Abstract Data Types (ADTs), Stacks, Queues

EECS2011 N & Z:
Fundamentals of Data Structures
' Winter 2022

E
Y CHEN-WEI WANG

LASSONDE

ooooooooooooooooo

Learning Outcomes of this Lecture

This module is designed to help you learn about:
e The notion of Abstract Data Types (ADTs)
The obligations of an ADT’s supplier

The benefits of an ADT’s client

Criterion of Modularity , Modular Design

ADTs : Stack vs. Queue
Implementing Stack and Queue in Java
e Applications of Stack

[interface, classes]

Background Study: Interfaces in Java

LASSONDE

ooooooooooooooooo

e |tis assumed that, in EECS2030, you learned about the basics of
Java interfaces:

o How to declare an interface
o How to create a class implementing an interface
o How polymorphism and dynamic binding work

¢ If needed, review the above assumed basics from the relevant parts
of EECS2030 (https://www.eecs.yorku.ca/~jackie/
teaching/lectures/index.html#EECS2030_F21):

o Parts B1 — B3, Lecture 6, Week 10
Tips.
o Skim the |slides: watch lecture videos if needing explanations.
o Ask questions related to the assumed basics of interfaces!

¢ Assuming that know the basics of Java interfaces, we will
implement and use generic Stack and Queue.

Terminology: Contract, Client, Supplier

LASSONDE

ooooooooooooooooo

e A supplier implements/provides a service (e.g., microwave).

e A client uses a service provided by some supplier.
o The client is required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).
o If instructions are followed, the client would that the

service does what is guaranteed (e.g., a lunch box is heated).
o The client does not care how the supplier implements it.

o What are the benefits and obligations of the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service

e There is a contract between two parties, violated if:
o The instructions are not followed. [Client’s fault]

o_Instructions followed, but service not satisfactory. [Supplier’s fault]

|
Client, Supplier, Contract in OOP (1) ‘%

ooooooooooooooooo

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

T 1
‘class MicrowaveUser { ‘
| public static void main(...) { |
‘ Microwave m = new Microwave () ;‘
‘ Object obj = ; ‘
‘ m.power (); m.lock(); ‘
| m. heat (obj) ; |
[|

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call [MicrowaveUser]
o Supplier: type of context object (or call target) m [Microwave]

Client, Supplier, Contract in OOP (2) ‘%

ooooooooooooooooo

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

&é&

/ % 9 «/1}

|
|
|
|
|

class MicrowaveUser {
public static void main(...) { ‘
Microwave m = new Microwave () ;‘
Object obj = [222]; \
m.power(); m.lock(); ‘
m. heat (obj) ; |
b \

e The contract is honoured if:

’ Right before the method call ‘:

o State of m is as assumed: m.on==true and m. locked==ture
e The input argument ob 7 is valid (i.e., not explosive).

’ Right after the method call ‘: ob 7 is properly heated.
e If any of these fails, there is a contract violation.

e m.onOrm.lockedis false

e obj is an explosive

A fault from the client is identified
e Method executed but ob 5 not properly heated = Microwave'’s fault

6 of 58

= MicrowaveUser’s fault.
= MicrowaveUser’s fault.
= Method call will not start.

Modularity (1): Childhood Activity LASSONDE

ooooooooooooooooo

Modularity (2): Daily Construction LASSONDE

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.orglandhttps://www.wish.com

ooooooooooooooooo

(INTERFAGE) SPEGIFICATION ||

(ASSEMBLY) ARCHITECTURE

Source: https://usermanual .wiki/

LASSONDE

ooooooooooooooooo

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUSs).

