
Composite & Visitor Design Patterns

EECS4302 A:
Compilers and Interpreters

Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

1. Motivating Problem: Recursive Systems
2. Three Design Attempts
3. Inheritance: Abstract Class vs. Interface
4. Fourth Design Attempt: Composite Design Pattern
5. Implementing and Testing the Composite Design Pattern

2 of 33

Motivating Problem (1)

● Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
● Base equipment (hard drives, cd-rom drives)

e.g., Each drive has properties: e.g., power consumption and cost.
● Composite equipment such as cabinets, busses, and chassis

e.g., Each cabinet contains various types of chassis, each of which containing
components (hard-drive, power-supply) and busses that contain cards.

● Design a system that will allow us to easily build systems and
compute their aggregate cost and power consumption.

3 of 33

Motivating Problem (2)
Design of hierarchies represented in tree structures

2

CABINET

HARD_DRIVE CARD

CHASSIS

POWER_SUPPLY

DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.
4 of 33

Design Attempt 1: Architecture

DiskDrive
 VideoCard

<abstract> Equipment

 abstract double price()

 add(Equipment e)
 ensure children[children.size()] == e

Chassis Bus

equipment

Cabinet

<abstract>
CompositeEquipment

List<Equipment> children

Client

Equipment e

Java List API5 of 33

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Design Attempt 1: Flaw?

Q: Any flaw of this first design?
A: Two “composite” features defined at the Equipment level:
○ List<Equipment> children
○ add(Equipment child)

⇒ Inherited to each base equipment (e.g., DiskDrive), for
which such features are not applicable.

6 of 33

Design Attempt 2: Architecture

DiskDrive
 VideoCard

<abstract> Equipment

 abstract double price()

Chassis Bus

equipment

Cabinet

List<Equipment> children
Client

Equipment e

<abstract> CompositeEquipment

 add(Equipment e)
 ensure children[children.size()] == e

7 of 33

Design Attempt 2: Flaw?

Q: Any flaw of this second design?
A: Two “composite” features defined at the Composite level:
○ List<Equipment> children
○ add(Equipment child)

⇒ Multiple types of the composite (e.g., equipment, furniture)
cause duplicates of the Composite class.
⇒ Use a generic (type) parameter to abstract away the
concrete type of any potential composite.

8 of 33

Design Attempt 3: Architecture

DiskDrive
 VideoCard

<abstract> Equipment

 abstract double price()

Chassis Bus

equipment

Cabinet

Client

Equipment e

<abstract> Composite<E>

 List<E> children

 add(E e)
 ensure children[children.size()] == e

patterns

<abstract>
CompositeEquipment

extends Composite<Equipment>

 List<Equipment> children

9 of 33

Design Attempt 3: Flaw?

Q: Any flaw of this third design?
A: It does not compile:

Java does not support multiple inheritance!
○ See: https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html

○ A class may inherit from at most one class (abstract or not).
Rationale. MI results in name clashes

[a.k.a. the Diamond Problem].
○ However, a class may implement multiple interfaces.

[workaround for implementation]

10 of 33

https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html

The Composite Pattern: Architecture

DiskDrive
 VideoCard

<interface> Equipment

 double price()

Chassis Bus

equipment

Cabinet

Client

Equipment e

<abstract> Composite<E>

 List<E> children

 add(E e)
 ensure children[children.size()] == e

patterns

<abstract>
CompositeEquipment

extends Composite<Equipment>

 List<Equipment> children

<abstract>
BaseEquipment

11 of 33

The Composite Pattern: Instantiations

DiskDrive
 VideoCard

<interface> Equipment

 double price()

Chassis Bus

equipment

Cabinet

<abstract> Composite<E>

 List<E> children

 add(E e)
 ensure children[children.size()] == e

patterns

<abstract>
CompositeEquipment

extends Composite<Equipment>

 List<Equipment> children

<abstract>
BaseEquipment

Desk Chair

<interface> Furniture

 double weight()

Shelf

furniture

Drawer

<abstract>
CompositeFurniture

extends Composite<Furniture>

 List<Furniture> children

<abstract>
BaseFurniture

12 of 33

Implementing the Composite Pattern (1)
public interface Equipment {
public String name();
public double price(); /* uniform access */

}

public abstract class BaseEquipment implements Equipment {
private String name;
private double price;
public BaseEquipment(String name, double price) {
this.name = name; this.price = price;

}
public String name() { return this.name; }
public double price() { return this.price; }

}

public class VideoCard extends BaseEquipment {
public VideoCard(String name, double price) {
super(name, price);

}
}

13 of 33

Implementing the Composite Pattern (2.1)

import java.util.List;

public abstract class Composite<E> {
protected List<E> children;

public void add(E child) {
children.add(child); /* polymorphism */

}
}

14 of 33

Implementing the Composite Pattern (2.2)
import java.util.ArrayList;

public abstract class CompositeEquipment
extends Composite<Equipment>
implements Equipment

