape of BT with minimum height?
A tree completely filled at each level

n = 214
<~ n+1 = 2h
<~ log(n+1) = h+1
«~— Jlog(n+1)-1 = h

e Shape of BT with maximum height?
A “one-path” tree (each internal node has exactly one child)

3o ot/
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BT Properties: Bounding # of Ext. Nodes  |.assonoe

Given a binary tree with height h, the number of external
nodes ng is bounded as:

1<ng<2’

e Shape of BT with minimum # of external nodes?
A tree with only one node (i.e., the root)
e Shape of BT with maximum # of external nodes?
A tree whose bottom level (with depth h) is completely filled

330147
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BT Properties: Bounding # of Int. Nodes

Given a binary tree with height h, the number of internal
nodes n; is bounded as:

h<n <21

e Shape of BT with minimum # of internal nodes?
o Number of nodes in a “one-path” tree (h+ 1) minus one
o That is, the “deepest” leaf node excluded

e Shape of BT with maximum # of internal nodes?

o Atree whose < h-1 levels are all completely filled
o Thatis: 20+ 2" +...+ 201 =2h _1

n terms

34 o147
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BT Terminology: Proper BT LASSONDE

A binary tree is proper if each internal node has two children.

35 o147



BT Properties: #s of Ext. and Int. Nodes

et ae o

Given a binary tree that is:

o nonempty and proper
o with n, internal nodes and ng external nodes

We can then expect that:

Proof by mathematical induction :

e Base Case:

A proper BT with only the root (an external node): ng =1 and n; = 0.

¢ Inductive Case:

o Assume a proper BT with n nodes (n > 1) with n, internal nodes and ng

external nodes such that ng = n; + 1.

o Only one way to create a larger BT (with n+ 2 nodes) that is still proper
(with ng external nodes and n{ internal nodes):

Convert an external node into an internal node.
ne=(ng-1)+2=ng+1Aan=n+1=ng=ng+1
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Binary Trees: Appllcatlon (1) LASSONDE

A decision tree is a proper binary tree used to to express the
decision-making process:

o Each internal node denotes a decision point: yes or no.

o Each external node denotes the consequence of a decision.

Are you nervous?

Yes No
o Will you need to access most of the
Savings account. money within the next 5 years?
Yes \ No
M arket fund Are you willing to accept risks in
oney market fund. exchange for higher expected returns?
Yes \No
N Diversified portfolio with stocks,
Stock portfolio. bonds, and short-term instruments.
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Binary Trees: Appllcatlon (2) LASSONDE

An infix arithmetic expression can be represented using a
binary tree:

o Each internal node denotes an operator (unary or binary).
o Each external node denotes an operand (i.e., a number).

o To evaluate the expression that is represented by a binary tree,
certain traversal over the entire tree is required.

35 or a7
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Tree Traversal Algorithms: Definition LASSONDE

e A traversal of a tree T systematically visits all T’s nodes.
» Visiting each node may be associated with an action: e.g.,
o Print the node element.
o Determine if the node element satisfies certain property
(e.g., positive, matching a key).
o Accumulate the node element values for some global result.

39 o1/
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Tree Traversal Algorithms: Common Types |issonoe

Three common traversal orders:
o Preorder: Visit parent, then visit child subtrees.

preorder (n)
visit and act on position n

for child ¢: children(n) { preorder (C) }
o Postorder: Visit child subtrees, then visit parent.

postorder (n)
for child ¢: children(n) { postorder (C) }

visit and act on position n
o Inorder (for BT): Visit left subtree, then parent, then right subtree.

inorder (n)
if (n has a left child Ic) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

afl ot 4.4



Tree Traversal Algorithms: Preorder

LASSONDE

Preorder: Visit parent, then visit child subtrees.
preorder (n)

visit and act on position n

for child C: children(n) {

preorder (C) }

@ References

dl otdz




Tree Traversal Algorithms: Postorder

Postorder: Visit child subtrees, then visit parent.

postorder (n)
for child ¢: children(n) { postorder (C) }

visit and act on position n




Tree Traversal Algorithms: Inorder LASSONDE

Inorder (for BT): Visit left subtree, then parent, then right subtree.

inorder (n)
if (n has a left child Ic) { inorder (lc) }
visit and act on position n

if (n has a right child rc) { inorder (rc) }

a3 ot ds
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