SuperlO
Rear Fan DIMM DDR2 Chip 24-pin ATX

Power Connector
Floppy Connector
IDE Connector (x1)

Chasis Fan
Connector

@—V Clock_In

Addr_0| Connector Memory Slots (x2)
CPU Fan CPU Socket N
Connector (LGATTS) g
-Bi 4-pin
- }\?:I: . B ATX Connector
PIO_1 ress Bus
Switch_1 S '
ResetWDT \ ‘
Control Reset_In reeer) \ -
Data_0| g 1/O Panel 1
-
_—

SATA
;. Connectors (x4)

W Panel Header
USB Headers
Southbridge
(without heatsink)

8-Bit Connectors
Data Bus)
Northbridge Chipset
CMOS Battery
55 PCI Slots (x2)

Front Audio
Header
Integrated HD-Audio
codec chip

Serial {—» Recy Data_7|

Integrated Ethernet
Port |<e—|xmit Read chi

PCI Express x16
Write| Control Slot
ChipSelect 0— [Lines
_[—{end ChipSelect 1f—p-

Power Supply —|Pwr o
PCI Express x1
Slof

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

T Sources: |www . embeddedlinux.org.cnandhttps://en.wikipedia.org
o

LASSONDE

ooooooooooooooooo

Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.

(* DECLARATION *)
Fommmm = + (* Function block body in FBD language *)
| LIMITS_ ‘ HIGH_ALARM
| ALARM e
| HYSTERESIS
REAL-- |H QH | --BOOL S XINL o) P on
REAL--|X o|--BooL. || s wz| | |
e [B XIN2
REAL--|L QL | --BOOL +} ! }
REAL-- | EPS | [— |
[P T 1 |EPS |+
a o~ e S e | >=1 |
FUNCTION_BLOCK LIMITS_ALARM EPS —-| / |--| | |--@
VAR_INPUT \ 2.0 -] | | LOW_ALARM - |
H REAL; (+ High limit) I | | [[—
) HEPSI2 | NC(No change)) | +---+ w3| | HYSTERESIS |
) herd
;e GHEOEASLES L ,,,,,,,,,,,‘,,,,} } —————— [XINL Q| -mtmmmmmmmees or
QL=0(FALSE)| === | x1N2
Ligpg] | e
Lgps2t) NCNochange) | ff T |EpS
e e I O
QL=1(TRUE)
END_FUNCTION_BLOCK ™E

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.

ITERATION_CURSOR [G]*

SORTED_ADT [K, V]*

ure - model
del: SEQ [KV_PAIR[K,V]]

SORTED MAP.
N LDESION K.V
5 =

Design Principle: Modularity

e Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.
2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
e The UNIX principle: Each command does one thing and does it well.
o In objected-oriented design (OOD), each class serves as a module.
Conquer original problem by assembling sub-solutions.
¢ In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.
modular design satisfies the criterion of modularity and is:
Maintainable: fix issues by changing the relevant modules only.
Extensible: introduce new functionalities by adding new modules.
Reusable: a module may be used in different compositions

posite of modularity: A superman module doing everything.

1 d

[]
o >

o

=
N
I?:O o

Abstract Data Types (ADTs) LASSONDE Java API Approximates ADTs (2)

e Given a problem, decompose its solution into modules .
E set(int index, E element)

° EaCh mOdUle implements an abstract data type (A DT) : Essrl:zisn:he element at the specified position in this list with the specified element (optional

o filters out irrelevant details

o contains a list of declared data and well-specified operations

ADT E set(int index,
E element)
Interface ((Replaces the olement at the specified position in this list with the specified eloment (optional operation).)
Data o L reauest. P
Structure remove() T A index - index of the element to replace
find() element - element to be stored at the specified position
Returns:

. Supp”er,s Obliqaﬁons: ::Z::ament previously at the specified position

o mglement a” Operatlons UnsupportedOperationException - if the set operation is not supported by this list

. " ClassCastException - if the class of the specified element prevents it from being added to this list

o Choose the rlght data StrUCture [eg’ arrays VS‘ SLL VS DLL] NullPuinterEx:eptmn - if the specified el:ment is null andpthis list does not p:rmn null elements

[e) The |nterna| deta”s of an |mp|emented ADT Should be hidden IllegalArgumentException - if some property of the specified element prevents it from being added to this list
° Client,s BenefitS' (IndexﬂutOfEuundsExcEptmn - if the index is out of range (index < © || index >= size()))

o Correct output . . .

o Efficient per:formance Methods described in a natural language can be ambiguous.