{
private String name;
public CompositeEquipment(String name) {
this.name = name;
this.children = new ArrayList<>();

}
public String name() { return this.name; }
public double price() {
double result = 0.0;
for(Equipment child : this.children) {
result = result + child.price(); /* dynamic binding */

}
return result;

}
}

15 of 33

Implementing the Composite Pattern (2.2)

public class Chassis extends CompositeEquipment {
public Chassis(String name) {
super(name);

}
}

16 of 33

Testing the Composite Pattern

@Test
public void test_equipment() {
Equipment card, drive;
Bus bus;
Cabinet cabinet;
Chassis chassis;

card = new VideoCard("16Mbs Token Ring", 200);
drive = new DiskDrive("500 GB harddrive", 500);
bus = new Bus("MCA Bus");
chassis = new Chassis("PC Chassis");
cabinet = new Cabinet("PC Cabinet");
bus.add(card);
chassis.add(bus);
chassis.add(drive);
cabinet.add(chassis);

assertEquals(700.00, cabinet.price(), 0.1);
}

17 of 33

Summay: The Composite Pattern
● Design : Categorize into base artifacts or recursive artifacts.

● Programming :
Build the tree structure representing some hierarchy .

● Runtime :
Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly (e.g., price()).

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on base objects and composite objects.
e.g., Given Equipment e :
○ e.price() may return the unit price, e.g., of a DiskDrive.

○ e.price() may sum prices, e.g., of a Chassis’ containing equipment.
18 of 33

Learning Objectives

1. Motivating Problem: Processing Recursive Systems
2. First Design Attempt: Cohesion & Single-Choice Principle?
3. Design Principles:
○ Cohesion
○ Single Choice Principle

○ Open-Closed Principle

4. Second Design Attempt: Visitor Design Pattern
5. Implementing and Testing the Visitor Design Pattern

19 of 33

Motivating Problem (1)
Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

<interface> Expression

 int value()

Constant Addition

<abstract> CompositeExpression

abstract Expression left()

abstract Expression right()

20 of 33

Motivating Problem (2)
Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print postfix),
and type check.

<interface> Expression

 int value()

 void evaluate()
 void printPrefix()
 void printPostfix()
 void typeCheck()

CONSTANT+

 int value()
 void evaluate()
 void printPrefix()
 void printPostfix()
 void typeCheck()

ADDITION+

 int value()
 void evaluate()
 void printPrefix()
 void printPostfix()
 void typeCheck()

<abstract> CompositeExpression

abstract Expression left()

abstract Expression right()

21 of 33

Design Principles:
Information Hiding & Single Choice

● Cohesion:
○ A class/module groups relevant features (data & operations).

● Single Choice Principle (SCP):
○ When a change is needed, there should be a single place (or a

minimal number of places) where you need to make that change.
○ Violation of SCP means that your design contains redundancies.

22 of 33

Problems of Extended Composite Pattern

● Distributing unrelated operations across nodes of the
abstract syntax tree violates the single-choice principle:

To add/delete/modify an operation
⇒ Change of all descendants of Expression

● Each node class lacks in cohesion:
A class should group relevant concepts in a single place.
⇒ Confusing to mix codes for evaluation, pretty printing, type checking.
⇒ Avoid “polluting” the classes with these unrelated operations.

23 of 33

Open/Closed Principle

● Software entities (classes, features, etc.) should be open for
extension, but closed for modification.
⇒ As a system evolves, we:
○ May add/modify the open (unstable) part of system.
○ May not add/modify the closed (stable) part of system.

● e.g., In designing the application of an expression language:
○ ALTERNATIVE 1:

Syntactic constructs of the language may be open, whereas
operations on the language may be closed .

○ ALTERNATIVE 2:
Syntactic constructs of the language may be closed , whereas
operations on the language may be open.

24 of 33

Visitor Pattern

● Separation of concerns:
○ Set of language (syntactic) constructs
○ Set of operations

⇒ Classes from these two sets are decoupled and organized
into two separate packages.

● Open-Closed Principle (OCP): [ALTERNATIVE 2]
○ Closed , staple part of system: set of language constructs
○ Open, unstable part of system: set of operations

⇒ OCP helps us determine if the Visitor Pattern is applicable.
⇒ If it is determined that language constructs are open and
operations are closed , then do not use the Visitor Pattern.

