Parser: Syntactic Analysis

Readings: EAC2 Chapter 3

EECS4302 A: Compilers and Interpreters Fall 2022

CHEN-WEI WANG

Parser in Context

Recall:

- Treats the input programas as a a sequence of <u>classified</u> tokens/words
- Applies rules parsing token sequences as

abstract syntax trees (ASTs)

[**syntactic** analysis]

- Upon termination:
 - Reports token sequences not derivable as ASTs
 - Produces an AST
- No longer considers *every character* in input program.
- Derivable token sequences constitute a context-free language (CFL).

2 of 96

Context-Free Languages: Introduction

- We have seen regular languages:
 - Can be described using *finite automata* or *regular expressions*.
 - Satisfy the pumping lemma.
- Language with *recursive* structures are provably *non-regular*.
 e.g., {0ⁿ1ⁿ | n ≥ 0}
- Context-Free Grammars (CFG's) are used to describe strings that can be generated in a recursive fashion.
- Context-Free Languages (CFL's) are:
 - Languages that can be described using CFG's.
 - A proper superset of the set of regular languages.

CFG: Example (1.1)

• The following language that is *non-regular*

$$\{0^n \# 1^n \mid n \ge 0\}$$

can be described using a context-free grammar (CFG):

 $\begin{array}{ccc} A & \rightarrow & 0A^{\circ} \\ A & \rightarrow & B \end{array}$

B → #

- A grammar contains a collection of substitution or production rules, where:
 - ∘ A **terminal** is a word $w \in \Sigma^*$ (e.g., 0, 1, *etc.*).
 - A *variable* or *non-terminal* is a word $w \notin \Sigma^*$ (e.g., A, B, etc.).
 - A **start variable** occurs on the LHS of the topmost rule (e.g., A).

CFG: Example (1.2)

- Given a grammar, generate a string by:
 - 1. Write down the start variable.
 - **2.** Choose a production rule where the *start variable* appears on the LHS of the arrow, and *substitute* it by the RHS.
 - **3.** There are two cases of the re-written string:
 - **3.1** It contains **no** variables, then you are done.
 - **3.2** It contains <u>some</u> variables, then *substitute* each variable using the relevant *production rules*.
 - 4. Repeat Step 3.
- e.g., We can generate an infinite number of strings from

$$\begin{array}{ccc} A & \rightarrow & 0A1 \\ A & \rightarrow & B \\ B & \rightarrow & \# \end{array}$$

$$\circ$$
 $A \Rightarrow B \Rightarrow \#$

$$\circ$$
 $A \Rightarrow 0A1 \Rightarrow 0B1 \Rightarrow 0#1$

$$\circ$$
 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$

o . . 5 of 96

CFG: Example (1.2)

Given a CFG, a string's derivation can be shown as a parse tree.

e.g., The derivation of 000#111 has the parse tree

CFG: Example (2)

Design a CFG for the following language:

$$\{w \mid w \in \{0,1\}^* \land w \text{ is a palidrome}\}$$

e.g., 00, 11, 0110, 1001, etc.

$$P \rightarrow \epsilon$$

$$P \rightarrow 0$$

$$P \rightarrow 1$$

$$P \rightarrow 0P0$$

$$P \rightarrow 1P1$$

7 of 96

CFG: Example (3)

Design a CFG for the following language:

$$\{ww^{R} \mid w \in \{0,1\}^{*}\}$$

e.g., 00, 11, 0110, etc.

$$\begin{array}{ccc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$$

CFG: Example (4)

Design a CFG for the set of binary strings, where each block of 0's followed by at least as many 1's.

```
e.g., 000111, 0001111, etc.
```

• We use *S* to represent one such string, and *A* to represent each such block in *S*.

```
S \rightarrow \epsilon {BC of S}

S \rightarrow AS {RC of S}

A \rightarrow \epsilon {BC of A}

A \rightarrow 01 {BC of A}

A \rightarrow 0A1 {RC of A: equal 0's and 1's}

A \rightarrow A1 {RC of A: more 1's}
```

9 of 96

CFG: Example (5.1) Version 1

Design the grammar for the following small expression language, which supports:

- Arithmetic operations: +, -, *, /
- Relational operations: >, <, >=, <=, ==, /=
- Logical operations: true, false, !, &&, ||, => Start with the variable *Expression*.
- There are two possible versions:
 - 1. All operations are mixed together.
 - **2.** Relevant operations are grouped together. Try both!