Java API Approximates ADTs (1) LASSONDE Building ADTs for Reusability

e ADTs are reusable software components that are common for
solving many real-world problems.
‘E - the type of elements in this list' eg, StaCkS, QueueS, L|StS, Tab|eS, TreeS, Gl’aphs
e erablocts e An ADT , once thoroughly tested, can be reused by:
All Known Implementing Classes: o Clients of Applications
:gi;l::izls_‘i)i:éd/:?:zrag:ziz?ecéi:&ist, ArrayList, AttributeList, CopyOnWriteArraylList, LinkedList, RoleList, o Supp,iers Of Other ADTS
e As a supplier, you are obliged to:
pubLic interface List<> o Implement standard ADTs [~ lego building bricks]
- o) o) Note. Recall the basic data structures: arrays vs. SLLs vs. DLLs
An ordered collection (also known as a sequence) JThe user of this interface has precise control over where in the list each element is N . . .
H"I'h_l—rr—lmsene ~The user can access elements by Thelr Integer index (position in the list), and search for elements in the list. o Design algorithms using standard ADTs [»~ lego houses, ships]
e For each standard ADT , you should know its interface :
It is useful to have: o Stored data
» A generic collection class where the homogeneous type of o For each operation manipulating the stored data
elements are parameterized as E. ¢ How are clients supposed to use the method? [preconditions]
» A reasonably intuitive overview of the ADT. o What are the services provided by suppliers? [postconditions |
. e Time (and sometimes space) complexity
Java 8 List API

What is a Stack? o T Stack: lllustration

« A stack is a collection of objects. OPER_ATION RETURT VALUE | STACK CgNTENTS

o Objegts |.n a stack are msgrtgd and removed according to the isEmpty true pe

last-in, first-out (LIFO) principle. push(5) - 5

o Cannot access arbitrary elements of a stack push(3) _ 3

o Can only access or remove the most-recently added element 5

push(1) - %

size 3 %

5

1

top 1 3

pop 1 g

pop 3 5

pop 5 %)

19 of 58]

The Stack ADT o Generic Stack: Interface o T

e top
[precondition: stack is not empty]
[postcondition: return item last pushed to the stack]

* size .
. public interface Stack< E > {
[precondition: none] public int size();
[postcondition: return number of items pushed to the stack] public boolean isEmpty();
. public E top();

e isEmpty B public void push(E e);
[precondition: none] public B pop();
[postcondition: return whether there is no item in the stack] }

¢ push(item)]]
[precondition: stack is not full] The Stack ADT, declared as an interface, allows alternative
[postcondition: push the input item onto the top of the stack] implementations to conform to its method headers.

* pop

[precondition: stack is not empty]
[postcondition: remove and return the top of stack]
20 01 58

Generic Stack: Architecture LASSONDE Implementing Stack: Array (2) o

ooooooooooooooooo

® Running Times of Array-Based Stack Operations?
ArrayStack Method | Running Time
size O(1)
isEmpty o(1)
o(1)
o(1)

top (
push (

pop o(1)
* Exercise This version of implementation treats the end of array as the top of

ArrayStack(E) LinkedStack(E) stack. Would the RTs of operations change if we treated the beginning of
array as the top of stack?

® Q. What if the preset capacity turns out to be insufficient?
A. TllegalArgumentException occurs and it takes O(7) time to respond.

® At the end, we will explore the alternative of a dynamic array.

21 of 58]

