Parser: Syntactic Analysis

Readings: EAC2 Chapter 3

EECS4302 A:

YORK
 UN IVERS ITÉ
 UN I VERS I TY
 U

Fall 2022

Chen-WEI WANG

Context-Free Languages: Introduction

- We have seen regular languages:
- Can be described using finite automata or regular expressions.
- Satisfy the pumping lemma.
- Language with recursive structures are provably non-regular. e.g., $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- Context-Free Grammars (CFG's) are used to describe strings that can be generated in a recursive fashion.
- Context-Free Languages (CFL's) are:
- Languages that can be described using CFG's.
- A proper superset of the set of regular languages.

CFG: Example (1.1)

- The following language that is non-regular

$$
\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}
$$

can be described using a context-free grammar (CFG):

$$
\begin{array}{lll}
A & \rightarrow 0 A 1 \\
A & \rightarrow B \\
B \rightarrow & \rightarrow
\end{array}
$$

- A grammar contains a collection of substitution or production rules, where:
- A terminal is a word $w \in \Sigma^{*}$ (e.g., 0,1 , etc.).
- A variable or non-terminal is a word $w \notin \Sigma^{*}$ (e.g., A, B, etc.).
- A start variable occurs on the LHS of the topmost rule (e.g., A).

CFG: Example (1.2)

- Given a grammar, generate a string by:

1. Write down the start variable.
2. Choose a production rule where the start variable appears on the

LHS of the arrow, and substitute it by the RHS.
3. There are two cases of the re-written string:
3.1 It contains no variables, then you are done.
3.2 It contains some variables, then substitute each variable using the relevant production rules.
4. Repeat Step 3.

- e.g., We can generate an infinite number of strings from

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- $A \Rightarrow B \Rightarrow \#$
- $A \Rightarrow 0 A 1 \Rightarrow 0 B 1 \Rightarrow 0 \# 1$
- $A \Rightarrow 0 A 1 \Rightarrow 00 A 11 \Rightarrow 00 B 11 \Rightarrow 00 \# 11$

Given a CFG, a string's derivation can be shown as a parse tree.
e.g., The derivation of $000 \# 111$ has the parse tree

Design a CFG for the following language:

$$
\left\{w \mid w \in\{0,1\}^{*} \wedge w \text { is a palidrome }\right\}
$$

e.g., 00, 11, 0110, 1001, etc.

$$
\begin{aligned}
& P \rightarrow \epsilon \\
& P \rightarrow 0 \\
& P \rightarrow 1 \\
& P \rightarrow 0 P 0 \\
& P \rightarrow 1 P 1
\end{aligned}
$$

Design a CFG for the following language:

$$
\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}
$$

e.g., 00, 11, 0110, etc.

$$
\begin{array}{lll}
P & \rightarrow & \epsilon \\
P & \rightarrow & 0 P 0 \\
P & \rightarrow & 1 P 1
\end{array}
$$

CFG: Example (4)
Design a CFG for the set of binary strings, where each block of 0 's followed by at least as many 1's.
e.g., 000111, 0001111, etc.

- We use S to represent one such string, and A to represent each such block in S.

$S \rightarrow \epsilon$	$\{B C$ of $S\}$	
S	$\rightarrow A S$	$\{R C$ of $S\}$
A	$\rightarrow \epsilon$	$\{B C$ of $A\}$
A	$\rightarrow 01$	$\{B C$ of $A\}$
A	$\rightarrow 0 A 1$	$\left\{R C\right.$ of A : equal $O^{\prime} s$ and $\left.I^{\prime} s\right\}$
$A \rightarrow A 1$	$\left\{R C\right.$ of A : more $\left.I^{\prime} s\right\}$	

9 of 96

Design the grammar for the following small expression language, which supports:

- Arithmetic operations: +, -, *, /
- Relational operations: >, <, >=, <=, ==, /=
- Logical operations: true, false, !, \&\&, ||, =>

Start with the variable Expression.

- There are two possible versions:

1. All operations are mixed together.
2. Relevant operations are grouped together.

Try both!
\rightarrow IntegerConstant
| - IntegerConstant BooleanConstant
BinaryOp
UnaryOp
(Expression)
IntegerConstant \rightarrow Digit
| Digit IntegerConstant

Digit $\quad \rightarrow \quad 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

BooleanConstant \rightarrow TRUE
FALSE


```
BinaryOp -> Expression + Expression
    Expression - Expression
    Expression * Expression
    Expression / Expression
    Expression & Expression
    Expression || Expression
    Expression => Expression
    Expression == Expression
    Expression /= Expression
    Expression > Expression
    Expression < Expression
UnaryOp -> !Expression
```


However, Version 1 of CFG:

- Parses string that requires further semantic analysis (e.g., type checking): e.g., 3 => 6
- Is ambiguous, meaning?
- Some string may have more than one ways to interpreting it.
- An interpretation is either visualized as a parse tree, or written as a sequence of derivations.
e.g., Draw the parse tree(s) for $3 * 5+4$

ArithmeticOp \rightarrow ArithmeticOp + ArithmeticOp
ArithmeticOp - ArithmeticOp
ArithmeticOp * ArithmeticOp
ArithmeticOp / ArithmeticOp
(ArithmeticOp)
IntegerConstant
-IntegerConstant
ArithmeticOp $==$ ArithmeticOp
ArithmeticOp /= ArithmeticOp
ArithmeticOp > ArithmeticOp
ArithmeticOp $<$ ArithmeticOp
LogicalOp \rightarrow LogicalOp \&\& LogicalOp
LogicalOp |। LogicalOp
LogicalOp => LogicalOp
! LogicalOp
(LogicalOp)
RelationalOp
BooleanConstant

However, Version 2 of CFG:

- Eliminates some cases for further semantic analysis:
e.g., ($1+2$) => (5 / 4)
[no parse tree]
- Still parses strings that might require further semantic analysis: e.g., $(1+2) /(5-(2+3))$
- Still is ambiguous.
e.g., Draw the parse tree(s) for $3 * 5+4$

CFG: Formal Definition (1)

- A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S):
- V is a finite set of variables.
- Σ is a finite set of terminals. $\quad[V \cap \Sigma=\varnothing]$
- R is a finite set of rules s.t.

$$
R \subseteq\left\{v \rightarrow s \mid v \in V \wedge s \in(V \cup \Sigma)^{*}\right\}
$$

- $S \in V$ is is the start variable.
- Given strings $u, v, w \in(V \cup \Sigma)^{*}$, variable $A \in V$, a rule $A \rightarrow w$:
- $u A v \Rightarrow u w v$ menas that $u A v$ yields uwv.
- $u \stackrel{*}{\Rightarrow} v$ means that u derives v, if:
- $u=v$; or
- $u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \cdots \Rightarrow u_{k} \Rightarrow v$
[a yield sequence]
- Given a CFG $G=(V, \Sigma, R, S)$, the language of G

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

17 of 96

CFG: Formal Definition (2): Example

- Design the CFG for strings of properly-nested parentheses.
e.g., (), () (), (() ())) (), etc.