Expression → IntegerConstant
| -IntegerConstant
| BooleanConstant
| BinaryOp
| UnaryOp
| (Expression)

IntegerConstant → Digit
| Digit IntegerConstant

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

BooleanConstant → TRUE
| FALSE

CFG: Example (5.3) Version 1


```
BinaryOp → Expression + Expression

| Expression - Expression

| Expression * Expression

| Expression | Expression

| Expression | Expression

| Expression => Expression

| Expression == Expression

| Expression /= Expression

| Expression > Expression

| Expression > Expression

| Expression > Expression

| Expression > Expression
```

UnaryOp → ! Expression

10 of 96

12 of 96

CFG: Example (5.4) Version 1

However, Version 1 of CFG:

Parses string that requires further semantic analysis (e.g., type checking):

e.g., 3 => 6

• Is ambiguous, meaning?

• Some string may have more than one ways to interpreting it.

 An interpretation is either visualized as a parse tree, or written as a sequence of derivations.

e.g., Draw the parse tree(s) for 3 * 5 + 4

13 of 96

CFG: Example (5.5) Version 2

Expression → ArithmeticOp

RelationalOp LogicalOp

(Expression)

IntegerConstant → Digit

Digit IntegerConstant

Digit $\rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

BooleanConstant → TRUE

FALSE

14 of 96

CFG: Example (5.6) Version 2

ArithmeticOp → ArithmeticOp + ArithmeticOp ArithmeticOp - ArithmeticOp ArithmeticOp * ArithmeticOp ArithmeticOp / ArithmeticOp (ArithmeticOp) IntegerConstant -IntegerConstant RelationalOp ArithmeticOp == ArithmeticOp ArithmeticOp /= ArithmeticOp ArithmeticOp > ArithmeticOp ArithmeticOp < ArithmeticOp **LogicalOp** LogicalOp & & LogicalOp LogicalOp | | LogicalOp LogicalOp => LogicalOp ! LogicalOp (LogicalOp) RelationalOp **BooleanConstant**

15 of 96

16 of 96

CFG: Example (5.7) Version 2

However, Version 2 of CFG:

Eliminates some cases for further semantic analysis:

e.g., (1 + 2) = (5 / 4) [no parse tree]

• Still *parses* strings that might require further *semantic analysis*:

e.g., (1 + 2) / (5 - (2 + 3))

• Still is *ambiguous*.

e.g., Draw the parse tree(s) for 3 \star 5 + 4

LASSONDE SCHOOL OF INGINEERING

CFG: Formal Definition (1)

- A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S) :
 - V is a finite set of variables.
 - \circ Σ is a finite set of *terminals*.

$$[V \cap \Sigma = \emptyset]$$

• R is a finite set of rules s.t.

$$R \subseteq \{v \to s \mid v \in V \land s \in (V \cup \Sigma)^*\}$$

- ∘ S ∈ V is is the **start variable**.
- Given strings $u, v, w \in (V \cup \Sigma)^*$, variable $A \in V$, a rule $A \rightarrow w$:
 - ∘ $uAv \Rightarrow uwv$ menas that uAv **yields** uwv.
 - $\circ \mid u \stackrel{*}{\Rightarrow} v \mid$ means that u *derives* v, if:
 - u = v; or
 - $U \Rightarrow U_1 \Rightarrow U_2 \Rightarrow \cdots \Rightarrow U_k \Rightarrow V$

[a *vield sequence*]

• Given a CFG $G = (V, \Sigma, R, S)$, the language of G

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

17 of 96

CFG: Formal Definition (2): Example

• Design the *CFG* for strings of properly-nested parentheses.

e.g., (), () (), ((()())) (), etc.