——— e

ooooooooooooooooo

Implementing Stack: Array (1) LASSONDE Implementing Stack: Singly-Linked List (1) |iasono:

ooooooooooooooooo

blic cl a Stack<E> impl ts Stack<E> { . . .
P‘;ril‘fatce PR ;A;_CAp;:fT;tenlosoo; ac public class LinkedStack<E> implements Stack<E> {
private E[] data; private SinglyLinkedList<E> 1list;
private int t; /« index of
public ArrayStack() {
data = (E[]) new Object [MAX CAPACITY]; }
t = -1;
} .
o Question:
public int size() { return (t + 1); } e
public boolean isEmpty() { return (t == -1); } = = =
Singly-Linked List Method
public E top() { Stack Method gly
if (isEmpty()) { /+ Precondition Violated +/) Strategy 1 ‘ Strategy 2
else { return datalt]; } . = =
o size list.size
public void push(E e) { . . .
if (size() == MAX_CAPACITY) { /+ Precondition Violated +/ } |SEmpty ||St,|SEmpty
else { t ++; data[t] = e; } t list.first list.last
} op ISL.TIFS ISt.Ias
public E pop() { . . .
E result; push list.addFirst list.addLast
if (isEmpty()) { /+ Precondition Violated */ } . . .
else | result - datalt]; datalt] - null; ¢ —; | pop list.removeFirst | list.removelast
return result;
. Which implementation strategy should be chosen?

24 of 58]

——— e

Implementing Stack: Singly-Linked List (2) |.assonoe

ooooooooooooooooo

o |f the front of list is treated as the top of stack, then:

o All stack operations remain O(1) [- removeFirst takes O(1)]
e If the end of list is treated as the top of stack, then:
o The pop operation takes O(n) [-- removelast takes O(n)]

e But in both cases, given that a linked, dynamic structure is
used, no resizing is necessary!

e

Generic Stack: Testing Implementations LASSONDE

ooooooooooooooooo

@Test

public void testPolymorphicStacks() {
Stack<String> s = new ArrayStack<>();
s.push("Alan"); / ic bi ng #*/
s.push("Mark") ;
s.push("Tom"); /%
assertTrue (s.size() 3 && !s.isEmpty());
assertEquals ("Tom", s.top());

i o)

s = new LinkedStack<>();
s.push("Alan"); /* ¢
s
s

.push("Mark"); /x*

.push("Tom"); /% dj le ding #*/
assertTrue (s.size() 3 && !s.isEmpty());
assertEquals ("Tom", s.top());

26 of 58]

Polymorphism & Dynamic Binding LASSONDE

ooooooooooooooooo

ahwnN =

Stack<String> myStack;
myStack = new ArrayStack<String> () ;
myStack.push("Alan");
myStack = new LinkedStack<String>();
myStack.push("Alan") ;

e Polymorphism
An object may change its “shape” (i.e., dynamic type) at
runtime.
Which lines? 2, 4

e Dynamic Binding
Effect of a method call depends on the “current shape” of the
target object.
Which lines? 3, 5

27 of 58]

Stack Application: Reversing an Array LASSONDE

ooooooooooooooooo

e Implementing a generic algorithm:

}

public static <E> void reverse(E[] a) {
Stack<E> buffer = new ArrayStack<E>();
for (int i = 0; i < a.length; 1 ++) {

for (int i = 0; 1 < a.length; 1 ++) {

buffer.push(alil);

ali] = buffer.pop();

Testing the generic algorithm:

}

@Test
public void testReverseViaStack() {

String[] names = {"Alan", "Mark", "Tom"};

String[] expectedReverseOfNames = {"Tom", "Mark", "Alan"};
StackUtilities.reverse (names) ;

assertArrayEquals (expectedReverseOfNames, names);

Integer[] numbers = {46, 23, 68};

Integer[] expectedReverseOfNumbers= {68, 23, 46};
StackUtilities.reverse (numbers) ;

assertArrayEquals (expectedReverseOfNumbers, numbers);

28 of 58]

LASSONDE

ooooooooooooooooo

Stack Application: Matching Delimiters (1)

¢ Problem
Opening delimiters: (, [, {
Closing delimiters:), 1, }
e.g., Correct: () () {(L O}
e.g., Incorrect: ({[1)}

e Sketch of Solution
o When a new opening delimiter is found, push it to the stack.
o Most-recently found delimiter should be matched first.
o When a new closing delimiter is found:

o |f it matches the top of the stack, then pop off the stack.
e Otherwise, an error is found!

o Finishing reading the input, an empty stack means a success!