Present your answer in a formal manner

- $G=(\{S\},\{()\}, R, S$,$) , where R$ is

$$
S \rightarrow(S)|S S| \epsilon
$$

- Draw parse trees for the above three strings that G generates.
- Consider the grammar $G=(V, \Sigma, R, S)$:
- R is

Expr	\rightarrow	Expr + Term
	\mid	Term
Term	\rightarrow	Term * Factor
	\mid	Factor
Factor	\rightarrow	(Expr)
	\mid	a

- $V=\{$ Expr, Term, Factor $\}$
- $\Sigma=\{a,+, *,()$,
- $S=$ Expr
- Precedence of operators + , * is embedded in the grammar.
- "Plus" is specified at a higher level (Expr) than is "times" (Term).
- Both operands of a multiplication (Factor) may be parenthesized.

```
19 of 96
```


Regular Expressions to CFG's

- Recall the semantics of regular expressions (assuming that we do not consider \varnothing):

$$
\begin{array}{ll}
L(\epsilon) & =\{\epsilon\} \\
L(a) & =\{a\} \\
L(E+F) & =L(E) \cup L(F) \\
L(E F) & =L(E) L(F) \\
L\left(E^{*}\right) & =(L(E))^{*} \\
L((E)) & =L(E)
\end{array}
$$

- e.g., Grammar for $(00+1)^{*}+(11+0)^{*}$

$$
\begin{aligned}
& S \rightarrow A \mid B \\
& A \rightarrow \epsilon \rightarrow A C \\
& C \rightarrow 00 \mid 1 \\
& B \rightarrow \epsilon \rightarrow B D \\
& D \rightarrow 11 \mid 0
\end{aligned}
$$

- Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$:
- Make a variable R_{i} for each state $q_{i} \in Q$.
- Make R_{0} the start variable, where q_{0} is the start state of M.
- Add a rule $R_{i} \rightarrow a R_{j}$ to the grammar if $\delta\left(q_{i}, a\right)=q_{j}$.
- Add a rule $R_{i} \rightarrow \epsilon$ if $q_{i} \in F$.
- e.g., Grammar for

$$
R_{0} \rightarrow 1 R_{0} \mid 0 R_{1}
$$

$$
R_{1} \rightarrow 0 R_{0}\left|1 R_{1}\right| \epsilon
$$

21 of 96


```
Expr }->\mathrm{ Expr + Term|Term
Term }->\mathrm{ Term * Factor | Factor
Factor }->\mathrm{ (Expr)|a
```

- Given a string $\left(\epsilon(V \cup \Sigma)^{*}\right)$, a left-most derivation (LMD) keeps substituting the leftmost non-terminal $(\in V)$.
- Unique LMD for the string a + a * a:

Expr	\Rightarrow Expr + Term
	\Rightarrow Term + Term
	\Rightarrow Factor + Term
	$\Rightarrow a+$ Term
	$\Rightarrow a+$ Term * Factor
	$\Rightarrow a+$ Factor * Factor
	$\Rightarrow a+a *$ Factor
	$\Rightarrow a+a * a$

- This LMD suggests that a $*$ a is the right operand of + .

CFG: Rightmost Derivations (2)

Expr		Expr + Term\| Term
Term	\rightarrow	Term * Factor \| Factor
Factor	\rightarrow	(Expr) \|a

- Unique RMD for the string $(a+a) * a$:

Expr	\Rightarrow Term
	\Rightarrow Term * Factor
	\Rightarrow Term *a
	\Rightarrow Factor *a
	$\Rightarrow($ Expr $) \star a$
	$\Rightarrow($ Expr + Term $) * a$
	$\Rightarrow($ Expr + Factor $) * a$
	$\Rightarrow($ Expr $+a) * a$
	$\Rightarrow($ Term $+a) * a$
	$\Rightarrow($ Factor $+a) * a$
	$\Rightarrow(a+a) \star a$

- This RMD suggests that $(a+a)$ is the left operand of $*$.

25 of 96

CFG: Parse Trees vs. Derivations (1)

- Parse trees for (leftmost \& rightmost) derivations of expressions:

$a+a * a$	$(a+a) * a$
$\stackrel{\text { Expr }}{\stackrel{\text { Term }}{1}}$	Expr + Term
Term Term * Factor	Term Factor
	$\begin{array}{cc}1 & 1 \\ \text { Factor } & \\ \text { a }\end{array}$
1	\|
a a	a

- Orders in which derivations are performed are not reflected on parse trees.

CFG: Parse Trees vs. Derivations (2)

- A string $w \in \Sigma^{*}$ may have more than one derivations. Q: distinct derivations for $w \in \Sigma^{*} \Rightarrow$ distinct parse trees for w ?
A: Not in general \because Derivations with distinct orders of variable substitutions may still result in the same parse tree.
- For example:

| Expr | \rightarrow Expr + Term \mid Term |
| :--- | :--- | :--- |
| Term | \rightarrow Term $*$ Factor \mid Factor |
| Factor | $\rightarrow($ Expr $) \mid a$ |

For string a + a * a, the LMD and RMD have distinct orders of variable substitutions, but their corresponding parse trees are the same.

27 of 96

CFG: Ambiguity: Definition

Given a grammar $G=(V, \Sigma, R, S)$:

- A string $w \in \Sigma^{*}$ is derived ambiguously in G if there exist two or more distinct parse trees or, equally,
two or more distinct LMDs or, equally, two or more distinct RMDs.

We require that all such derivations are completed by following a consisten order (leftmost or rightmost) to avoid false positive.

- G is ambiguous if it generates some string ambiguously.

CFG: Ambiguity: Exercise (1)

- Is the following grammar ambiguous ?

$$
\text { Expr } \rightarrow \text { Expr }+ \text { Expr } \mid \text { Expr * Expr } \mid(\text { Expr }) \mid a
$$

- Yes \because it generates the string $a+a *$ a ambiguously :

- Distinct ASTs (for the same input) imply distinct semantic interpretations: e.g., a pre-order traversal for evaluation
- Exercise: Show LMDs for the two parse trees.

29 of 96

CFG: Ambiguity: Exercise (2.1)

- Is the following grammar ambiguous ?

Statement $\rightarrow \quad$| if Expr then Statement |
| :--- |
| if Expr then Statement else Statement |
| |
| |
| Assignment |

- Yes \because it derives the following string ambiguously
if $E_{x p r}^{1}$ then if $E_{x p r}^{2}$ then Assignment $_{1}$ else Assignment ${ }_{2}$

- This is called the dangling else problem.
- Exercise: Show LMDs for the two parse trees.

30 of 96

CFG: Ambiguity: Exercise (2.2)

(Meaning 1) Assignment 2 may be associated with the inner if:

(Meaning 2) Assignment t_{2} may be associated with the outer if:

CFG: Ambiguity: Exercise (2.3)

- We may remove the ambiguity by specifying that the dangling else is associated with the nearest if:

| Statement \rightarrow if Expr then Statement | |
| :--- | :--- | :--- |
| | \mid if Expr then WithElse else Statement |
| WithElse | \rightarrow Assignment |
| | \rightarrow if Expr then WithElse else WithElse |
| | Assignment |

- When applying if ... then WithElse else Statement:
- The true branch will be produced via WithElse.
- The false branch will be produced via Statement.

There is no circularity between the two non-terminals.

Discovering Derivations

- Given a CFG $G=(V, \Sigma, R, S)$ and an input program $p \in \Sigma^{*}$:
- So far we manually come up a valid derivation s.t. $S \stackrel{*}{\Rightarrow} p$.
- A parser is supposed to automate this derivation process.
- Input : A sequence of (t, c) pairs, where each token t (e.g., r241) belongs to a syntactic category c (e.g., register); and a CFG G.
- Output : A valid derivation (as an AST); or A parse error.
- In the process of constructing an AST for the input program:
- Root of AST: The start symbol S of G
- Internal nodes: A subset of variables V of G
- Leaves of AST: A token/terminal sequence
\Rightarrow Discovering the grammatical connections (w.r.t. R of G) between the root, internal nodes, and leaves is the hard part!
- Approaches to Parsing:

$$
\left[w \in(V \cup \Sigma)^{*}, A \in V, A \rightarrow w \in R\right]
$$

- Top-down parsing

For a node representing A, extend it with a subtree representing w.

- Bottom-up parsing

For a substring matching w, build a node representing \boldsymbol{A} accordingly.