Present your answer in a *formal* manner.

• $G = (\{S\}, \{(,)\}, R, S)$, where R is

$$S \rightarrow (S) | SS | \epsilon$$

• Draw *parse trees* for the above three strings that *G* generates.

18 of 96

CFG: Formal Definition (3): Example

• Consider the grammar $G = (V, \Sigma, R, S)$:

∘ R is

- ∘ *V* = {*Expr*, *Term*, *Factor*}
- $\circ \Sigma = \{a, +, \star, (,)\}$
- \circ S = Expr
- *Precedence* of operators +, * is embedded in the grammar.
 - "Plus" is specified at a **higher** level (*Expr*) than is "times" (*Term*).
 - Both operands of a multiplication (*Factor*) may be **parenthesized**.

19 of 96

Regular Expressions to CFG's

 Recall the semantics of regular expressions (assuming that we do not consider Ø):

$$L(\epsilon) = \{\epsilon\}$$

 $L(a) = \{a\}$
 $L(E+F) = L(E) \cup L(F)$
 $L(EF) = L(E)L(F)$
 $L(E^*) = (L(E))^*$
 $L(E) = L(E)$

• e.g., Grammar for $(00 + 1)^* + (11 + 0)^*$

$$S \rightarrow A \mid B$$

 $A \rightarrow \epsilon \mid AC$

 $C \rightarrow 00 | 1$

 $B \rightarrow \epsilon \mid BD$

 $D \rightarrow 11 \mid 0$

DFA to CFG's

- Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$:
 - ∘ Make a *variable* R_i for each *state* $q_i ∈ Q$.
 - Make R_0 the **start variable**, where q_0 is the **start state** of M.
 - Add a rule $R_i \rightarrow aR_i$ to the grammar if $\delta(q_i, a) = q_i$.
 - ∘ Add a rule $R_i \rightarrow \epsilon$ if $q_i \in F$.
- e.g., Grammar for

21 of 96

CFG: Leftmost Derivations (1)

$$Expr \rightarrow Expr + Term \mid Term$$
 $Term \rightarrow Term * Factor \mid Factor$
 $Factor \rightarrow (Expr) \mid a$

- ∘ Given a string (ϵ ($V \cup \Sigma$)*), a *left-most derivation (LMD)* keeps substituting the leftmost non-terminal (ϵ V).
- *Unique LMD* for the string a + a * a:

This LMD suggests that a * a is the right operand of +.

22 of 96

CFG: Rightmost Derivations (1)


```
Expr \rightarrow Expr + Term \mid Term
Term \rightarrow Term * Factor \mid Factor
Factor \rightarrow (Expr) \mid a
```

- ∘ Given a string (ϵ ($V \cup \Sigma$)*), a *right-most derivation (RMD*) keeps substituting the rightmost non-terminal (ϵ V).
- *Unique RMD* for the string a + a * a:

```
 Expr \Rightarrow Expr + Term \\ \Rightarrow Expr + Term * Factor \\ \Rightarrow Expr + Term * a \\ \Rightarrow Expr + Factor * a \\ \Rightarrow Expr + a * a \\ \Rightarrow Term + a * a \\ \Rightarrow Factor + a * a \\ \Rightarrow a + a * a
```

This RMD suggests that a * a is the right operand of +.

23 of 96

CFG: Leftmost Derivations (2)


```
Expr → Expr + Term | Term

Term → Term * Factor | Factor

Factor → (Expr) | a
```

• Unique LMD for the string (a + a) * a:

```
Expr ⇒ Term

⇒ Term * Factor

⇒ Factor * Factor

⇒ ( Expr ) * Factor

⇒ ( Expr + Term ) * Factor

⇒ ( Term + Term ) * Factor

⇒ ( Factor + Term ) * Factor

⇒ ( a + Term ) * Factor

⇒ ( a + Factor ) * Factor

⇒ ( a + a ) * Factor

⇒ ( a + a ) * a
```

• This LMD suggests that (a + a) is the left operand of *.