29 of 58]

Stack Application: Matching Delimiters (2)

LASSONDE
ooooooooooooooooo
* /mplementing the algorithm:
public static boolean isMatched(String expression) {
final String opening = " ([{";
final String closing = ")1}";
Stack<Character> openings = new LinkedStack<Character>();
int i = 0;
boolean foundError = false;
while (!foundError && i < expression.length()) {
char ¢ = expression.charAt(i);
if (opening.indexOf(c) !'= -1) { openings.push(c); }
else if (closing.indexOf(c) !'= -1) {
if (openings.isEmpty()) { foundError = true; }
else {
if (opening.indexOf (openings.top()) == closing.indexOf(c)) { openings.pop(); }
else { foundError = true; } } }
i 4+ 0}
return ! foundError && openings.isEmpty(); }

® Testing the algorithm:

@Test
public void testMatchingDelimiters() {
assertTrue (StackUtilities.isMatched (""

))
assertTrue (StackUtilities.isMatched("{[]}
assertFalse (StackUtilities.isMatched("{[])"));
assertFalse (StackUtilities.isMatched("{[]
assertFalse (StackUtilities.isMatched (" ({[

30 of 58]

LASSONDE

ooooooooooooooooo

Stack Application: Postfix Notations (1)

Problem: Given a postfix expression, calculate its value.

Infix Notation \ Postfix Notation

Operator in-between Operands | Operator follows Operands
Parentheses force precedence | Order of evaluation embedded
3 3
3+ 4 34 +
3+ 4+ 5 34 + 5 +
3+ (4 +5) 345+ +

3 -4 x5 34 5 %
(3 - 4) * 5 34 -5«

31 of 58]

LASSONDE

ooooooooooooooooo

Stack Application: Postfix Notations (2)

Sketch of Solution

o When input is an operand (i.e., a number), push it to the stack.
o When input is an operator, obtain its two operands by popping
off the stack twice, evaluate, then push the result back to stack.
o When finishing reading the input, there should be only one
number left in the stack.
o Error if:
¢ Not enough items left in the stack for the operator
o When finished, two or more numbers left in stack

[e.g., 523+x+]
[eg., 53+6]

What is a Queue?

LASSONDE

ooooooooooooooooo

A queue is a collection of objects.

Objects in a queue are inserted and removed according to the
first-in, first-out (FIFO) principle.

o Each new element joins at the back/end of the queue.

o Cannot access arbitrary elements of a queue
o Can only access or remove the

least-recently inserted (or longest-waiting) element

pECE

b ol
2 ostets &“7{@

3 "
3 ™
The Queue ADT LASSONDE
o first ~ top of stack

[precondition: queue is not empty]

[postcondition: return item first enqueued]
* size

[precondition: none]

[postcondition: return number of items enqueued]
e isEmpty

[precondition: none]

[postcondition: return whether there is no item in the queue]
e enqueue(item) ~ push of stack

[precondition: queue is not full]

[postcondition: enqueue item as the “last” of the queue]
e dequeue ~ pop of stack

34

[precondition: queue is not empty]
[postcondition: remove and return the first of the queue]
of 58

Queue: lllustration

LASSONDE

ooooooooooooooooo

Operation

Return Value

Queue Contents

isEmpty
enqueue(5)
enqueue(3)
enqueue(1)
size
dequeue
dequeue
dequeue

true

- w0 w |

e

Generic Queue: Interface

LASSONDE

ooooooooooooooooo

}

public interface Queue< E > ({
public int size();
public boolean isEmpty();
public E first();
public void enqueue(E e);
public E dequeue();

The Queue ADT, declared as an interface, allows alternative
implementations to conform to its method headers.

36 of 58]

Generic Queue: Architecture LASSONDE Implementing Queue ADT: Array (2) LASSONDE

oooooooooooooooooooooooooooooooooo

® Running Times of Array-Based Queue Operations?

ArrayQueue Method | Running Time

size O(1)
isEmpty o(1)
first o(1)
enqueue O(1)
dequeue O(n)

® Exercise This version of implementation treats the beginning of array as the
first of queue. Would the RTs of operations change if we treated the end of
array as the first of queue?