TDP: Discovering Leftmost Derivation

```
ALGORITHM: TDParse
    INPUT: CFG G = (V, \Sigma, R, S)
OUTPUT: Root of a Parse Tree or Syntax Erro
PROCEDURE:
    root := a new node for the start symbol S
    focus := root
    initialize an empty stack trace
    trace.push(null)
word := NextWord()
while (true):
            if \exists unvisited rule focus }->\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{n}{}\inR\mathrm{ then
            create }\mp@subsup{\beta}{1}{},\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{n}{}\mathrm{ as children of focus
            create (\mp@subsup{\beta}{1}{},\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{n}{}\mathrm{ as }
            focus := - 
            else
            if focus =S then report syntax error
            else backtrack
            elseif word matches focus then
            word := NextWord()
            focus := trace. Nop()
            focus:= trace.pop()
    lolseif word=EOF ^focus= null then return root 
```

backtrack \triangleq pop focus.siblings; focus := focus.parent; focus.resetChildren

TDP: Exercise (1)

- Given the following CFG G:

Expr	\rightarrow Expr + Term	
Term	\mid Term	
	\rightarrow Term	* Factor
Factor	\mid (Expr $)$	
	\mid	a

Trace TDParse on how to build an AST for input a + a * a.

- Running TDParse with G results an infinite loop !!!
- TDParse focuses on the leftmost non-terminal.
- The grammar \mathbf{G} contains left-recursions.
- We must first convert left-recursions in \mathbf{G} to right-recursions.
[350 96

TDP: Exercise (2)

- Given the following CFG G:

Expr Expr'	\rightarrow	Term Expr'	
	\rightarrow	+ Term	Expr ${ }^{\prime}$
	1	ϵ	
Term	\rightarrow	Factor	Term'
Term'	\rightarrow	* Factor	or Term'
		ϵ	
Factor	\rightarrow	(Expr)	
		a	

Exercise. Trace TDParse on building AST for a + a * a. Exercise. Trace TDParse on building AST for (a + a) * a.
Q: How to handle ϵ-productions (e.g., Expr $\rightarrow \epsilon$)?
A: Execute focus := trace.pop () to advance to next node.

- Running TDParse will terminate $\because \mathbf{G}$ is right-recursive.
- We will learn about a systematic approach to converting left-recursions in a given grammar to right-recursions.

Left-Recursions (LR): Direct vs. Indirect

Given CFG $G=(V, \Sigma, R, S), \alpha, \beta, \gamma \in(V \cup \Sigma)^{*}, G$ contains:

- A cycle if $\exists A \in V \bullet A \stackrel{*}{\Rightarrow} A$
- A direct LR if $A \rightarrow A \alpha \in R$ for non-terminal $A \in V$

- An indirect LR if $A \rightarrow B \beta \in R$ for non-terminals $A, B \in V, B \stackrel{*}{\Rightarrow} \boldsymbol{A} \gamma$

A	\rightarrow	$B r$
B	\rightarrow	$C d$
C	\rightarrow	$A t$

$A \rightarrow B r, B \stackrel{*}{\Rightarrow} A t d$

A	\rightarrow	$B a$	b		
B	\rightarrow	$C d$	e		
C	\rightarrow	$D f$	g		
D	\rightarrow	f	$A a$		$C g$

37 of 96
$A \rightarrow B a, B \Rightarrow$ Aafd

TDP: (Preventively) Eliminating LRs

```
ALGORITHM: RemoveLR
    INPUT: CFG G=(V, \Sigma, R, S
    ASSUME: G has no \epsilon-productions
    OUTPUT: G' s.t. G' }\mp@subsup{G}{}{\prime}\equivG,\mp@subsup{G}{}{\prime}\mathrm{ has no
                indirect & direct left-recursions
    PROCEDURE:
    impose an order on V: {\langle\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\rangle\rangle
    for i: 1 .. n:
        or j: 1 .. i-1:
            if \exists A A }->\mp@subsup{A}{j}{}\gamma\inR\wedge ^ Aj->\mp@subsup{\delta}{1}{}|\mp@subsup{\delta}{2}{}|\ldots|\mp@subsup{\delta}{m}{}\inR\mathrm{ then
            replace }\mp@subsup{A}{i}{}->\mp@subsup{A}{j}{}\gamma\mathrm{ with }\mp@subsup{A}{i}{}->\mp@subsup{\delta}{1}{}\gamma|\mp@subsup{\delta}{2}{}\gamma|\ldots|\mp@subsup{\delta}{m}{}
        end
        for }\mp@subsup{A}{i}{}->\mp@subsup{A}{i}{}\alpha|\beta\inR\mathrm{ :
        replace it with: }\mp@subsup{A}{i}{}->\beta\mp@subsup{A}{i}{\prime},\mp@subsup{A}{i}{\prime}->\alpha\mp@subsup{A}{i}{\prime}|
```

- L9 to L12: Remove indirect left-recursions from A_{1} to A_{i-1}.
- L13 to L14: Remove direct left-recursions from A_{1} to A_{i-1}.
- Loop Invariant (outer for-loop)? At the start of $i^{\text {th }}$ iteration:
- No direct or indirect left-recursions for $A_{1}, A_{2}, \ldots, A_{i-1}$.
- More precisely: $\forall j: j<i \bullet \neg\left(\exists k \bullet k \leq j \wedge A_{j} \rightarrow A_{k} \cdots \in R\right)$

CFG: Eliminating ϵ-Productions (1)

- Motivations:
- TDParse handles each ϵ-production as a special case.
- RemoveLR produces CFG which may contain ϵ-productions.
- $\epsilon \notin L \Rightarrow \exists \mathrm{CFG} G=(V, \Sigma, R, S)$ s.t. G has no ϵ-productions.

An ϵ-production has the form $A \rightarrow \epsilon$

- A variable A is nullable if $A \stackrel{*}{\Rightarrow} \epsilon$.
- Each terminal symbol is not nullable.
- Variable A is nullable if either:
- $A \rightarrow \epsilon \in R$; or
- $A \rightarrow B_{1} B_{2} \ldots B_{k} \in R$, where each variable $B_{i}(1 \leq i \leq k)$ is a nullable.
- Given a production $B \rightarrow C A D$, if only variable A is nullable, then there are 2 versions of $B: B \rightarrow C A D \mid C D$
- In general, given a production $A \rightarrow X_{1} X_{2} \ldots X_{k}$ with k symbols, if m of the k symbols are nullable:
- $m<k$: There are 2^{m} versions of A.
- $m=k$: There are $2^{m}-1$ versions of A.
[excluding $A \rightarrow \epsilon$]

CFG: Eliminating ϵ-Productions (2)

- Eliminate ϵ-productions from the following grammar:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a A A \mid \epsilon \\
& B \rightarrow b B B \mid \epsilon
\end{aligned}
$$

- Which are the nullable variables?
[S, A, B]

$$
\begin{array}{lll}
S \rightarrow A|B| A B & \{S \rightarrow \epsilon \text { not included }\} \\
A \rightarrow a A A|a A| a & \{A \rightarrow a A \text { duplicated }\} \\
B \rightarrow b B B|b B| b & \{B \rightarrow b B \text { duplicated }\}
\end{array}
$$

Backtrack-Free Parsing (1)

- TDParse automates the top-down, leftmost derivation process by consistently choosing production rules (e.g., in order of their appearance in CFG).
- This inflexibility may lead to inefficient runtime performance due to the need to backtrack.
- e.g., It may take the construction of a giant subtree to find out a mismatch with the input tokens, which end up requiring it to backtrack all the way back to the root (start symbol).
- We may avoid backtracking with a modification to the parser:
- When deciding which production rule to choose, consider:
(1) the current input symbol
(2) the consequential first symbol if a rule was applied for focus
[lookahead symbol]
- Using a one symbol lookhead, w.r.t. a right-recursive CFG, each alternative for the leftmost nonterminal leads to a unique terminal, allowing the parser to decide on a choice that prevents backtracking .
- Such CFG is backtrack free with the lookhead of one symbol.
- We also call such backtrack-free CFG a predictive grammar.

