
Asymptotic Analysis of Algorithms

EECS2011 N & Z:
Fundamentals of Data Structures

Winter 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What You’re Assumed to Know

● You will be required to implement Java classes and methods, and to
test their correctness using JUnit.
Review them if necessary:

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS2030_F21

○ Implementing classes and methods in Java [Weeks 1 – 2]
○ Testing methods in Java [Week 4]

● Also, make sure you know how to trace programs using a debugger :
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#java_from_scratch_w21

○ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

2 of 41

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21

Learning Outcomes

This module is designed to help you learn about:
● Notions of Algorithms and Data Structures
● Measurement of the “goodness” of an algorithm
● Measurement of the efficiency of an algorithm
● Experimental measurement vs. Theoretical measurement
● Understand the purpose of asymptotic analysis.
● Understand what it means to say two algorithms are:

○ equally efficient, asymptotically
○ one is more efficient than the other, asymptotically

● Given an algorithm, determine its asymptotic upper bound .

3 of 41

Algorithm and Data Structure
● A data structure is:

○ A systematic way to store and organize data in order to facilitate
access and modifications

○ Never suitable for all purposes: it is important to know its strengths
and limitations

● A well-specified computational problem precisely describes
the desired input/output relationship.
○ Input: A sequence of n numbers ⟨a1, a2, . . . , an⟩

○ Output: A permutation (reordering) ⟨a′1, a′2, . . . , a′n⟩ of the input
sequence such that a′1 ≤ a′2 ≤. . . ≤ a′n

○ An instance of the problem: ⟨3, 1, 2, 5, 4⟩
● An algorithm is:

○ A solution to a well-specified computational problem
○ A sequence of computational steps that takes value(s) as input

and produces value(s) as output
● Steps in an algorithm manipulate well-chosen data structure(s).
4 of 41

Measuring “Goodness” of an Algorithm

1. Correctness :
○ Does the algorithm produce the expected output?
○ Use JUnit to ensure this.

2. Efficiency:
○ Time Complexity : processor time required to complete
○ Space Complexity : memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?

5 of 41

Measuring Efficiency of an Algorithm

● Time is more of a concern than is storage.
● Solutions that are meant to be run on a computer should run as

fast as possible.
● Particularly, we are interested in how running time depends on

two input factors:
1. size

e.g., sorting an array of 10 elements vs. 1m elements
2. structure

e.g., sorting an already-sorted array vs. a hardly-sorted array

● How do you determine the running time of an algorithm?
1. Measure time via experiments
2. Characterize time as a mathematical function of the input size

6 of 41

Measure Running Time via Experiments

● Once the algorithm is implemented in Java:
○ Execute the program on test inputs of various sizes and structures.
○ For each test, record the elapsed time of the execution.

long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;

○ Visualize the result of each test.

● To make sound statistical claims about the algorithm’s running
time, the set of input tests must be “reasonably” complete.

7 of 41

Example Experiment

● Computational Problem:
○ Input: A character c and an integer n
○ Output: A string consisting of n repetitions of character c

e.g., Given input ‘*’ and 15, output ***************.
● Algorithm 1 using String Concatenations:

public static String repeat1(char c, int n) {
String answer = "";
for (int i = 0; i < n; i ++) { answer += c; }

return answer; }

● Algorithm 2 using StringBuilder append’s:
public static String repeat2(char c, int n) {
StringBuilder sb = new StringBuilder();

for (int i = 0; i < n; i ++) { sb.append(c); }

return sb.toString(); }

8 of 41

Example Experiment: Detailed Statistics

n repeat1 (in ms) repeat2 (in ms)
50,000 2,884 1

100,000 7,437 1
200,000 39,158 2
400,000 170,173 3
800,000 690,836 7

1,600,000 2,847,968 13
3,200,000 12,809,631 28
6,400,000 59,594,275 58

12,800,000 265,696,421 (≈ 3 days) 135

● As input size is doubled, rates of increase for both algorithms
are linear :
○ Running time of repeat1 increases by ≈ 5 times.
○ Running time of repeat2 increases by ≈ 2 times.