ArrayQueue(E) | CircularArrayQueue(E) | LinkedQueue(E)

® Q. What if the preset capacity turns out to be insufficient?
A. TllegalArgumentException occurs and it takes O(7) time to respond.

® At the end, we will explore the alternative of a dynamic array.

37 of 58] 39 of 58]

Implementing Queue ADT: Array (1) LASSONDE Implementing Queue: Singly-Linked List (1) |.assonoe

oooooooooooooooooooooooooooooooooo

public class ArrayQueue<E> implements Queue<E> {
private final int MAX_CAPACITY = 1000; R K R
private E[] data; public class LinkedQueue<E> implements Queue<E> {
private int r; /« rear inde private SinglyLinkedList<E> 1list;
public ArrayQueue() {
data = (E[]) new Object [MAX CAPACITY]; }
r=-1;

}
public int size() { return (r + 1); }

public boolean isEmpty() { return (r == -1); } Question:
public E first() {

if (isEmpty()) { /+ Precondition Violated +/ } S|ng|y-L|nked List Method
else { return datal[0]; }
, Queue Method Strategy 1 \ Strategy 2

public void enqueue(E e) {
if (size() == MAX_CAPACITY) { + Precondition Violated +/ } . . .
else { r ++; datalr] = e; } Slze |IStSIZ€
} . . .
public E dequeue() | iSEmpty list.isEmpty

if (isEmpty()) { /+ Precondition Violated */ }

olse { first list.first list.last

E result = datal0];

o L dmtali) - detali e 11 enqueue list.addLast list.addFirst

datalr] = null; r ——;

Sl e ' dequeue list.removeFirst | list.removelast
) Which implementation strategy should be chosen?

}
38 of 58] 40 of 58

\wy

Implementing Queue: Singly-Linked List (2)

—

ASSONDE

ooooooooooooooooo

e |f the front of list is treated as the first of queue, then:

o All queue operations remain O(1) [- removeFirst takes O(1)]
e If the end of list is treated as the first of queue, then:

o The dequeue operation takes O(n) [- removelast takes O(n)]
e But in both cases, given that a linked, dynamic structure is

used, no resizing is necessary!

41 of 58

LASSONDE

ooooooooooooooooo

Generic Queue: Testing Implementations

@Test

public void testPolymorphicQueues() {
Queue<String> g = new ArrayQueue<>();
g.enqueue ("Alan"); /] L
g.enqueue ("Mark"); /
q.enqueue ("Ton"); / /
assertTrue (g.size() == 3 && !qg.isEmpty());
assertEquals ("Alan", q.first());

g = new LinkedQueue<>();
g.enqueue ("Alan"); /x
g.enqueue ("Mark"); /
q.enqueue ("Ton"); / /
assertTrue (g.size() == 3 && !qg.isEmpty());
assertEquals ("Alan", q.first());

42 of 58

\wy

Polymorphism & Dynamic Binding

—

ASSONDE

ooooooooooooooooo

Queue<String> myQueue;

myQueue = new CircularArrayQueue<String> () ;
myQueue.enqueue ("Alan") ;

myQueue = new LinkedQueue<String> ();
myQueue.enqueue ("Alan") ;

s wnN =

e Polymorphism
An object may change its “shape” (i.e., dynamic type) at
runtime.
Which lines? 2, 4

e Dynamic Binding
Effect of a method call depends on the “current shape” of the
target object.

Which lines? 3, 5

Implementing Queue ADT: Circular Array (1).assonoe

ooooooooooooooooo

¢ Maintain two indices: f for front; r for next available slot.

Maximum size: N -1 [N=data.length]
Empty Queue: when r = f

f,r f,r
Full Queue: when ((r+1) % N) =f

o When r > f: ‘ ‘ ‘ ‘

> When r < f: e LT

¢ Size of Queue:
olfr=7£0

o lfrefr-f . T T T 1]

o lfr<fir+(N-f) e P P
44 of 58|

Implementing Queue ADT: Circular Array (2).assonoe Limitations of Queue s

ooooooooooooooooo

ooooooooooooooooo

Running Times of CircularArray-Based Queue Operations?

e Say we use a queue to implement a waiting list.

