Recursion

EECS2011 N & Z: Fundamentals of Data Structures Winter 2022

CHEN-WEI WANG

Background Study: Basic Recursion

- It is assumed that, in EECS2030, you learned about the basics of recursion in Java:
 - What makes a method recursive?
 - How to trace recursion using a call stack?
 - How to define and use recursive helper methods on arrays?
- If needed, review the above assumed basics from the relevant parts of EECS2030 (https://www.eecs.yorku.ca/~jackie/ teaching/lectures/index.html#EECS2030_F21):
 - ∘ Parts A C, Lecture 8, Week 12

Tips.

- Skim the slides: watch lecture videos if needing explanations.
- Recursion lab from EECS2030-F19: here [Solution: here]
- Ask questions related to the assumed basics of recursion!
- Assuming that you know the basics of recursion in Java, we will proceed with more advanced examples.

Extra Challenging Recursion Problems

1. groupSum

Problem Specification: *here*

Solution Walkthrough: here

Notes: here [pp. 7–10] & here

2. parenBit

Problem Specification: here

Solution Walkthrough: here

Notes: here [pp. 4–5]

3. climb

Problem Specification: here

Solution Walkthrough: here & here

Notes: here [pp. 7–8] & here [p. 4]

4. climbStrategies

Problem Specification: here

Solution Walkthrough: here

Notes: here [pp. 5 – 6]

3 of 36

Solution: *here*

Solution: here

Solution: *here*

Solution: here

Learning Outcomes of this Lecture

This module is designed to help you:

- Know about the resources on recursion basics.
- Learn about the more intermediate recursive algorithms:
 - o Binary Search
 - Merge Sort
 - Quick Sort
 - Tower of Hanoi
- Explore extra, *challenging* recursive problems.

LASSONDE SCHOOL OF ENGINEERING

Recursion: Binary Search (1)

Searching Problem

Given a numerical key \underline{k} and an array \underline{a} of \underline{n} numbers:

Precondition: Input array \underline{a} **sorted** in a <u>non-descending</u> order i.e., $a[0] \le a[1] \le ... \le a[n-1]$

Postcondition: Return whether or not \underline{k} exists in the input array \underline{a} .

- Q. RT of a search on an unsorted array?
 - A. O(n) (despite being <u>iterative</u> or <u>recursive</u>)
- A Recursive Solution

Base Case: Empty array \longrightarrow *false*.

Recursive Case: Array of size $\geq 1 \longrightarrow$

- \circ Compare the *middle* element of array <u>a</u> against key <u>k</u>.
 - All elements to the <u>left</u> of *middle* are $\leq k$
 - All elements to the <u>right</u> of *middle* are $\geq k$
- \circ If the *middle* element *is* equal to key $\underline{k} \longrightarrow true$
- If the *middle* element *is not* equal to key \underline{k} :
 - If k < middle, recursively search key \underline{k} on the left half.
 - If k > middle, recursively search key k = middle on the right half.

Recursion: Binary Search (2)

```
boolean binarySearch(int[] sorted, int key) {
 return binarySearchH(sorted, 0, sorted.length - 1, key);
boolean binarySearchH(int[] sorted, int from, int to, int key) {
 if (from > to) { /* base case 1: empty range */
  return false:
 else if(from == to) { /* base case 2: range of one element */
  return sorted[from] == kev: }
 else {
   int middle = (from + to) / 2:
   int middleValue = sorted[middle];
   if(kev < middleValue) {</pre>
    return binarySearchH(sorted, from, middle - 1, key);
   else if (kev > middleValue) {
    return binarySearchH(sorted, middle + 1, to, kev);
   else { return true; }
```


Running Time: Binary Search (1)

We define T(n) as the *running time function* of a *binary search*, where n is the size of the input array.

$$\begin{cases} T(0) = 1 \\ T(1) = 1 \\ T(n) = T(\frac{n}{2}) + 1 \text{ where } n \ge 2 \end{cases}$$

To solve this recurrence relation, we study the pattern of T(n) and observe how it reaches the **base case(s)**.