9 of 41

Example Experiment: Visualization

n

repeat1

repeat2

104 105 106 107

108

107

106

105

104

103

102

101

100

R
u
n
n
in

g
T

im
e

(m
s)

109

10 of 41

Experimental Analysis: Challenges

1. An algorithm must be fully implemented (i.e., translated into
valid Java syntax) in order study its runtime behaviour
experimentally .
○ What if our purpose is to choose among alternative data structures

or algorithms to implement?
○ Can there be a higher-level analysis to determine that one

algorithm or data structure is more superior than others?
2. Comparison of multiple algorithms is only meaningful when

experiments are conducted under the same environment of:
○ Hardware: CPU, running processes
○ Software: OS, JVM version

3. Experiments can be done only on a limited set of test inputs.
○ What if “important” inputs were not included in the experiments?

11 of 41

Moving Beyond Experimental Analysis

● A better approach to analyzing the efficiency (e.g., running
times) of algorithms should be one that:
○ Allows us to calculate the relative efficiency (rather than absolute

elapsed time) of algorithms in a ways that is independent of the
hardware and software environment.

○ Can be applied using a high-level description of the algorithm
(without fully implementing it).

○ Considers all possible inputs (esp. the worst-case scenario).
● We will learn a better approach that contains 3 ingredients:

1. Counting primitive operations
2. Approximating running time as a function of input size
3. Focusing on the worst-case input (requiring the most running time)

12 of 41

Counting Primitive Operations

A primitive operation corresponds to a low-level instruction
with a constant execution time .
○ Assignment [e.g., x = 5;]
○ Indexing into an array [e.g., a[i]]
○ Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
○ Accessing an attribute of an object [e.g., acc.balance]
○ Returning from a method [e.g., return result;]

Q: Why is a method call in general not a primitive operation?
A: It may be a call to:
● a “cheap” method (e.g., printing Hello World), or
● an “expensive” method (e.g., sorting an array of integers)

13 of 41

Example: Counting Primitive Operations (1)
1 int findMax (int[] a, int n) {
2 currentMax = a[0];
3 for (int i = 1; i < n;) {
4 if (a[i] > currentMax) {
5 currentMax = a[i]; }
6 i ++ }
7 return currentMax; }

of times i < n in Line 3 is executed? [n]
of times the loop body (Line 4 to Line 6) is executed? [n − 1]

● Line 2: 2 [1 indexing + 1 assignment]
● Line 3: n + 1 [1 assignment + n comparisons]
● Line 4: (n − 1) ⋅ 2 [1 indexing + 1 comparison]
● Line 5: (n − 1) ⋅ 2 [1 indexing + 1 assignment]
● Line 6: (n − 1) ⋅ 2 [1 addition + 1 assignment]
● Line 7: 1 [1 return]
● Total # of Primitive Operations: 7n - 2
14 of 41

Example: Counting Primitive Operations (2)
Count the number of primitive operations for

1 boolean foundEmptyString = false;
2 int i = 0;
3 while (!foundEmptyString && i < names.length) {
4 if (names[i].length() == 0) {
5 /* set flag for early exit */
6 foundEmptyString = true;
7 }
8 i = i + 1;
9 }

● # times the stay condition of the while loop is checked?
[between 1 and names.length + 1]

[worst case: names.length + 1 times]
● # times the body code of while loop is executed?

[between 0 and names.length]
[worst case: names.length times]

15 of 41

From Absolute RT to Relative RT

● Each primitive operation (PO) takes approximately the same,
constant amount of time to execute. [say t]

The absolute value of t depends on the execution environment .
● The number of primitive operations required by an algorithm

should be proportional to its actual running time on a specific
environment.
e.g., findMax (int[] a, int n) has 7n − 2 POs

RT = (7n - 2) ⋅ t
Say two algorithms with RT (7n - 2) ⋅ t and RT (10n + 3) ⋅ t.
⇒ It suffices to compare their relative running time:

7n - 2 vs. 10n + 3.
● To determine the time efficiency of an algorithm, we only

focus on their number of POs .
16 of 41

Example: Approx. # of Primitive Operations
● Given # of primitive operations counted precisely as 7n − 2,

we view it as
7 ⋅ n1

− 2 ⋅ n0

● We say
○ n is the highest power
○ 7 and 2 are the multiplicative constants
○ 2 is the lower term

● When approximating a function (considering that input size may
be very large):
○ Only the highest power matters.
○ multiplicative constants and lower terms can be dropped.
⇒ 7n − 2 is approximately n
Exercise: Consider 7n + 2n ⋅ log n + 3n2:
○ highest power? [n2]
○ multiplicative constants? [7, 2, 3]
○ lower terms? [7n + 2n ⋅ log n]

17 of 41

Approximating Running Time
as a Function of Input Size

Given the high-level description of an algorithm, we associate it
with a function f , such that f (n) returns the number of
primitive operations that are performed on an input of size n.
○ f (n) = 5 [constant]
○ f (n) = log2n [logarithmic]
○ f (n) = 4 ⋅ n [linear]
○ f (n) = n2 [quadratic]
○ f (n) = n3 [cubic]
○ f (n) = 2n [exponential]

18 of 41

Focusing on the Worst-Case Input
R

u
n

n
in

g
T

im
e

B C D E F G

best-case time

A

}

Input Instance

1 ms

2 ms

3 ms

4 ms

5 ms worst-case time

average-case time?