25 of 33

Visitor Pattern: Architecture

operationsstructures

<interface> Expression

Constant

 void accept(Visitor v)
 int value()

Addition+

 void accept(Visitor v)

<abstract> CompositeExpression

 abstract Expression left()

 abstract Expression right()

Evaluator

 void visitConstant(Constant e)

 void visitAddition(Addition e)
 void visitSubtraction(Subtraction e)
 int result()

PrettyPrinter

 void visitConstant(Constant e)

 void visitAddition(Addition e)
 void visitSubtraction(Subtraction e)
 String result()

TypeChecker

 void visitConstant(Constant e)

 void visitAddition(Addition e)
 void visitSubtraction(Subtraction e)
 boolean result()

<interface> Visitor

 void visitConstant(Constant e)

 void visitAddition(Addition e)
 void visitSubtraction(Subtraction e)

Visitor v

 void accept(Visitor v)Client

Expression e

patterns

<abstract> Composite<E>

 List<E> children

 add(E e)
 ensure children[children.size()] == e

Subtraction+

 void accept(Visitor v)

26 of 33

Visitor Pattern Implementation: Structures

Package structures
○ Declare void accept(Visitor v) in abstract class Expression.
○ Implement accept in each of Expression’s descendant classes.

public class Constant implements Expression {
. . .
public void accept(Visitor v) {
v.visitConstant(this);

}
}

public class Addition extends CompositeExpression {
. . .
public void accept(Visitor v) {
v.visitAddition(this);

}
}

27 of 33

Visitor Pattern Implementation: Operations
Package operations
○ For each descendant class C of Expression, declare a method header

void visitC (e: C) in the interface Visitor.

public interface Visitor {
public void visitConstant(Constant e);
public void visitAddition(Addition e);
public void visitSubtraction(Subtraction e);

}

○ Each descendant of VISITOR denotes a kind of operation.
public class Evaluator implements Visitor {
private int result;
. . .
public void visitConstant(Constant e) {
this.result = e.value();

}
public void visitAddition(Addition e) {
Evaluator evalL = new Evaluator();
Evaluator evalR = new Evaluator();
e.getLeft().accept(evalL);
e.getRight().accept(evalR);
this.result = evalL.result() + evalR.result();

}
}

28 of 33

Testing the Visitor Pattern
1 @Test
2 public void test_expression_evaluation() {
3 CompositeExpression add;
4 Expression c1, c2;
5 Visitor v;
6 c1 = new Constant(1); c2 = new Constant(2);
7 add = new Addition(c1, c2);
8 v = new Evaluator();
9 add.accept(v);

10 assertEquals(3, ((Evaluator) v).result());
11 }

Double Dispatch in Line 9:

1. DT of add is Addition⇒ Call accept in ADDITION.
v.visitAddition(add)

2. DT of v is Evaluator⇒ Call visitAddition in Evaluator.
visiting result of add.left() + visiting result of add.right()

29 of 33

To Use or Not to Use the Visitor Pattern
● In the visitor pattern, what kind of extensions is easy?

Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class CCodeGenerator of Visitor,
then implement how to handle each language element in that class.
⇒ Single Choice Principle is satisfied.

● In the visitor pattern, what kind of extensions is hard?
Adding a new kind of structure element is hard.

After adding a descendant class Multiplcation of Expression,
every concrete visitor (i.e., descendant of Visitor) must be amended
with a new visitMultiplication operation.

⇒ Single Choice Principle is violated.
● The applicability of the visitor pattern depends on to what

extent the structure will change.
⇒ Use visitor if operations (applied to structure) change often.
⇒ Do not use visitor if the structure changes often.

30 of 33

Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Design Attempt 1: Architecture

Design Attempt 1: Flaw?

Design Attempt 2: Architecture

Design Attempt 2: Flaw?

Design Attempt 3: Architecture

Design Attempt 3: Flaw?

The Composite Pattern: Architecture

The Composite Pattern: Instantiations
31 of 33

Index (2)

Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Implementing the Composite Pattern (2.3)

Testing the Composite Pattern

Summary: The Composite Pattern

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)
Design Principles:
Information Hiding & Single Choice

32 of 33

Index (3)
Problems of Extended Composite Pattern

Open/Closed Principle

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures

Visitor Pattern Implementation: Operations

Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern

33 of 33

	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Attempt 1: Architecture
	Design Attempt 1: Flaw?
	Design Attempt 2: Architecture
	Design Attempt 2: Flaw?
	Design Attempt 3: Architecture
	Design Attempt 3: Flaw?
	The Composite Pattern: Architecture
	The Composite Pattern: Instantiations
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Implementing the Composite Pattern (2.3)
	Testing the Composite Pattern
	Summary: The Composite Pattern
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Principles: Information Hiding & Single Choice
	Problems of Extended Composite Pattern
	Open/Closed Principle
	Visitor Pattern
	Visitor Pattern: Architecture
	Visitor Pattern Implementation: Structures
	Visitor Pattern Implementation: Operations
	Testing the Visitor Pattern
	To Use or Not to Use the Visitor Pattern