CircularArrayQueue Method ‘ Running Time o What if we dequeue the front customer, but find that we need to

size o(1) put them back to the front (e.g., seat is still not available, the
isEmpty 0(1) table assigned is not satisfactory, etc.)?

first o(1) o What if the customer at the end of the queue decides not to wait
enqueue o(1) and leave, how do we remove them from the end of the queue?
dequeue o(1) e Solution: A new ADT extending the Queue by supporting:

o insertion to the front

: o deletion from the end
Exercise: Create a Java class CircularArrayQueue that

implements the Queue interface using a circular array.

45 of 58 47 of 58

Exercise: LASSONDE The Double-Ended Queue ADT

Implementlng a Queue using Two Stacks e Double-Ended Queue (or Deque) is a queue-like data
public class StackQueue<E> implements Queue<E> {

private Stack-me inStack structure that supports insertion and deletion at both the
1 ;
private Stack<E> outStack; front and the end of the queue.

™

B
°z

o

g

public interface Deque<E> {
} /* Queue operations */
public int size();

e For size, add up sizes of inStack and outStack. public boolean isEmpty();

. . n public E first();
» For isEmpty , are inStack and outstack both empty? public void addLast (E e); /+
e For enqueue, pushto inStack. public E removeFirst(); /+ dec

/* Extended operations */
e For dequeue : public void addFirst(E e);
o pop from outStack public E removeLast () ;

If outstack is empty, we need to first pop all items from instack '

and push them to out stack. . o Exercise: Implement Deque using a circular array.
Exercise: Why does this work? [implement and test] o Exercise: Implement Deque using a SLL and/or DLL.
Exercise: Running Time? [see analysis on dynamic arrays |

Array Implementations: Stack and Queue

e When implementing stack and queue via arrays, we imposed a

maximum capacity:

private final int MAX CAPACITY = 1000;
private E[] data;

public void push(E e) {
if (size() == MAX_CAPACITY) { /=
else { ... }

}

}

public class ArrayStack<E> implements Stack<E> {

Precondition Violated »/ }

private final int MAX CAPACITY = 1000;
private E[] data;

public void enqueue(E e) {

if (size() == MAX_CAPACITY) |
else { ...

}

}

public class ArrayQueue<E> implements Queue<E>

+ Precondition Violated »*/ }

{

¢ This made the push and enqueue operations both cost O(7).

49 of 58

Dynamic Array: Constant Increments

Implement stack using a dynamic array resizing itself by a constant increment:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int C;
4 private int capacity;
5 private E[] data;
6 public ArrayStack() {
7 I = 1000; /* arbitrary in
8 C = 500; /+ arbitrary fix t
9 capacity = I;
10 data = (E[]) new Object[capacity];
11 t = -1;
12 }
13 public void push(E e) {
14 if (size() == capacity) ({
15 /% res o by a fixed constant =
16 E[] temp = (E[]) new Object[capacity + C];
17 for(int i = 0; 1 < capacity; 1 ++) {
18 temp[i] = datalil;
19 }
20 data = temp;
21 capacity = capacity + C
22 }
23 t++;
24 datalt] = e;
25 }
26 |}
50 of 58]

® This alternative strategy
resizes the array,
whenever needed,
by a constant amount.

® L17 — L19 make push cost
O(n), in the worst case.

* However, given that resizing
only happens rarely, how about
the ~average running time?

* We will refer L14 — L22 as the
resizing part and L23 — L24
as the update part.