The First Set: Definition

- Say we write $T \subset \mathbb{P}\left(\Sigma^{*}\right)$ to denote the set of valid tokens recognizable by the scanner.
- First $(\alpha) \triangleq$ set of symbols that can appear as the first word in some string derived from α.
- More precisely:

$$
\operatorname{FIRST}(\alpha)= \begin{cases}\{\alpha\} & \text { if } \alpha \in T \\ \left\{\boldsymbol{w} \mid \boldsymbol{w} \in \Sigma^{*} \wedge \alpha \stackrel{*}{\Rightarrow} \boldsymbol{w} \beta \wedge \beta \in(V \cup \Sigma)^{*}\right\} & \text { if } \alpha \in V\end{cases}
$$

The First Set: Examples

- Consider this right-recursive CFG:

0	Goal	\rightarrow	Expr	6	Term'	\rightarrow	\times Factor Term ${ }^{\prime}$
1	Expr	\rightarrow	Term Expr ${ }^{\prime}$	7		\|	\div Factor Term ${ }^{\prime}$
2	Expr ${ }^{\prime}$	\rightarrow	+ Term Expr ${ }^{\prime}$	8		1	,
3		1	- Term Expr ${ }^{\prime}$	9	Factor	\rightarrow	(Expr)
4		\|	ϵ	10		\|	num
5	Term	\rightarrow	Factor Term ${ }^{\prime}$	11		\|	name

- Compute First for each terminal (e.g., num, +, ():

	num	name	$+$	-	\times	\div	($\underline{\square}$	eof	ϵ
FIRST	num	name	$+$	-	x	\div	($\underline{1}$	eof	ϵ

- Compute First for each non-terminal (e.g., Expr, Term'):

	Expr	Expr ${ }^{\prime}$	Term	Term'	Factor
FIRST	me,	- , ϵ	me,	x, \div, ϵ	ame, num

43 of 96

Computing the FIRSt Set

```
FIRST}(\alpha)={\begin{array}{ll}{{\alpha}}&{\mathrm{ if }\alpha\inT}\\{{w|w\in\mp@subsup{\Sigma}{}{*}\wedge\alpha\stackrel{*}{=>}w\beta\wedge\beta\in(V\cup\Sigma\mp@subsup{)}{}{*}}}&{\mathrm{ if }\alpha\inV}
ALGORITHM: GetFirst
    INPUT: CFG G=(V, \Sigma, R, S
        T\subset\mp@subsup{\Sigma}{}{*}}\mathrm{ denotes valid terminals
        OUTPUT: First : V\cupT\cup{\epsilon,eof} \longrightarrow\mathbb{P}(T\cup{\epsilon,eof})
    PROCEDURE:
        for }\alpha\in(T\cup{eof,\epsilon}): FIrst(\alpha) := {\alpha
        for A\inV: First(A) := \varnothing
        lastFirst := \varnothing
        while(lastFirst # FIRST)
            lastFirst := FIRST
            for }A->\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{k}{}\inR\mathrm{ s.t. }\forall\mp@subsup{\beta}{j}{}:\mp@subsup{\beta}{j}{}\in(T\cupV)
            rhs := FIRST( }\mp@subsup{\beta}{1}{\prime})-{\epsilon
            for(i := 1; }\epsilon\in\operatorname{FIRST}(\mp@subsup{\beta}{i}{})\wedgei<k; i++)
                rhs := rhs\cup(FIRST( }\mp@subsup{\beta}{i+1}{})-{\epsilon}
            if i=k^\epsilon\in\operatorname{FIRST}(\mp@subsup{\beta}{k}{})\mathrm{ then}
                rhs:= rhs\cup{\epsilon}
            end
            FIRST(A) := FIRST(A) Urhs
```

Computing the FIRST Set: Extension

- Recall: First takes as input a token or a variable.

$$
\text { FIRST }: V \cup T \cup\{\epsilon, \text { eof }\} \longrightarrow \mathbb{P}(T \cup\{\epsilon, \text { eof }\})
$$

- The computation of variable rhs in algoritm GetFirst actually suggests an extended, overloaded version:

$$
\text { FIRST }:(V \cup T \cup\{\epsilon, \text { eof }\})^{*} \longrightarrow \mathbb{P}(T \cup\{\epsilon, \text { eof }\})
$$

FIRST may also take as input a string $\beta_{1} \beta_{2} \ldots \beta_{n}$ (RHS of rules).

- More precisely:
$\operatorname{FIRST}\left(\beta_{1} \beta_{2} \ldots \beta_{n}\right)=$
$\operatorname{FIRST}\left(\beta_{1}\right) \cup \operatorname{FIRST}\left(\beta_{2}\right) \cup \cdots \cup \operatorname{FIRST}\left(\beta_{k-1}\right) \cup \operatorname{FIRST}\left(\beta_{k}\right) \left\lvert\, \begin{aligned} & \forall i: 1 \leq i<k \bullet \epsilon \in \operatorname{FIRSt}\left(\beta_{i}\right) \\ & \wedge \\ & \epsilon \notin \operatorname{FIRST}\left(\beta_{k}\right)\end{aligned}\right.$
Note. β_{k} is the first symbol whose FIRST set does not contain ϵ.

Consider this right-recursive CFG:

e.g., $\operatorname{First}($ Term Expr' $)=\operatorname{First}($ Term $)=\{$ (, name, num $\}$
e.g., $\operatorname{FIRst}(+$ Term Expr') $=\boldsymbol{\operatorname { F I R s t }}(+)=\{+\}$
e.g., $\operatorname{FIRst}(-$ Term Expr' $)=\boldsymbol{\operatorname { F I R s t }}(-)=\{-\}$
e.g., $\operatorname{First}(\epsilon)=\{\epsilon\}$

Is the First Set Sufficient

- Consider the following three productions:

Expr $^{\prime}$	\rightarrow	+	Term	Term'	(1)
	\mid	-	Term	Term'	(2)
	\mid	ϵ			(3)

In TDP, when the parser attempts to expand an Expr' node, it looks ahead with one symbol to decide on the choice of rule: $\boldsymbol{\operatorname { F I R S t }}(+)=\{+\}, \boldsymbol{\operatorname { F I R S t }}(-)=\{-\}$, and $\boldsymbol{F I R S t}(\epsilon)=\{\epsilon\}$.
Q. When to choose rule (3) (causing focus :=trace.pop())?

A?. Choose rule (3) when focus \neq FIRST $(+) \wedge$ focus \neq FIRST(-)?