● Average-case analysis calculates the expected running times
based on the probability distribution of input values.

● worst-case analysis or best-case analysis?
19 of 41

What is Asymptotic Analysis?

Asymptotic analysis
● Is a method of describing behaviour in the limit :

○ How the running time of the algorithm under analysis changes as
the input size changes without bound

○ e.g., contrast RT1(n) = n with RT2(n) = n2

● Allows us to compare the relative performance of alternative
algorithms:
○ For large enough inputs, the multiplicative constants and

lower-order terms of an exact running time can be disregarded.
○ e.g., RT1(n) = 3n2 + 7n + 18 and RT1(n) = 100n2 + 3n − 100 are

considered equally efficient, asymptotically .
○ e.g., RT1(n) = n3 + 7n + 18 is considered less efficient than

RT1(n) = 100n2 + 100n + 2000, asymptotically .

20 of 41

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the running
time of an algorithm:
● Asymptotic upper bound [O]
● Asymptotic lower bound [Ω]
● Asymptotic tight bound [Θ]

21 of 41

Asymptotic Upper Bound: Definition
● Let f (n) and g(n) be functions mapping positive integers (input

size) to positive real numbers (running time).
○ f (n) characterizes the running time of some algorithm.
○ O(g(n)) :

● denotes a collection of functions
● consists of all functions that can be upper bounded by g(n), starting at

some point, using some constant factor
● f (n) ∈ O(g(n)) if there are:

○ A real constant c > 0
○ An integer constant n0 ≥ 1
such that:

f(n) ≤ c ⋅ g(n) for n ≥ n0

● For each member function f (n) in O(g(n)) , we say that:
○ f (n) ∈ O(g(n)) [f(n) is a member of “big-O of g(n)”]
○ f (n) is O(g(n)) [f(n) is “big-O of g(n)”]
○ f (n) is order of g(n)

22 of 41

Asymptotic Upper Bound: Visualization

Input Size

R
u
n
n
in

g
 T

im
e

cg(n)

f(n)

n0

From n0, f (n) is upper bounded by c ⋅ g(n), so f (n) is O(g(n)) .

23 of 41

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

8n + 5 ≤ c ⋅ n

Can we choose c = 9? What should the corresponding n0 be?
n 8n + 5 9n
1 13 9
2 21 18
3 29 27
4 37 36
5 45 45
6 53 54

. . .

Therefore, we prove it by choosing c = 9 and n0 = 5.
We may also prove it by choosing c = 13 and n0 = 1. Why?

24 of 41

Asymptotic Upper Bound: Example (2)

Prove: The function f (n) = 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

5n4
+ 3n3

+ 2n2
+ 4n + 1 ≤ c ⋅ n4

f (1) = 5 + 3 + 2 + 4 + 1 = 15
Choose c = 15 and n0 = 1!

25 of 41

Asymptotic Upper Bound: Proposition (1)
If f (n) is a polynomial of degree d , i.e.,

f (n) = a0 ⋅ n0
+ a1 ⋅ n1

+ ⋅ ⋅ ⋅ + ad ⋅ nd

and a0,a1, . . . ,ad are integers, then f (n) is O(nd) .
○ We prove by choosing

c = ∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣

n0 = 1

○ We know that for n ≥ 1: n0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nd

○ Upper-bound effect: n0 = 1? [f (1) ≤ (∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣) ⋅ 1d]

a0 ⋅ 10
+ a1 ⋅ 11

+ ⋅ ⋅ ⋅ + ad ⋅ 1d
≤ ∣a0∣ ⋅ 1d

+ ∣a1∣ ⋅ 1d
+ ⋅ ⋅ ⋅ + ∣ad ∣ ⋅ 1d

○ Upper-bound effect holds? [f (n) ≤ (∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣) ⋅ nd]

a0 ⋅ n0
+ a1 ⋅ n1

+ ⋅ ⋅ ⋅ + ad ⋅ nd
≤ ∣a0∣ ⋅ nd

+ ∣a1∣ ⋅ nd
+ ⋅ ⋅ ⋅ + ∣ad ∣ ⋅ nd

26 of 41

Asymptotic Upper Bound: Proposition (2)

O(n0
) ⊂ O(n1

) ⊂ O(n2
) ⊂ . . .