Without loss of generality, assume $n = 2^i$ for some $i \ge 0$.

$$T(n) = T(\frac{n}{2}) + 1$$

$$= (T(\frac{n}{4}) + 1) + \underbrace{1}_{1 \text{ time}}$$

$$= ((T(\frac{n}{8}) + 1) + \underbrace{1}_{2 \text{ times}}$$

$$= \dots$$

$$= (((\underbrace{1}_{2\log n}) = T(1)) + \underbrace{1}_{\log n \text{ times}}$$

 \therefore T(n) is $O(\log n)$

Recursion: Merge Sort

Sorting Problem

Given a list of **n** numbers $\langle a_1, a_2, \ldots, a_n \rangle$:

Precondition: NONE

Postcondition: A permutation of the input list $(a'_1, a'_2, ..., a'_n)$

sorted in a non-descending order (i.e., $a'_1 \le a'_2 \le ... \le a'_n$)

A Recursive Algorithm

<u>Base</u> Case 1: Empty list → Automatically sorted.

Base Case 2: List of size $1 \longrightarrow$ Automatically sorted.

Recursive Case: List of size $\geq 2 \longrightarrow$

- Split the list into two (unsorted) halves: L and R.
- 2. Recursively sort L and R, resulting in: sortedL and sortedR.
- 3. Return the *merge* of *sortedL* and *sortedR*.

Recursion: Merge Sort in Java (1)

```
/* Assumption: L and R are both already sorted. */
private List<Integer> merge(List<Integer> L, List<Integer> R) {
 List<Integer> merge = new ArrayList<>();
 if(L.isEmpty() | | R.isEmpty()) { merge.addAll(L); merge.addAll(R);
 else -
  int i = 0;
   int i = 0;
  while(i < L.size() && j < R.size()) {
    if(L.qet(i) <= R.qet(j)) { merge.add(L.qet(i)); i ++; }
    else { merge.add(R.get(j)); j ++; }
  /* If i >= L.size(), then this for loop is skipped. */
   for (int k = i; k < L.size(); k ++) { merge.add(L.get(k)); }
   /* If j >= R.size(), then this for loop is skipped. */
   for (int k = j; k < R.size(); k ++) { merge.add(R.get(k)); }
 return merge;
```

RT(merge)?

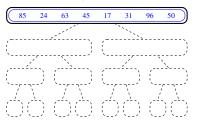
[O(L.size() + R.size())]

Recursion: Merge Sort in Java (2)

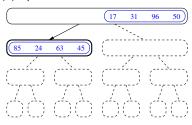
```
public List<Integer> sort(List<Integer> list) {
 List<Integer> sortedList;
 if(list.size() == 0) { sortedList = new ArravList<>(); }
 else if(list.size() == 1) {
   sortedList = new ArrayList<>();
   sortedList.add(list.get(0)):
 else -
   int middle = list.size() / 2;
   List<Integer> left = list.subList(0, middle);
   List<Integer> right = list.subList(middle, list.size());
  List<Integer> sortedLeft = sort(left);
   List<Integer> sortedRight = sort(right);
   sortedList = merge (sortedLeft, sortedRight);
 return sortedList:
```

LASSONDE SCHOOL OF ENGINEERIN

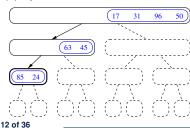
Recursion: Merge Sort Example (1)



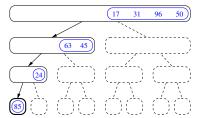
(2) Split and recur on L of size 4



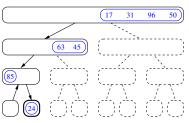
(3) Split and recur on L of size 2



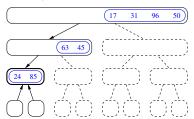
(4) Split and recur on L of size 1, return