- Correct but inefficient in case of illegal input string: syntax error is only reported after possibly a long series of backtrack.
- Useful if parser knows which words can appear, after an application of the ϵ-production (rule (3)), as leadling symbols.
- Follow $(v: V) \triangleq$ set of symbols that can appear to the immediate right of a string derived from v.

$$
\operatorname{FOLLOW}(v)=\left\{w \mid w, x, y \in \Sigma^{*} \wedge v \stackrel{*}{\Rightarrow} x \wedge S \stackrel{*}{\Rightarrow} x w y\right\}
$$

47 of 96

The Follow Set: Examples

- Consider this right-recursive CFG:

- Compute Follow for each non-terminal (e.g., Expr, Term'):

	Expr	Expr ${ }^{\prime}$	Term	Term'	Factor
FOLLOW	eof,)	eof,)	,	, +	, - , \times

Computing the Follow Set
$\operatorname{FOLLOW}(v)=\left\{w \mid w, x, y \in \Sigma^{*} \wedge v \stackrel{*}{\Rightarrow} x \wedge S \stackrel{*}{\Rightarrow} x w y\right\}$

```
ALGORITHM: GetFollow
    INPUT: CFG G=(V, \Sigma, R, S)
    OUTPUT: FOLlOw: V }\longrightarrow\mathbb{P}(T\cup{eof}
PROCEDURE:
    for }A\inV: Follow(A) := \varnothing
    Follow(S) := {eof}
    lastFollow := \varnothing
    while (lastFollow # FOL LOW) :
        lastFollow := FOLlOw
        for }A->\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{k}{}\inR\mathrm{ :
        trailer := Foluow(A)
        for i: k .. 1:
            if }\mp@subsup{\beta}{i}{}\inV\mathrm{ then
                    FOLLOW ( }\mp@subsup{\beta}{i}{}):=\mathrm{ FOLlOW ( }\mp@subsup{\beta}{i}{})\cup\mathrm{ trailer
                    if \epsilon\inFIRST( }\mp@subsup{\beta}{i}{}
                        then trailer := trailer\cup(FIRST( }\mp@subsup{\beta}{i}{})-\epsilon
                            else trailer := FIRST( }\mp@subsup{\beta}{i}{}
            else
                trailer := FIRSt( }\mp@subsup{\beta}{i}{}
```

49 of 96

Backtrack-Free Grammar

- A backtrack-free grammar (for a top-down parser), when expanding the focus internal node, is always able to choose a unique rule with the one-symbol lookahead (or report a syntax error when no rule applies).
- To formulate this, we first define:

$$
\boldsymbol{\operatorname { S t a R t }}(A \rightarrow \beta)= \begin{cases}\boldsymbol{\operatorname { F I R S t }}(\beta) & \text { if } \epsilon \notin \operatorname{FIRSt}(\beta) \\ \boldsymbol{\operatorname { F I R S t }}(\beta) \cup \operatorname{FoLLOW}(A) & \text { otherwise }\end{cases}
$$

$\operatorname{FIRST}(\beta)$ is the extended version where β may be $\beta_{1} \beta_{2} \ldots \beta_{n}$

- A backtrack-free grammar has each of its productions $\boldsymbol{A} \rightarrow \gamma_{1}\left|\gamma_{2}\right| \ldots \mid \gamma_{n}$ satisfying:

$$
\forall i, j: 1 \leq i, j \leq n \wedge i \neq j \bullet \mathbf{S T A R T}\left(\gamma_{i}\right) \cap \operatorname{START}\left(\gamma_{j}\right)=\varnothing
$$

```
ALGORITHM: TDParse
    INPUT: CFG G=(V,\Sigma,R,S)
    OUTPUT: Root of a Parse Tree or Syntax Error
ROCEDURE
    root := a new node for the start symbol S
    focus := root
    initialize an empty stack trace
    trace.push(null)
    word := NextWord()
    while (true)
        f focus\inV then
            if \existsunvisited rule focus }->\mp@subsup{\beta}{1}{}\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{n}{}\inR\wedge\mathrm{ word }\in\boldsymbol{START(\beta) then
                create }\mp@subsup{\beta}{1}{},\mp@subsup{\beta}{2}{}\ldots\mp@subsup{\beta}{n}{}\mathrm{ as children of focus
                trace.push( }\mp@subsup{\beta}{n}{}\mp@subsup{\beta}{n-1}{}\ldots\mp@subsup{\beta}{2}{}
            focus := \beta
                if focus =S then report syntax error
                else backtrack
            elseif word matches focus then
                word:= NextWord (
                Iocus := trace.pop focus= null then return root
        else backtrack
```

backtrack \triangleq pop focus.siblings; focus := focus.parent; focus.resetChildren

```
51 of 96
```


Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?

```
Factor }->\mathrm{ name
    | name [_ArgList]
    | name (_ ArgList )
    \rightarrow ~ E x p r ~ M o r e A r g s
ArgList }\quad->\quad\mathrm{ ExprMoreArgs 
```

 | \(\epsilon\)
 - $\epsilon \notin$ FIRST(Factor) $\Rightarrow \mathbf{S T A R T}($ Factor $)=\mathbf{F I R S T}$ (Factor)
- First (Factor \rightarrow name) $=\{$ name $\}$
\circ FIRST(Factor \rightarrow name [ArgList]) =\{name $\}$
- First (Factor \rightarrow name (ArgList)) =\{name $\}$
\therefore The above grammar is not backtrack free.
\Rightarrow To expand an AST node of Factor, with a lookahead of name, the parser has no basis to choose among rules 11, 12, and 13.
- A CFG is not backtrack free if there exists a common prefix (name) among the RHS of multiple production rules.
- To make such a CFG backtrack-free, we may transform it using left factoring: a process of extracting and isolating common prefixes in a set of production rules.
- Identify a common prefix α :

$$
\begin{aligned}
& \boldsymbol{A} \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \ldots\left|\alpha \beta_{n}\right| \gamma_{1}\left|\gamma_{2}\right| \ldots \mid \gamma_{j} \\
& \quad\left[\text { each of } \gamma_{1}, \gamma_{2}, \ldots, \gamma_{j} \text { does not begin with } \alpha\right. \text {] }
\end{aligned}
$$

- Rewrite that production rule as:

$$
\begin{aligned}
& \boldsymbol{A} \rightarrow \alpha B\left|\gamma_{1}\right| \gamma_{2}|\ldots| \gamma_{j} \\
& \boldsymbol{B} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}
\end{aligned}
$$

- New rule $B \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}$ may also contain common prefixes. - Rewriting continues until no common prefixes are identified.

Left-Factoring: Exercise

- Use left-factoring to remove all common prefixes from the following grammar.

11	Factor	\rightarrow	name
12		\|	name [ArgList]
13		\|	name (ArgList)
15	ArgList	\rightarrow	Expr MoreArgs
16	MoreArgs	\rightarrow	, Expr Moreargs
17		।	ϵ

- Identify common prefix name and rewrite rules 11, 12, and 13:

Factor	\rightarrow	name Arguments
Arguments	\rightarrow	$[$ ArgList $]$
	\mid	$($ ArgList $)$

Any more common prefixes?

Backtrack-Free Parsing (2.2)

- Consider this CFG with Start sets of the RHSs:

	Production	FIRST $^{+}$	
2	Expr $^{\prime}$	$\rightarrow+$ Term Expr	$\{+\}$
3	\mid	- Term Expr	$\{-\}$
4	$\mid \epsilon$	$\{\epsilon$, eof,,$\}$	

- The corresponding recursive-descent parser is structured as:

See: parser generator

LL(1) Parser: Exercise

Consider the following grammar:

Q. Is it suitable for a top-down predictive parser?

- If so, show that it satisfies the $L L(1)$ condition.
- If not, identify the problem(s) and correct it (them). Also show that the revised grammar satisfies the $L L(1)$ condition.

BUP: Discovering Rightmost Derivation

- In TDP, we build the start variable as the root node, and then work towards the leaves.
[leftmost derivation]
- In Bottom-Up Parsing (BUP):
- Words (terminals) are still returned from left to right by the scanner.
- As terminals, or a mix of terminals and variables, are identified as reducible to some variable A (i.e., matching the RHS of some production rule for A), then a layer is added.
- Eventually:
- accept:

The start variable is reduced and all words have been consumed.

- reject:

The next word is not eof, but no further reduction can be identified.
Q. Why can BUP find the rightmost derivation (RMD), if any?
A. BUP discovers steps in a RMD in its reverse order.