CFG: Rightmost Derivations (2)

$$Expr \rightarrow Expr + Term | Term$$
 $Term \rightarrow Term * Factor | Factor$
 $Factor \rightarrow (Expr) | a$

• Unique RMD for the string (a + a) * a:

 \circ This **RMD** suggests that (a + a) is the left operand of \star .

25 of 96

CFG: Parse Trees vs. Derivations (1)

• Parse trees for (leftmost & rightmost) derivations of expressions:

Orders in which *derivations* are performed are *not* reflected on parse trees.

26 of 96

CFG: Parse Trees vs. Derivations (2)

- A string $w \in \Sigma^*$ may have more than one *derivations*.
 - **Q**: distinct *derivations* for $w \in \Sigma^* \Rightarrow$ distinct *parse trees* for w?
 - **A**: Not in general : Derivations with *distinct orders* of variable substitutions may still result in the *same parse tree*.
- For example:

```
Expr \rightarrow Expr + Term \mid Term
Term \rightarrow Term * Factor \mid Factor
Factor \rightarrow (Expr) \mid a
```

For string a + a * a, the *LMD* and *RMD* have *distinct orders* of variable substitutions, but their corresponding *parse trees are the same*.

27 of 96

CFG: Ambiguity: Definition

Given a grammar $G = (V, \Sigma, R, S)$:

• A string $w \in \Sigma^*$ is derived **ambiguously** in G if there exist two or more **distinct parse trees** or, equally, two or more **distinct LMDs** or, equally, two or more **distinct RMDs**.

We require that all such derivations are completed by following a consisten order (**leftmost** or **rightmost**) to avoid **false positive**.

G is ambiguous if it generates some string ambiguously.

CFG: Ambiguity: Exercise (1)

• Is the following grammar *ambiguous*?

$$Expr \rightarrow Expr + Expr \mid Expr \star Expr \mid (Expr) \mid a$$

• Yes :: it generates the string a + a * a ambiguously:

- Distinct ASTs (for the same input) imply distinct semantic interpretations: e.g., a pre-order traversal for evaluation
- Exercise: Show *LMDs* for the two parse trees.

29 of 96

CFG: Ambiguity: Exercise (2.1)

• Is the following grammar *ambiguous*?

Yes : it derives the following string ambiguously:

if Expr₁ then if Expr₂ then Assignment₁ else Assignment₂

- This is called the *dangling else* problem.
- Exercise: Show LMDs for the two parse trees.

30 of 96

CFG: Ambiguity: Exercise (2.2)

(Meaning 1) Assignment, may be associated with the inner if:

(*Meaning 2*) *Assignment*₂ may be associated with the outer if:

CFG: Ambiguity: Exercise (2.3)

 We may remove the ambiguity by specifying that the dangling else is associated with the nearest if:

```
Statement → if Expr then Statement
| if Expr then WithElse else Statement
| Assignment

WithElse → if Expr then WithElse else WithElse
| Assignment
```

- When applying if ... then WithElse else Statement:
 - The *true* branch will be produced via *WithElse*.
 - The *false* branch will be produced via *Statement*.

There is **no circularity** between the two non-terminals.

Discovering Derivations

- Given a CFG $G = (V, \Sigma, R, S)$ and an input program $p \in \Sigma^*$:
 - So far we **manually** come up a valid **derivation** s.t. $S \stackrel{*}{\Rightarrow} p$.
 - A parser is supposed to <u>automate</u> this <u>derivation</u> process.
 - Input : A sequence of (t, c) pairs, where each token t (e.g., r241) belongs to a syntactic category c (e.g., register); and a CFG G.
 - Output : A *valid derivation* (as an *AST*); or A *parse error*.
- In the process of constructing an **AST** for the input program:
 - o Root of AST: The start symbol S of G
 - Internal nodes: A subset of variables V of G
 - Leaves of AST: A token/terminal sequence
 - \Rightarrow Discovering the *grammatical connections* (w.r.t. R of G) between the **root**, **internal nodes**, and **leaves** is the hard part!
- Approaches to Parsing:
- $[w \in (V \cup \Sigma)^*, A \in V, A \rightarrow w \in R]$
- o Top-down parsing
 - For a node representing \mathbf{A} , extend it with a subtree representing \mathbf{w} .
- Bottom-up parsing

For a substring matching w, build a node representing A accordingly.