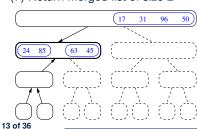
Recursion: Merge Sort Example (2)



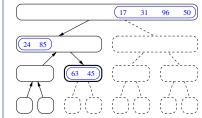
(6) Merge sorted L and R of sizes 1



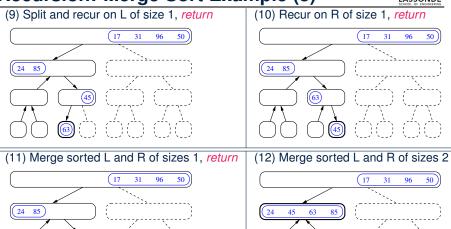
(7) Return merged list of size 2



(8) Recur on R of size 2

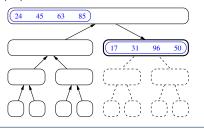


Recursion: Merge Sort Example (3)

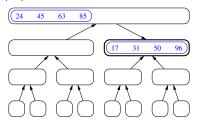


14 of 36

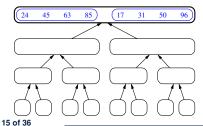
Recursion: Merge Sort Example (4)



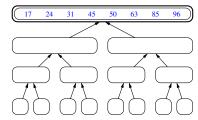
(14) Return a sorted list of size 4



(15) Merge sorted L and R of sizes 4



(16) Return a sorted list of size 8

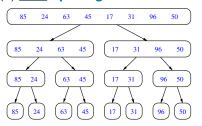


Recursion: Merge Sort Example (5)

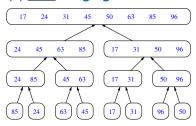
LASSONDE SCHOOL OF ENGINEERING

Let's visualize the two critical phases of merge sort:

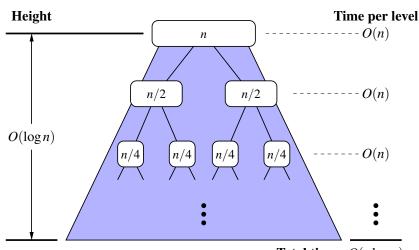
(1) After **Splitting Unsorted** Lists



(2) After *Merging Sorted* Lists



Recursion: Merge Sort Running Time (1)



Total time: $O(n \log n)$

Recursion: Merge Sort Running Time (2)

- <u>Base</u> Case 1: Empty list \longrightarrow Automatically sorted. [O(1)]
- <u>Base</u> Case 2: List of size 1 → Automatically sorted. [*O(1)*]
- **Recursive Case**: List of size ≥ 2 →
 - 1. Split the list into two (unsorted) halves: L and R; [O(1)]
 - 2. Recursively sort L and R, resulting in: sortedL and sortedR
 - $\underline{\mathbf{Q}}$. # times to **split** until \mathbf{L} and \mathbf{R} have size 0 or 1?
 - <u>A</u>. [*O*(*log n*)]
 - 3. Return the merge of sortedL and sortedR. [O(n)]
 - Running Time of Merge Sort

```
\times (RT each RC) \times (# RCs)
```

- = $(RT \text{ merging } sortedL \text{ and } sortedR) \times (\# \text{ splits until bases})$
- $= O(n \cdot \log n)$

Recursion: Merge Sort Running Time (3)

We define T(n) as the *running time function* of a *merge sort*, where n is the size of the input array.

$$\begin{cases} T(0) = 1 \\ T(1) = 1 \\ T(n) = 2 \cdot T(\frac{n}{2}) + n \text{ where } n \ge 2 \end{cases}$$

To solve this recurrence relation, we study the pattern of T(n) and observe how it reaches the **base case(s)**.