59 of 96

BUP: Discovering Rightmost Derivation (1)

- table-driven $L R(1)$ parser: an implementation for BUP, which
- Processes input from Left to right
- Constructs a Rightmost derivation
- Uses a lookahead of 1 symbol
- A language has the $L R(1)$ property if it:
- Can be parsed in a single Left to right scan,
- To build a reversed Rightmost derivation,
- Using a lookahead of 1 symbol to determine parsing actions.
- Critical step in a bottom-up parser is to find the next handle.

```
ALGORITHM: BUParse
INPUT: CFG G=(V,\Sigma, R,S), Action & Goto Tables
OUTPUT: Report Parse Success or Syntax Error
PROCEDURE:
initialize an empty stack trace
trace.push(0) /* start state *
word := NextWord()
state := trace.top()
    act := Action[state, word
    if act = ''accept'' then
    \begin{array}{c}{\mathrm{ succeed()}}\\{\mathrm{ lseif act = '`reduce based on A }->\mp@subsup{\beta}{}{\prime},}\\{\mathrm{ 'ten}}\end{array})
    elseif act = '`reduce based on }A->\mp@subsup{\beta}{}{\prime\prime}\mathrm{ then 
        trace.pop() 2 < | | times /* word + state *
        state := trace.top()
        trace.push(A)
        next := Goto[state, A]
    trace.push(next)
    elseif act = ''shift to si'' then
        trace.push (word)
        word := NextWord()
        else
```

Consider the steps of performing BUP on input () :

Iteration	State	word	Stack	Handle	Action
initial	-	(\$ 0	- none -	-
1	0	(\$ 0	- none -	shift 3
2	3)	\$ 0 (3	- none -	shift 7
3	7	eof	\$0 (3) 7	()	reduce 5
4	2	eof	\$ 0 Pair 2	Pair	reduce 3
5	1	eof	\$ 0 List 1	List	accept

BUP: Example Tracing (1)

- Consider the following grammar for parentheses:

BUP: Example Tracing (2.2)

Consider the steps of performing BUP on input (()) ():

Assume: tables Action and Goto constructed accordingly:

Iteration	State	word	Stack	Handle	Action
initial	-	$\underline{1}$	\$ 0	- none -	-
1	0	$\underline{1}$	\$ 0	- none -	shift 3
2	3	(\$ 0 (3	- none -	shift 6
3	6	$\underline{1}$	\$0 $0^{(1)} 6$	- none -	shift 10
4	10	$\underline{1}$	\$ 0 (3 (6) 10	()	reduce 5
5	5	$\underline{1}$	\$ 0 (3 Pair 5	- none -	shift 8
6	8	$\underline{1}$	\$ 0 (3 Pair 5) 8	(Pair)	reduce 4
7	2	(\$ 0 Pair 2	Pair	reduce 3
8	1	-	\$ 0 List 1	- none -	shift 3
9	3	$\underline{\square}$	\$ 0 List 1 (3	- none -	shift 7
10	7	eof	\$ 0 List 1 (3) 7	()	reduce 5
11	4	eof	\$ 0 List 1 Pair 4	List Pair	reduce 2
12	1	eof	\$ 0 List 1	List	accept

Consider the steps of performing BUP on input ())

Iteration	State	word	Stack	Handle	Action
initial	-	$\underline{(}$	$\$ 0$	- none -	-
1	0	$\underline{(}$	$\$ 0$	- none -	shift 3
2	3	$\underline{)}$	$\$ 0(3$	- none -	shift 7
3	7	$\underline{)}$	$\$ 0 \underline{(} 3) 7$	- none -	error

65 of 96

LR(1) Items: Scenarios

An $L R(1)$ item can denote:

1. Possibility

- In the current parsing context, an A would be valid.
- - represents the position of the parser's stack top
- Recognizing a β next would be one step towards discovering an A.

2. Partial Completion

- The parser has progressed from $[A \rightarrow \bullet \beta \gamma$, a] by recognizing β.
- Recognizing a γ next would be one step towards discovering an A.

3. COMPLETION

$$
[A \rightarrow \beta \gamma \bullet, a]
$$

- Parser has progressed from $[A \rightarrow \bullet \beta \gamma$, a] by recognizing $\beta \gamma$.
- $\beta \gamma$ found in a context where an A followed by a would be valid.
- If the current input word matches a, then:
- Current complet item is a handle .
- Parser can reduce $\beta \gamma$ to A
- Accordingly, in the stack, $\beta \gamma$ (and their associated states) are replaced with A (and its associated state).
67 of 96

LR(1) Items: Example (1.1)

Consider the following grammar for parentheses:

```
Goal }->\mathrm{ List
List }->\mathrm{ List Pair Initial State:[Goal }->\bullet\mathrm{ List, eof]
    | Pair
Pair }->\mathrm{ ( Pair )
    | ( )
Desired Final State: [Goal }->\mathrm{ List`, eof]
Intermediate States: Subset Construction
```

Q. Derive all $L R(1)$ items for the above grammar.

- Follow (List) = \{eof, (\} Follow(Pair) $=\{$ eof, (,) \}
- For each production $A \rightarrow \beta$, given Follow $(A), L R(1)$ items are:

```
{[A->\bullet\beta\gamma,a]|a\in\operatorname{FolLow}(A)}
{[A->\beta\bullet\gamma, a]|a\in\operatorname{Follow}(A)}
\cup
{[A->\beta\gamma\bullet, a]|a\in\operatorname{FolLOw}(A)}
```


LR(1) Items: Example (1.2)

Q. Given production $A \rightarrow \beta$ (e.g., Pair \rightarrow (Pair)), how many
$L R(1)$ items can be generated?

- The current parsing progress (on matching the RHS) can be:

1. - (Pair)
2. (•Pair)
3. (Pair•)
4. (Pair) •

- Lookahead symbol following Pair? Follow(Pair) =\{eof, (,) \}
- All possible $L R(1)$ items related to Pair \rightarrow (Pair)?
$\checkmark[\bullet($ Pair), eof] [•(Pair), (] [•(Pair),)]
$\checkmark[(\bullet$ Pair), eof $][(\bullet$ Pair), (] [(•Pair),)]
$\checkmark[($ Pair•), eof] [(Pair•), (] [(Pair•),)]
$\checkmark[($ Pair) \bullet, eof] [(Pair) •, (] [(Pair) •,)]
A. How many in general (in terms of A and β)?

69 of 96
possible positions of • possible lookahead symbols

LR(1) Items: Example (1.3)
A. There are $33 L R(1)$ items in the parentheses grammar.

```
[Goal }->\bullet\mathrm{ List,eof]
[Goal }->\mathrm{ List ॰, eof]
[List }->\mathrm{ @List Pair,eof] [List }->\mathrm{ •List Pair,(]
[List }->\mathrm{ List ॰ Pair,eof] [LList }->\mathrm{ List }\bullet\mathrm{ Pair,_(]
[List }->\mathrm{ List Pair •,eof] [List }->\mathrm{ List Pair }\bullet,(]
[List }->\bullet\mathrm{ Pair,eof ] [List }->\bullet\mathrm{ Pair,(]
[List }->\mathrm{ Pair •,eof ] [List }->\mathrm{ Pair •,(]
[Pair }->\bullet(\mathrm{ Pair ),,oof ] [Pair }->\bullet(\mathrm{ (Pair ),_)] [Pair }->\bullet(\mathrm{ Pair ),(]
[Pair }->(\bullet\mathrm{ Pair ),eof ] [Pair }->(\bullet\mathrm{ Pair ),)] [Pair }->(\bullet\mathrm{ Pair ),(]
```



```
[Pair }->\mathrm{ ( • ), eof ] [Pair }->\mathrm{ ( • ),(] ] [Pair }->\mathrm{ (- • ), )]
```


LR(1) Items: Example (2)

Consider the following grammar for expressions:

0	Goal	\rightarrow	Expr	6	Term'	\rightarrow	\times Factor Term'
1	Expr	\rightarrow	Term Expr ${ }^{\prime}$	7		\|	\div Factor Term ${ }^{\prime}$
2	Expr ${ }^{\prime}$	\rightarrow	+ Term Expr ${ }^{\prime}$	8		\|	ϵ
3		1	- Term Expr ${ }^{\prime}$	9	Factor	\rightarrow	(Expr)
4		\|	ϵ	10		\|	num
5	Term	\rightarrow	Factor Term'	11		\|	name

Q. Derive all $L R(1)$ items for the above grammar.

Hints. First compute Follow for each non-terminal:

	Expr	Expr ${ }^{\prime}$	Term	Term'	Factor
FOLLOW	eof,)	eof,)	+,	, +,	+, -

Tips. Ignore ϵ production such as Expr ${ }^{\prime} \rightarrow \epsilon$
since the Follow sets already take them into consideration.
71 of 96

Canonical Collection (CC) vs. LR(1) items

```
Goal }->\mathrm{ List
List }->\mathrm{ List Pair
    | Pair
Pair }->\mathrm{ ( Pair )_
    | ( )
Recall:
LR(1) Items: 33 items
Initial State: [Goal \(\rightarrow \bullet\) List, eof]
Desired Final State: [Goal \(\rightarrow\) List•, eof]
```

- The canonical collection
[Example of $\mathcal{C C}$]
$\mathcal{C C}=\left\{c c_{0}, c c_{1}, c c_{2}, \ldots, c c_{n}\right\}$
denotes the set of valid subset states of a LR(1) parser.
- Each $c c_{i} \in \mathcal{C C}(0 \leq i \leq n)$ is a set of $L R(1)$ items.
- CC $\subseteq \mathbb{P}($ LR(1) items)
$|\mathcal{C C}|$?
$\left[|\mathcal{C C}| \leq 2^{\mid L R(1) \text { items } \mid}\right]$
- To model a LR(1) parser, we use techniques analogous to how an ϵ-NFA is converted into a DFA (subset construction and ϵ-closure).
Analogies.
$\checkmark \operatorname{LR}(1)$ items \approx states of source NFA
$\checkmark \mathcal{C C} \approx$ subset states of target DFA

```
ALGORITHM: closure
    INPUT: CFG G = (V, \Sigma, R, S), a set s of LR(1) items
    OUTPUT: a set of LR(1) items
    PROCEDURE:
    lastS := \varnothing
    while (lastS #s)
    lastS := s
        for [A->\cdots\bulletC \delta,a]\ins:
        for C }->\gamma\inR
            for b\inFIRST(\deltaa)
                s:=s\cup{[c->\bullet\gamma,b]}
    return s
```

- Line 8: $[A \rightarrow \cdots \bullet \boldsymbol{C} \delta, a] \in s$ indicates that the parser's next task is to match $\boldsymbol{C} \delta$ with a lookahead symbol a.
- Line 9: Given: matching γ can reduce to C
- Line 10: Given: $\mathrm{b} \in \operatorname{FIRST}(\delta a)$ is a valid lookahead symbol after reducing γ to \boldsymbol{C}
- Line 11: Add a new item [$\boldsymbol{C} \rightarrow \bullet \gamma, \mathrm{b}$] into s.
- Line 6: Termination is guaranteed.
\because Each iteration adds ≥ 1 item to s (otherwise last $S \neq s$ is false).
Line 7: Given: item $[\alpha \rightarrow \beta \bullet x \delta$, a] (where x is the next to match) Line 8: Add [$\alpha \rightarrow \beta x \bullet \delta, a]$ (indicating x is matched) to moved Line 10: Calculate and return closure(moved) as the "next subset state" from s with a "transition" x .

Constructing $\mathcal{C C}$: The closure Procedure (2.1)

```
Goal }->\mathrm{ List
```

Goal }->\mathrm{ List
List }->\mathrm{ List Pair
List }->\mathrm{ List Pair
| Pair
| Pair
Pair ->(Pair)
Pair ->(Pair)
| ()
| ()
Calculate ccoloclosure({[Goal }->\bullet\mathrm{ List, eof] }).
Calculate ccoloclosure({[Goal }->\bullet\mathrm{ List, eof] }).
Initial State: [Goal }->\bullet\mathrm{ List, eof]

```
    Initial State: [Goal }->\bullet\mathrm{ List, eof]
```

```
ALGORITHM: goto
INPUT: a set s of LR(1) items, a symbol x
OUTPUT: a set of LR(1) items
PROCEDURE:
    moved := \varnothing
    for tem, & if item = [\alpha->\beta\bullet < < , a] then
        moved := moved \cup{[\alpha->\betaX\bullet\delta, a]}
\begin{array}{c}{\mathrm{ end }}\\{\mathrm{ return Closure(moved)}}\end{array})
```


Constructing $\mathcal{C C}$: The goto Procedure (2)

```
Goal }->\mathrm{ List
List }->\mathrm{ List Pair
    | Pair
Pair }->\mathrm{ ( Pair ) 
    | ( )
```

Calculate goto($c c_{0}$, ().
["next state" from $c c_{0}$ taking (]

```
    INPUT: a grammar }G=(V,\Sigma,R,S), goal production S->S'
```

 INPUT: a grammar }G=(V,\Sigma,R,S), goal production S->S'
 OUTPUT
 OUTPUT
 (1) a secC={c\mp@subsup{c}{0}{},c\mp@subsup{c}{1}{},\ldots,c\mp@subsup{c}{n}{}}\mathrm{ where }c\mp@subsup{c}{j}{}\subseteq\mp@subsup{G}{}{\prime}sLR(1) items
 (1) a secC={c\mp@subsup{c}{0}{},c\mp@subsup{c}{1}{},\ldots,c\mp@subsup{c}{n}{}}\mathrm{ where }c\mp@subsup{c}{j}{}\subseteq\mp@subsup{G}{}{\prime}sLR(1) items
 (2) a transition functio
 (2) a transition functio
 CEDURE
 CEDURE
 cco := closure({[S->\bullet\mp@subsup{S}{}{\prime}, eof]})
 cco := closure({[S->\bullet\mp@subsup{S}{}{\prime}, eof]})
 cco:= closure
 cco:= closure
 processed := {cco}
 processed := {cco}
 lastCC :=
 lastCC :=
 while(lastCC \not=CC)
 while(lastCC \not=CC)
 whist(lastCC =CCC)
 whist(lastCC =CCC)
 for cc: s.t
 for cc: s.t
 for cci s.t. }c\mp@subsup{c}{i}{}\in\mathcal{CC}\wedgec\mp@subsup{c}{i}{}\not=\mathrm{ processed:
    ```
        for cci s.t. }c\mp@subsup{c}{i}{}\in\mathcal{CC}\wedgec\mp@subsup{c}{i}{}\not=\mathrm{ processed:
```



```
        temp := goto(cci
```

 temp := goto(cci
 if temp&\mathcal{CC}\mathrm{ then}
 if temp&\mathcal{CC}\mathrm{ then}
 CC := \mathcal{CC }\cup{\mathrm{ temp}}
 CC := \mathcal{CC }\cup{\mathrm{ temp}}
 \delta := \delta\cup (cci, x, temp)
    ```
        \delta := \delta\cup (cci, x, temp)
```


Constructing $\mathcal{C C}$: The Algorithm (2.2)

Resulting transition table:

Iteration	Item	Goal	List	Pair	$\underline{(}$	$\underline{)}$	eof
0	CC_{0}	\emptyset	CC_{1}	CC_{2}	CC_{3}	\emptyset	\emptyset
1	CC_{1}	\emptyset	\emptyset	CC_{4}	CC_{3}	\emptyset	\emptyset
	CC_{2}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
	CC_{3}	\emptyset	\emptyset	CC_{5}	CC_{6}	CC_{7}	\emptyset
2	CC_{4}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
	CC_{5}	\emptyset	\emptyset	\emptyset	\emptyset	CC_{8}	\emptyset
	CC_{6}	\emptyset	\emptyset	CC	CC_{6}	CC_{10}	\emptyset
	CC_{7}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
3	CC_{8}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
	CC_{9}	\emptyset	\emptyset	\emptyset	\emptyset	CC_{11}	\emptyset
	CC_{10}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
4	CC_{11}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