33 of 96

TDP: Discovering Leftmost Derivation

```
ALGORITHM: TDParse
 INPUT: CFG G = (V, \Sigma, R, S)
 OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE:
 root := a new node for the start symbol S
 focus := root
 initialize an empty stack trace
 trace. push (null)
 word := NextWord()
 while (true):
    if focus \in V then
       if \exists \underline{unvisited} rule focus \rightarrow \beta_1 \beta_2 \dots \beta_n \in R then
          create \beta_1, \beta_2 \dots \beta_n as children of focus
          trace.push(\beta_n\beta_{n-1}\dots\beta_2)
          focus := \beta_1
          if focus = S then report syntax error
          else backtrack
    elseif word matches focus then
       word := NextWord()
       focus := trace.pop()
    elseif word = EOF \( \cdot \) focus = null then return root
    else backtrack
```

backtrack = pop *focus*.siblings; *focus* := *focus*.parent; *focus*.resetChildren

TDP: Exercise (1)

• Given the following CFG G:

Trace TDParse on how to build an AST for input a + a * a.

- Running TDParse with G results an infinite loop !!!
 - TDParse focuses on the leftmost non-terminal.
 - The grammar **G** contains *left-recursions*.
- We must first convert left-recursions in G to right-recursions.

35 of 96

TDP: Exercise (2)

• Given the following CFG G:

Exercise. Trace *TDParse* on building AST for a + a * a.

Exercise. Trace *TDParse* on building AST for (a + a) * a.

Q: How to handle ϵ -productions (e.g., $Expr \rightarrow \epsilon$)?

A: Execute focus := trace.pop() to advance to next node.

- Running *TDParse* will **terminate** :: **G** is **right-recursive**.
- We will learn about a systematic approach to converting left-recursions in a given grammar to *right-recursions*.

Left-Recursions (LR): Direct vs. Indirect

Given CFG $G = (V, \Sigma, R, S), \alpha, \beta, \gamma \in (V \cup \Sigma)^*, G$ contains:

- \circ A *cycle* if $\exists A \in V \bullet A \stackrel{*}{\Rightarrow} A$
- A *direct* LR if $A \rightarrow A\alpha \in R$ for non-terminal $A \in V$ e.g., e.g.,

• An *indirect* LR if $A \rightarrow B\beta \in R$ for non-terminals $A, B \in V$, $B \stackrel{*}{\Rightarrow} A\gamma$

$$\begin{array}{ccc}
A & \rightarrow & Br \\
B & \rightarrow & Cd \\
C & \rightarrow & At
\end{array}$$

$$A \rightarrow Br, B \stackrel{*}{\Rightarrow} Atd$$

$$A \rightarrow Ba, B \stackrel{*}{\Rightarrow} Aafd$$

37 of 96

TDP: (Preventively) Eliminating LRs


```
ALGORITHM: RemoveLR
         INPUT: CFG G = (V, \Sigma, R, S)
 3
         ASSUME: G has no \epsilon-productions
 4
         OUTPUT: G' s.t. G' \equiv G, G' has no
 5
                        indirect & direct left-recursions
       PROCEDURE:
          impose an order on V: \langle \langle A_1, A_2, \dots, A_n \rangle \rangle
 8
         for i: 1 .. n:
 9
           for j: 1 ... i-1:
10
             if \exists A_i \rightarrow A_i \gamma \in R \land A_i \rightarrow \delta_1 \mid \delta_2 \mid \ldots \mid \delta_m \in R then
11
                  replace A_i \rightarrow A_i \gamma with A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_m \gamma
12
               end
13
            for A_i \rightarrow A_i \alpha \mid \beta \in R:
               replace it with: A_i \rightarrow \beta A'_i, A'_i \rightarrow \alpha A'_i \mid \epsilon
```