Recursion: Merge Sort Running Time (4)

Without loss of generality, assume $n = 2^i$ for some $i \ge 0$.

$$T(n) = 2 \times T(\frac{n}{2}) + n$$

$$= 2 \times (2 \times T(\frac{n}{4}) + \frac{n}{2}) + n$$

$$= 2 \times (2 \times T(\frac{n}{4}) + \frac{n}{2}) + n$$

$$= 2 \times (2 \times (2 \times T(\frac{n}{8}) + \frac{n}{4}) + \frac{n}{2}) + n$$

$$= 3 \text{ terms}$$

$$= \dots$$

$$= 2 \times (2 \times (2 \times \dots \times (2 \times T(\frac{n}{2^{\log n}}) + \frac{n}{2^{(\log n) - 1}}) + \dots + \frac{n}{4}) + \frac{n}{2}) + n$$

$$= 2 \times (2 \times (2 \times \dots \times (2 \times T(\frac{n}{2^{\log n}}) + \frac{n}{2^{(\log n) - 1}}) + \dots + \frac{n}{4}) + \frac{n}{2}) + n$$

$$= 2 \cdot \frac{n}{2} + 2^2 \cdot \frac{n}{4} + \dots + 2^{(\log n) - 1} \cdot \frac{n}{2^{(\log n) - 1}} + \frac{n}{2^{\log n} \cdot \frac{n}{2^{\log n}}}$$

$$= n + n + \dots + n + n$$

$$= n + n + \dots + n + n$$

 \therefore **T**(n) is **O**(n · log n)

loa n terms

Recursion: Quick Sort

Sorting Problem

Given a list of **n** numbers $\langle a_1, a_2, \ldots, a_n \rangle$:

Precondition: NONE

Postcondition: A permutation of the input list $(a'_1, a'_2, ..., a'_n)$

sorted in a <u>non-descending</u> order (i.e., $a'_1 \le a'_2 \le ... \le a'_n$)

A Recursive Algorithm

<u>Base</u> Case 1: Empty list → Automatically sorted.

Base Case 2: List of size $1 \longrightarrow$ Automatically sorted.

Recursive Case: List of size $\geq 2 \longrightarrow$

1. Choose a *pivot* element.

[ideally the *median*]

- 2. Split the list into two (unsorted) halves: L and R, s.t.: All elements in L are less than or equal to (≤) the pivot. All elements in R are greater than (>) the pivot.
- 3. Recursively sort L and R: sortedL and sortedR;
- **4.** Return the *concatenation* of: *sortedL* + *pivot* + *sortedR*.

Recursion: Quick Sort in Java (1)

```
List<Integer> allLessThanOrEqualTo(int pivotIndex, List<Integer> list)
 List<Integer> sublist = new ArrayList<>():
 int pivotValue = list.get(pivotIndex);
 for(int i = 0; i < list.size(); i ++) {</pre>
  int v = list.get(i);
   if(i != pivotIndex && v <= pivotValue) { sublist.add(v); }</pre>
 return sublist;
List<Integer> allLargerThan(int pivotIndex, List<Integer> list) {
 List<Integer> sublist = new ArrayList<>();
 int pivotValue = list.get(pivotIndex);
 for(int i = 0; i < list.size(); i ++) {</pre>
   int v = list.qet(i);
   if(i != pivotIndex && v > pivotValue) { sublist.add(v); }
 return sublist;
```

```
RT(allLessThanOrEqualTo)? RT(allLargerThan)?
```

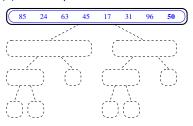
[*O(n)*] [*O(n)*]

Recursion: Quick Sort in Java (2)