If a function f (n) is upper bounded by another function g(n) of
degree d , d ≥ 0, then f (n) is also upper bounded by all other
functions of a strictly higher degree (i.e., d + 1, d + 2, etc.).
e.g., Family of O(n) contains:

n0, 2n0, 3n0, . . . [functions with degree 0]
n, 2n, 3n, . . . [functions with degree 1]

e.g., Family of O(n2) contains:
n0, 2n0, 3n0, . . . [functions with degree 0]
n, 2n, 3n, . . . [functions with degree 1]
n2, 2n2, 3n2, . . . [functions with degree 2]

27 of 41

Asymptotic Upper Bound: More Examples

● 5n2 + 3n ⋅ logn + 2n + 5 is O(n2) [c = 15, n0 = 1]
● 20n3 + 10n ⋅ logn + 5 is O(n3) [c = 35, n0 = 1]
● 3 ⋅ logn + 2 is O(logn) [c = 5, n0 = 2]

○ Why can’t n0 be 1?
○ Choosing n0 = 1 means⇒ f (1) is upper-bounded by c ⋅ log 1 :

● We have f (1) = 3 ⋅ log1 + 2, which is 2.
● We have c ⋅ log 1 , which is 0.

⇒ f (1) is not upper-bounded by c ⋅ log 1 [Contradiction!]

● 2n+2 is O(2n) [c = 4, n0 = 1]
● 2n + 100 ⋅ logn is O(n) [c = 102, n0 = 1]

28 of 41

Using Asymptotic Upper Bound Accurately

● Use the big-O notation to characterize a function (of an
algorithm’s running time) as closely as possible.
For example, say f (n) = 4n3 + 3n2 + 5:
○ Recall: O(n3) ⊂ O(n4) ⊂ O(n5) ⊂ . . .

○ It is the most accurate to say that f (n) is O(n3).
○ It is true, but not very useful, to say that f (n) is O(n4) and that

f (n) is O(n5).
○ It is false to say that f (n) is O(n2), O(n), or O(1).

● Do not include constant factors and lower-order terms in the
big-O notation.
For example, say f (n) = 2n2 is O(n2), do not say f (n) is
O(4n2 + 6n + 9).

29 of 41

Classes of Functions

upper bound class cost
O(1) constant cheapest

O(log(n)) logarithmic
O(n) linear

O(n ⋅ log(n)) “n-log-n”
O(n2) quadratic
O(n3) cubic

O(nk), k ≥ 1 polynomial
O(an), a > 1 exponential most expensive

30 of 41

Rates of Growth: Comparison
f(

n
)

107106

n

105104103102

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

101510141013101210111010109108101

100

104

108

1012

1016

1020

1028

1032

1036

1040

1044

100

1024

31 of 41

Upper Bound of Algorithm: Example (1)

1 int maxOf (int x, int y) {
2 int max = x;
3 if (y > x) {
4 max = y;
5 }
6 return max;
7 }

● # of primitive operations: 4
2 assignments + 1 comparison + 1 return = 4

● Therefore, the running time is O(1) .
● That is, this is a constant-time algorithm.

32 of 41

Upper Bound of Algorithm: Example (2)

1 int findMax (int[] a, int n) {
2 currentMax = a[0];
3 for (int i = 1; i < n;) {
4 if (a[i] > currentMax) {
5 currentMax = a[i]; }
6 i ++ }
7 return currentMax; }

● From last lecture, we calculated that the # of primitive
operations is 7n − 2.

● Therefore, the running time is O(n) .
● That is, this is a linear-time algorithm.