- **L9** to **L12**: Remove *indirect* left-recursions from A_1 to A_{i-1} .
- **L13** to **L14**: Remove *direct* left-recursions from A_1 to A_{i-1} .
- **Loop Invariant** (outer for-loop)? At the start of *i*th iteration:
 - No **direct** or **indirect** left-recursions for $A_1, A_2, ..., A_{i-1}$.
 - More precisely: $\forall j : j < i \bullet \neg (\exists k \bullet k \leq j \land A_i \rightarrow A_k \cdots \in R)$

38 of 96

CFG: Eliminating ϵ -Productions (1)

- Motivations:
 - **TDParse** handles each ϵ -production as a special case.
 - **RemoveLR** produces CFG which may contain ϵ -productions.
- $\epsilon \notin L \Rightarrow \exists \mathsf{CFG} \; G = (V, \; \Sigma, \; R, \; S) \; \mathsf{s.t.} \; G \; \mathsf{has} \; \mathsf{no} \; \epsilon\mathsf{-production}$ has the form $A \to \epsilon$.
- A variable A is **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$.
 - Each terminal symbol is *not nullable*.
 - Variable A is *nullable* if either:
 - $A \rightarrow \epsilon \in R$; or
 - $A \rightarrow B_1 B_2 \dots B_k \in R$, where each variable B_i $(1 \le i \le k)$ is a *nullable*.
- Given a production B → CAD, if only variable A is nullable, then there are 2 versions of B: B → CAD | CD
- In general, given a production A → X₁X₂...X_k with k symbols, if m of the k symbols are nullable:
 - \circ m < k: There are 2^m versions of A.
 - \circ m = k: There are $2^m 1$ versions of A.

[excluding $A \rightarrow \epsilon$]

39 of 96

CFG: Eliminating ϵ -Productions (2)

• Eliminate ϵ -productions from the following grammar:

$$S \rightarrow AB$$

 $A \rightarrow aAA \mid \epsilon$
 $B \rightarrow bBB \mid \epsilon$

Which are the nullable variables?

[S, A, B]

$$S \rightarrow A \mid B \mid AB \quad \{S \rightarrow \epsilon \text{ not included}\}\$$

 $A \rightarrow aAA \mid aA \mid a \quad \{A \rightarrow aA \text{ duplicated}\}\$
 $B \rightarrow bBB \mid bB \mid b \quad \{B \rightarrow bB \text{ duplicated}\}\$

Backtrack-Free Parsing (1)

- TDParse automates the top-down, leftmost derivation process by consistently choosing production rules (e.g., in order of their appearance in CFG).
 - This *inflexibility* may lead to *inefficient* runtime performance due to the need to *backtrack*.
 - e.g., It may take the construction of a giant subtree to find out a mismatch with the input tokens, which end up requiring it to backtrack all the way back to the root (start symbol).
- We may avoid backtracking with a modification to the parser:
 - When deciding which production rule to choose, consider:
 - (1) the *current* input symbol
 - (2) the consequential first symbol if a rule was applied for focus

[lookahead symbol]

- Using a one symbol lookhead, w.r.t. a right-recursive CFG, each alternative for the leftmost nonterminal leads to a unique terminal, allowing the parser to decide on a choice that prevents backtracking.
- Such CFG is backtrack free with the lookhead of one symbol.
- We also call such backtrack-free CFG a predictive grammar.