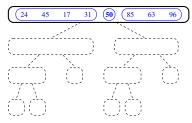
```
public List<Integer> sort(List<Integer> list) {
 List<Integer> sortedList;
 if(list.size() == 0) { sortedList = new ArravList<>(); }
 else if(list.size() == 1) {
   sortedList = new ArrayList<>(); sortedList.add(list.get(0)); }
 else {
   int pivotIndex = list.size() - 1;
   int pivotValue = list.get(pivotIndex);
   List<Integer> left = allLessThanOrEqualTo (pivotIndex, list);
   List<Integer> right = allLargerThan (pivotIndex, list);
   List<Integer> sortedLeft = sort(left);
   List<Integer> sortedRight = sort(right);
   sortedList = new ArrayList<>();
   sortedList.addAll(sortedLeft):
   sortedList.add(pivotValue);
   sortedList.addAll(sortedRight);
 return sortedList:
```

Recursion: Quick Sort Example (1)

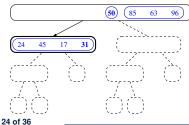
(1) Choose pivot 50 from list of size 8



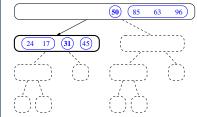
(2) Split w.r.t. the chosen pivot 50



(3) Recur on L of size 4, choose pivot 31

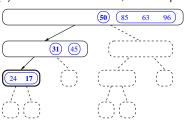


(4) Split w.r.t. the chosen pivot 31

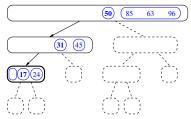


Recursion: Quick Sort Example (2)

(5) Recur on L of size 2, choose pivot 17

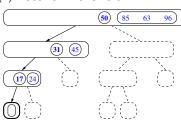


(6) Split w.r.t. the chosen pivot 17

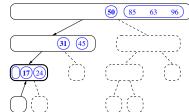


(7) Recur on L of size 0

25 of 36

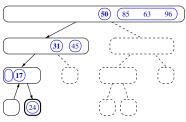


(8) Return empty list

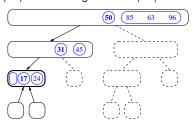


LASSO

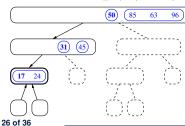
Recursion: Quick Sort Example (3)



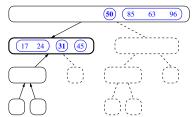
(10) Return singleton list (24)



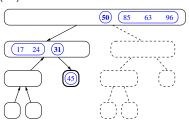
(11) Concatenate $\langle \rangle$, $\langle 17 \rangle$, and $\langle 24 \rangle$



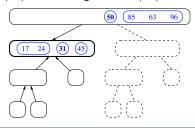
(12) Return concatenated list of size 2



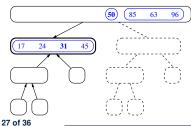
Recursion: Quick Sort Example (4)



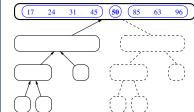
(14) Return singleton list (45)



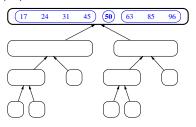
(15) Concatenate $\langle 17, 24 \rangle$, $\langle 31 \rangle$, and $\langle 45 \rangle$



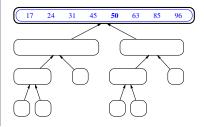
(16) Return concatenated list of size 4



Recursion: Quick Sort Example (5)



(16) Return sorted list of size 3

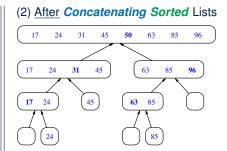


(17) Concatenate $\langle 17, 24, 31, 45 \rangle$, $\langle 50 \rangle$, and $\langle 63, 85, 96 \rangle$, then *return*

Recursion: Quick Sort Example (6)

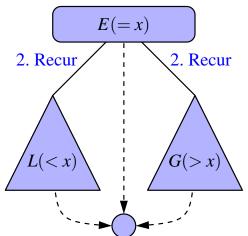
Let's visualize the two critical phases of quick sort:

(1) After Splitting Unsorted Lists 85 24 63 45 17 31 96 50 24 45 17 31 85 63 96 24 17 45 85 63



Recursion: Quick Sort Running Time (1)