33 of 41

Upper Bound of Algorithm: Example (3)

1 boolean containsDuplicate (int[] a, int n) {
2 for (int i = 0; i < n;) {
3 for (int j = 0; j < n;) {
4 if (i != j && a[i] == a[j]) {
5 return true; }
6 j ++; }
7 i ++; }
8 return false; }

● Worst case is when we reach Line 8.
● # of primitive operations ≈ c1 + n ⋅ n ⋅ c2, where c1 and c2 are

some constants.
● Therefore, the running time is O(n2) .
● That is, this is a quadratic algorithm.
34 of 41

Upper Bound of Algorithm: Example (4)

1 int sumMaxAndCrossProducts (int[] a, int n) {
2 int max = a[0];
3 for(int i = 1; i < n; i ++) {
4 if (a[i] > max) { max = a[i]; }
5 }
6 int sum = max;
7 for (int j = 0; j < n; j ++) {
8 for (int k = 0; k < n; k ++) {
9 sum += a[j] * a[k]; } }

10 return sum; }

● # of primitive operations ≈ (c1 ⋅ n + c2) + (c3 ⋅ n ⋅ n + c4), where
c1, c2, c3, and c4 are some constants.

● Therefore, the running time is O(n + n2) = O(n2) .
● That is, this is a quadratic algorithm.
35 of 41

Upper Bound of Algorithm: Example (5)

1 int triangularSum (int[] a, int n) {
2 int sum = 0;
3 for (int i = 0; i < n; i ++) {

4 for (int j = i ; j < n; j ++) {

5 sum += a[j]; } }
6 return sum; }

● # of primitive operations ≈ n + (n − 1) + ⋅ ⋅ ⋅ + 2 + 1 =
n⋅(n+1)

2

● Therefore, the running time is O(n2+n
2) = O(n2) .

● That is, this is a quadratic algorithm.

36 of 41

Beyond this lecture . . .

● You will be required to implement Java classes and methods, and to
test their correctness using JUnit.
Review them if necessary:

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS2030_F21

○ Implementing classes and methods in Java [Weeks 1 – 2]
○ Testing methods in Java [Week 4]

● Also, make sure you know how to trace programs using a debugger :
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#java_from_scratch_w21

○ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

37 of 41

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21

Index (1)

What You’re Assumed to Know

Learning Outcomes

Algorithm and Data Structure

Measuring “Goodness” of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment

Example Experiment: Detailed Statistics

Example Experiment: Visualization

Experimental Analysis: Challenges

Moving Beyond Experimental Analysis
38 of 41

Index (2)

Counting Primitive Operations

Example: Counting Primitive Operations (1)

Example: Counting Primitive Operations (2)

From Absolute RT to Relative RT

Example: Approx. # of Primitive Operations
Approximating Running Time
as a Function of Input Size

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

Asymptotic Upper Bound: Definition

39 of 41

Index (3)
Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Example (1)

Asymptotic Upper Bound: Example (2)

Asymptotic Upper Bound: Proposition (1)

Asymptotic Upper Bound: Proposition (2)

Asymptotic Upper Bound: More Examples

Using Asymptotic Upper Bound Accurately

Classes of Functions

Rates of Growth: Comparison

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)
40 of 41

Index (4)
Upper Bound of Algorithm: Example (3)

Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)

Beyond this lecture . . .

41 of 41

	What You're Assumed to Know
	Learning Outcomes
	Algorithm and Data Structure
	Measuring ``Goodness'' of an Algorithm
	Measuring Efficiency of an Algorithm
	Measure Running Time via Experiments
	Example Experiment
	Example Experiment: Detailed Statistics
	Example Experiment: Visualization
	Experimental Analysis: Challenges
	Moving Beyond Experimental Analysis
	Counting Primitive Operations
	Example: Counting Primitive Operations (1)
	Example: Counting Primitive Operations (2)
	From Absolute RT to Relative RT
	Example: Approx. # of Primitive Operations
	Approximating Running Time as a Function of Input Size
	Focusing on the Worst-Case Input
	What is Asymptotic Analysis?
	Three Notions of Asymptotic Bounds
	Asymptotic Upper Bound: Definition
	Asymptotic Upper Bound: Visualization
	Asymptotic Upper Bound: Example (1)
	Asymptotic Upper Bound: Example (2)
	Asymptotic Upper Bound: Proposition (1)
	Asymptotic Upper Bound: Proposition (2)
	Asymptotic Upper Bound: More Examples
	Using Asymptotic Upper Bound Accurately
	Classes of Functions
	Rates of Growth: Comparison
	Upper Bound of Algorithm: Example (1)
	Upper Bound of Algorithm: Example (2)
	Upper Bound of Algorithm: Example (3)
	Upper Bound of Algorithm: Example (4)
	Upper Bound of Algorithm: Example (5)
	Beyond this lecture …