79 of 96

Resulting DFA for the parser:

Constructing $\mathcal{C C}$: The Algorithm (2.4.1)

[Def. of CC]

$$
\begin{aligned}
& \left.\mathrm{CC}_{10}=\{[\text { Pair } \rightarrow(-) \bullet,)]\right\} \\
& \mathrm{CC}_{11}=\{[\text { Pair } \rightarrow(\text { Pair }) \bullet, \underline{-}]\} \\
& 81 \text { of } 96
\end{aligned}
$$


```
ALGORITHM: BuildActionGotoTables
    INPUT:
        (1) a grammar G = V, \Sigma, R,S)
        (2) goal production'S->S'
        (3) a canonical collection }\mathcal{CC}={c\mp@subsup{c}{0}{},c\mp@subsup{c}{1}{},\ldots,c\mp@subsup{c}{n}{}
    OUTPUT: Action Table & Goto Table
    PROCEDURE:
    for CC i\inCC:
        for item \inCC
        if item=[A->\beta\bulletx\gamma,a]^\delta(c\mp@subsup{c}{i}{},\textrm{x})=c\mp@subsup{c}{j}{}\mathrm{ then}
        Action[i, x] := shift j
        Action[i, a]:= reduce A A
```



```
        Action[i, eof] := accept
        end
        for }v\in
        if }\delta(c\mp@subsup{c}{i}{},v)=c\mp@subsup{c}{j}{}\mathrm{ then
        Goto[i,v]=j
        end
```

- L12, 13: Next valid step in discovering A is to match terminal symbol x
- L14, 15: Having recognized β, if current word matches lookahead a, reduce β to A
- L16, 17: Accept if input exhausted and what's recognized reducible to start var. S.
- L20, 21: Record consequence of a reduction to non-terminal v from state i

Constructing Action and Goto Tables (2)

Resulting Action and Goto tables:

State	Action Table			Goto Table	
	eof	($\underline{1}$	List	Pair
0		s 3		1	2
1	acc	s 3			4
2	r 3	r 3			
3		s 6	s 7		5
4	r 2	r 2			
5			s 8		
6		s 6	s 10		9
7	r 5	r 5			
8	r 4	r 4			
9			s 11		
10			r 5		
11			r 4		

83 of 96

BUP: Discovering Ambiguity (1)

1	Goal	\rightarrow	Stmt
2	Stmt	\rightarrow	if expr then Stmt
3		\mid	if expr then Stmt else Stmt 4
		assign	

- Calculate $\mathcal{C C}=\left\{c c_{0}, C c_{1}, \ldots,\right\}$
- Calculate the transition function $\delta: \mathcal{C C} \times \Sigma \rightarrow \mathcal{C C}$

BUP: Discovering Ambiguity (2.1)

Resulting transition table:

| | Item | Goal | Stmt | if | expr | then | else | assign | eof |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | CC_{0} | \emptyset | CC_{1} | CC_{2} | \emptyset | \emptyset | \emptyset | CC_{3} | \emptyset |
| 1 | CC_{1} | \emptyset |
| | CC_{2} | \emptyset | \emptyset | \emptyset | CC_{4} | \emptyset | \emptyset | \emptyset | \emptyset |
| | CC_{3} | \emptyset |
| 2 | CC_{4} | \emptyset | \emptyset | \emptyset | \emptyset | CC_{5} | \emptyset | \emptyset | \emptyset |
| 3 | CC_{5} | \emptyset | CC_{6} | CC_{7} | \emptyset | \emptyset | \emptyset | CC_{8} | \emptyset |
| 4 | CC_{6} | \emptyset | \emptyset | \emptyset | \emptyset | \emptyset | CC_{9} | \emptyset | \emptyset |
| | CC_{7} | \emptyset | \emptyset | \emptyset | CC_{10} | \emptyset | \emptyset | \emptyset | \emptyset |
| | CC_{8} | \emptyset |
| 5 | CC_{9} | \emptyset | CC_{11} | CC_{2} | \emptyset | \emptyset | \emptyset | CC_{3} | \emptyset |
| | CC_{10} | \emptyset | \emptyset | \emptyset | \emptyset | CC_{12} | \emptyset | \emptyset | \emptyset |
| 6 | CC_{11} | \emptyset |
| | CC_{12} | \emptyset | CC_{13} | CC_{7} | \emptyset | \emptyset | \emptyset | CC_{8} | \emptyset |
| 7 | CC_{13} | \emptyset | \emptyset | \emptyset | \emptyset | \emptyset | CC_{14} | \emptyset | \emptyset |
| 8 | CC_{14} | \emptyset | CC_{15} | CC_{7} | \emptyset | \emptyset | \emptyset | CC_{8} | \emptyset |
| 9 | CC_{15} | \emptyset |

BUP: Discovering Ambiguity (2.2.2)

Resulting canonical collection $\mathcal{C C}$:

$$
\mathrm{cC}_{8}=\{[\text { Stmt } \rightarrow \text { assign } \bullet,\{\text { eof, el se }\}]\}
$$

$\mathrm{CC}_{10}=\left\{\begin{array}{ll}{[S t m t \rightarrow \text { if expr } \bullet \text { then Stmt, \{eoof, el se\} }],} \\ [S t m t \rightarrow \text { if expr } \bullet \text { then Stmt el se Stmt, \{eof, el se) }]\}\end{array}\right\}$ CC $_{9}=\left\{\begin{array}{l}{[\text { Stmt } \rightarrow \text { if expr then Stmt el se } \bullet \text { Stmt eoof }],} \\ {[\text { Stmt } \rightarrow \text { © if expr then Stmt, eof }],} \\ {[\text { Stmt } \rightarrow \text { if expr then Stmt el se Stmt, eof }],} \\ {[\text { Stmt } \rightarrow \text { ©ssign,eof }]}\end{array}\right\}$

$\mathrm{CC}_{11}=\{[$ Stmt \rightarrow if expr then Stmt else Stmt \bullet, eof $]\}$
$\mathrm{CC}_{13}=\left\{\begin{array}{l}{[\operatorname{Stmt} \rightarrow \text { if expr then Stmt } \bullet,\{\text { eof, el see], }} \\ [\text { Stmt } \rightarrow \text { if expr then Stmt } \bullet \text { el se Stmt, (eof, el se }\}]\end{array}\right\}$

87 of 96

BUP: Discovering Ambiguity (3)

- Consider CC $_{13}$

$$
\mathrm{Cc}_{13}=\left\{\begin{array}{l}
{[\text { Stmt } \rightarrow \text { if expr then Stmt } \bullet,\{\text { eof, el se\} }],} \\
{[\text { Stmt } \rightarrow \text { if expr then Stmt } \bullet \text { el se Stmt, }\{\text { eof, el se }\}]}
\end{array}\right\}
$$

Q. What does it mean if the current word to consume is else?
A. We can either shift (then expecting to match another Stmt) or reduce to a Stmt.
Action[13, else] cannot hold shift and reduce simultaneously.
\Rightarrow This is known as the shift-reduce conflict .

- Consider another scenario:

$$
c c_{i}=\left\{\begin{array}{l}
{[A \rightarrow \gamma \delta \bullet,} \\
{[B \rightarrow \gamma \delta \bullet,}
\end{array}\right],
$$

Q. What does it mean if the current word to consume is a?
A. We can either reduce to A or reduce to B.

Action $[i, a]$ cannot hold A and B simultaneously.
\Rightarrow This is known as the reduce-reduce conflict .