Dynamic Array: Doubling

L\

LSSoNDE

Implement stack using a dynamic array resizing itself by doubling:

1 public class ArrayStack<E> implements Stack<E> {

2 private int I;

3 private int capacity; L4
4 private E[] data;

5 public ArrayStack() {

6 I = 1000; /* arbi]

7 capacity = I;

8 data = (E[]) new Object[capacity];

9 t =-1; °
10 }

1 public void push(E e) {

12 if (size() == capacity) {

13 /% resiz by doubling * (]
14 E[] temp = (E[]) new Object[capacity #* 2];

15 for(int i = 0; i < capacity; i ++) {

16 temp[i] = datalil;

17 }

18 data = temp; °
19 capacity = capacity * 2

20 }

21 t++;

22 datalt] = e;

23 }

24 |}

51 of 58]

This alternative strategy
resizes the array,

whenever needed,

by doubling its current size.

L15 — L17 make push cost
O(n), in the worst case.

However, given that resizing
only happens rarely, how about
the -average running time?
We will refer L12 — L20 as the
resizing part and L21 — L22 as
the update part.

Avg. RT: Const. Increment vs. Doubling

LSSoNDE

001 oF B

® Without loss of generality, assume: There are n push operations, and the

last push triggers the last resizing routine.

\ [Constant Increments | Doubling |

| RT of exec. update part for n pushes ||

o(n) |

RT of executing 1st resizing

!

RT of executing 2nd resizing

I+C

RT of executing 3rd resizing

1+2-C

RT of executing 4th resizing

IENEN
I A

1+3-C

RT of executing k7 resizing

n
ol
N

-

I+(k-1)-C

RT of executing last resizing

n

of resizing needed (solve k for RT = n)

o(n) | O(log,n)

Total RT for n pushes

o(r?) O(n)

Amortized/Average RT over n pushes

O(n) o(1)

® QOver n push operations, the amortized / average running time of the

doubling strategy is more efficient.

Beyond this lecture ... LASSONDE Index (2) LASSONDE

|Abstract Data Types (ADTs)|
[Java APl Approximates ADTs (1))
[Java APl Approximates ADTs (2))

[Building ADTSs for Reusability|
* Attempt the exercises throughout the lecture. What is a Stack?|

¢ Implement the Postfix Calculator using a stack. The Stack ADT|

Stack: lllustration
[Generic Stack: Interface]

Generic Stack: Architecture
[Implementing Stack: Array (1)

[Implementing Stack: Array (2)|

— e
. - |

Index (1) Sssonee Index (3) Sssonee

|[Learning Outcomes of this Lecture| [Implementing Stack: Singly-Linked List (1)|

[Background Study: Interfaces in Javal [Implementing Stack: Singly-Linked List (2)|

[Terminology: Contract, Client, Supplier| |Generic Stack: Testing Implementations|

[Client, Supplier, Contract in OOP (1)) |Polymorphism & Dynamic Binding|

[Client, Supplier, Contract in OOP (2)| |Stack Application: Reversing an Array|

[Modularity (1): Childhood Activity| [Stack Application: Matching Delimiters (1)

[Modularity (2): Daily Construction| [Stack Application: Matching Delimiters (2)|

[Modularity (3): Computer Architecture| |[Stack Application: Postfix Notations (1)|

[Modularity (4): System Development| [Stack Application: Postfix Notations (2)|

[Modularity (5): Software Design| |What is a Queue?|

[Design Principle: Modularity| [The Queue ADT|

54 of 58] 56 of 58|

Index (4) :AssoNDE

[Queue: Illustration|

[Generic Queue: Interface]

[Generic Queue: Architecture]

[Implementing Queue ADT: Array (1)|

[Implementing Queue ADT: Array (2)|

[Implementing Queue: Singly-Linked List (1)|

[Implementing Queue: Singly-Linked List (2)|

|Generic Queue: Testing Implementations|

|Polymorphism & Dynamic Binding|

[Implementing Queue ADT: Circular Array (1))

[Implementing Queue ADT: Circular Array (2)|

57 of 58]

Index (5) Lassonpe
[Exercise: |
[Implementing a Queue using Two Stacks|

Limitations of Queue
[The Double-Ended Queue ADT)|
|Array Implementations: Stack and Queue|

[Dynamic Array: Constant Increments|

|Dynamic Array: Doubling|
|Avg. RT: Const. Increment vs. Doubling|
|Beyond this lecture . . .|

58 of 58]