41 of 96

The FIRST Set: Definition

- Say we write $T \subset \mathbb{P}(\Sigma^*)$ to denote the set of valid tokens recognizable by the scanner.
- **FIRST** (α) = set of symbols that can appear as the *first word* in some string derived from α .
- · More precisely:

$$\mathbf{FIRST}(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in T \\ \{\mathbf{W} \mid \mathbf{W} \in \Sigma^* \land \alpha \overset{*}{\Rightarrow} \mathbf{W}\beta \land \beta \in (\mathbf{V} \cup \Sigma)^*\} & \text{if } \alpha \in \mathbf{V} \end{cases}$$

The FIRST Set: Examples

• Consider this *right*-recursive CFG:

0	Goal	\rightarrow	Expr	6	$Term' \rightarrow$	× Factor Term'
1	Expr	\rightarrow	Term Expr'	7		÷ Factor Term'
2	Expr'	\rightarrow	+ Term Expr'	8		ϵ
3			- Term Expr'	9	$Factor \rightarrow$	<u>(Expr)</u>
4		- 1	ϵ	10		num
5	Term	\rightarrow	Factor Term'	11		name

• Compute FIRST for each terminal (e.g., num, +, ():

• Compute **FIRST** for each non-terminal (e.g., *Expr*, *Term*'):

	Expr	Expr'	Term	Term'	Factor
FIRST	<pre>(, name, num</pre>	+,-, ϵ	(,name,num	X, \div , ϵ	(,name,num

43 of 96

44 of 96

Computing the FIRST Set


```
\mathsf{FIRST}(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in T \\ \{w \mid w \in \Sigma^* \land \alpha \overset{*}{\Rightarrow} w\beta \land \beta \in (V \cup \Sigma)^*\} & \text{if } \alpha \in V \end{cases}
```

```
ALGORITHM: GetFirst
   INPUT: CFG G = (V, \Sigma, R, S)
   T \subset \Sigma^* denotes valid terminals
   OUTPUT: FIRST: V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})
   for \alpha \in (T \cup \{eof, \epsilon\}): First(\alpha) := \{\alpha\}
   for A \in V: First(A) := \emptyset
   lastFirst := ∅
   while (lastFirst # FIRST) :
       lastFirst := FIRST
       for A \rightarrow \beta_1 \beta_2 \dots \beta_k \in R s.t. \forall \beta_i : \beta_i \in (T \cup V):
           rhs := First(\beta_1) - {\epsilon}
           for (i := 1; \epsilon \in FIRST(\beta_i) \land i < k; i++):
               rhs := rhs \cup (First(\beta_{i+1}) - \{\epsilon\})
           if i = k \land \epsilon \in FIRST(\beta_k) then
               rhs := rhs \cup \{\epsilon\}
           First(A) := First(A) \cup rhs
```

LASSONDE SCHOOL OF PRIGINFERING

Computing the FIRST Set: Extension

Recall: First takes as input a token or a variable.

$$\mathsf{FIRST}: V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$$

• The computation of variable *rhs* in algoritm GetFirst actually suggests an extended, overloaded version:

$$| \mathbf{FIRST} : (V \cup T \cup \{\epsilon, eof\})^* \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\}) |$$

FIRST may also take as input a string $\beta_1 \beta_2 \dots \beta_n$ (RHS of rules).

More precisely:

$$\begin{split} & \operatorname{FIRST}(\beta_1\beta_2\dots\beta_n) = \\ & \left\{ \begin{array}{l} \operatorname{FIRST}(\beta_1) \cup \operatorname{FIRST}(\beta_2) \cup \dots \cup \operatorname{FIRST}(\beta_{k-1}) \cup \operatorname{FIRST}(\beta_k) \\ \wedge \\ & \epsilon \notin \operatorname{FIRST}(\beta_k) \end{array} \right. \\ & \left. \begin{array}{l} \forall i: 1 \leq i < k \bullet \epsilon \in \operatorname{FIRST}(\beta_i) \\ \wedge \\ & \epsilon \notin \operatorname{FIRST}(\beta_k) \end{array} \right. \end{split}$$

Note. β_k is the first symbol whose **FIRST** set does not contain ϵ .