1. Split using pivot *x*



Recursion: Quick Sort Running Time (2)

- Base Case 1: Empty list → Automatically sorted. [O(1)]
 Base Case 2: List of size 1 → Automatically sorted. [O(1)]
 Recursive Case: List of size ≥ 2 →

 Choose a pivot element (e.g., rightmost element)
 Split the list into two (unsorted) halves: L and R, s.t.:
 - All elements in L are less than or equal to (\leq) the **pivot**. [O(n)]
 All elements in R are greater than (>) the **pivot**. [O(n)]
 - 3. Recursively sort L and R: sortedL and sortedR;
 - Q. # times to split until L and R have size 0 or 1?
 - A. O(log n) [if pivots chosen are close to median values]
 - 4. Return the *concatenation* of: *sortedL* + *pivot* + *sortedR*. [*O*(1)]

Running Time of Quick Sort

- = $(\mathbf{RT} \text{ each RC})$ × $(\# \mathbf{RC}s)$
- = $(RT \text{ splitting into } L \text{ and } R) \times (\# \text{ splits until bases})$
- $= O(n \cdot \log n)$

LASSONDE SCHOOL OF ENGINEERING

Recursion: Quick Sort Running Time (3)

- We define *T(n)* as the *running time function* of a *quick sort*, where *n* is the size of the input array.
- Worst Case
 - o If the pivot is s.t. the two sub-arrays are "unbalanced" in sizes:
 - e.g., rightmost element in a reverse-sorted array

("unbalanced" splits/partitions: 0 vs. n – 1 elements)

$$\begin{cases} T(0) &= 1 \\ T(1) &= 1 \\ T(n) &= T(n-1) + n \text{ where } n \ge 2 \end{cases}$$

As <u>efficient</u> as <u>Selection/Insertion</u> Sorts: O(n²)

[EXERCISE]

• Best Case

If the pivot is s.t. it is close to the *median* value:

$$\begin{cases} T(0) &= 1 \\ T(1) &= 1 \\ T(n) &= 2 \cdot T(\frac{n}{2}) + n \text{ where } n \ge 2 \end{cases}$$

- As efficient as Merge Sort: O(n · log n)
- Even with partitions such as $\frac{n}{10}$ vs. $\frac{9 \cdot n}{10}$ elements, RT remains $O(n \cdot log n)$.

Beyond this lecture ...

Notes on Recursion:

```
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
```

 The <u>best</u> approach to learning about recursion is via a functional programming language:

Haskell Tutorial: https://www.haskell.org/tutorial/

Background Study: Basic Recursion

Extra Challenging Recursion Problems

Learning Outcomes of this Lecture

Recursion: Binary Search (1)

Recursion: Binary Search (2)

Running Time: Binary Search (1)

Running Time: Binary Search (2)

Recursion: Merge Sort

Recursion: Merge Sort in Java (1)

Recursion: Merge Sort in Java (2)

Recursion: Merge Sort Example (1)

34 of 36

Index (2)

Recursion: Merge Sort Example (2)

Recursion: Merge Sort Example (3)

Recursion: Merge Sort Example (4)

Recursion: Merge Sort Example (5)

Recursion: Merge Sort Running Time (1)

Recursion: Merge Sort Running Time (2)

Recursion: Merge Sort Running Time (3)

Recursion: Merge Sort Running Time (4)

Recursion: Quick Sort

Recursion: Quick Sort in Java (1)

Recursion: Quick Sort in Java (2)

Index (3)

Recursion: Quick Sort Example (1)

Recursion: Quick Sort Example (2)

Recursion: Quick Sort Example (3)

Recursion: Quick Sort Example (4)

Recursion: Quick Sort Example (5)

Recursion: Quick Sort Example (6)

Recursion: Quick Sort Running Time (1)

Recursion: Quick Sort Running Time (2)

Recursion: Quick Sort Running Time (3)

Beyond this lecture ...