45 of 96

Extended FIRST Set: Examples

Consider this *right*-recursive CFG:

e.g., $FIRST(Term\ Expr') = FIRST(Term) = \{\underline{(}, name, num\}$

e.g.,
$$FIRST(+ Term Expr') = FIRST(+) = \{+\}$$

e.g.,
$$FIRST(- Term Expr') = FIRST(-) = \{-\}$$

e.g., $\mathbf{FIRST}(\epsilon) = \{\epsilon\}$

46 of 96

Is the FIRST Set Sufficient

• Consider the following three productions:

In TDP, when the parser attempts to expand an Expr' node, it **looks ahead with one symbol** to decide on the choice of rule: $FIRST(+) = \{+\}$, $FIRST(-) = \{-\}$, and $FIRST(\epsilon) = \{\epsilon\}$.

- Q. When to choose rule (3) (causing focus := trace.pop())? A?. Choose rule (3) when $focus \neq FIRST(+) \land focus \neq FIRST(-)$?
- Correct but inefficient in case of illegal input string: syntax error is only reported after possibly a long series of backtrack.
- Useful if parser knows which words can appear, after an application of the ε-production (rule (3)), as leadling symbols.
- **FOLLOW** $(v:V) \triangleq$ set of symbols that can appear to the immediate right of a string derived from v.

FOLLOW(
$$v$$
) = { $w \mid w, x, y \in \Sigma^* \land v \stackrel{*}{\Rightarrow} x \land S \stackrel{*}{\Rightarrow} xwy$ }

47 of 96

The Follow Set: Examples

• Consider this *right*-recursive CFG:

0	$Goal \rightarrow$	Expr	6	$Term' \rightarrow$	× Factor Term'
1	$Expr \rightarrow$	Term Expr'	7		÷ Factor Term'
2	$Expr' \rightarrow$	+ Term Expr'	8		ϵ
3		- Term Expr'	9	$Factor \rightarrow$	<u>(</u> Expr <u>)</u>
4		ϵ	10		num
5	$Term \rightarrow$	Factor Term'	11		name

• Compute **Follow** for each non-terminal (e.g., *Expr*, *Term'*):

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

Computing the Follow Set

```
\mathsf{Follow}(v) = \{ w \mid w, x, y \in \Sigma^* \land v \overset{*}{\Rightarrow} x \land S \overset{*}{\Rightarrow} xwy \}
```

```
ALGORITHM: GetFollow
  INPUT: CFG G = (V, \Sigma, R, S)
  OUTPUT: Follow: V \longrightarrow \mathbb{P}(T \cup \{eof\})
  for A \in V: Follow(A) := \emptyset
  Follow(S) := \{eof\}
  lastFollow := Ø
  while (lastFollow # Follow):
      lastFollow := Follow
      for A \rightarrow \beta_1 \beta_2 \dots \beta_k \in R:
         trailer := Follow(A)
         for i: k .. 1:
            if \beta_i \in V then
                Follow(\beta_i) := Follow(\beta_i) \cup trailer
                if \epsilon \in \texttt{First}(\beta_i)
                   then trailer := trailer \cup (FIRST(\beta_i) - \epsilon)
                   else trailer := FIRST(\beta_i)
             else
                trailer := FIRST(\beta_i)
```

49 of 96

Backtrack-Free Grammar

- A backtrack-free grammar (for a top-down parser), when expanding the focus internal node, is always able to choose a unique rule with the one-symbol lookahead (or report a syntax error when no rule applies).
- To formulate this, we first define:

$$\mathbf{START}(A \to \beta) = \begin{cases} \mathbf{FIRST}(\beta) & \text{if } \epsilon \notin \mathbf{FIRST}(\beta) \\ \mathbf{FIRST}(\beta) \cup \mathbf{FOLLOW}(A) & \text{otherwise} \end{cases}$$

FIRST(β) is the extended version where β may be $\beta_1\beta_2...\beta_n$

• A **backtrack-free grammar** has each of its productions $A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n$ satisfying:

$$\forall i, j : 1 \leq i, j \leq n \land i \neq j \bullet \mathsf{START}(\gamma_i) \cap \mathsf{START}(\gamma_i) = \emptyset$$

50 of 96

TDP: Lookahead with One Symbol


```
ALGORITHM: TDParse
 INPUT: CFG G = (V, \Sigma, R, S)
 OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE:
 root := a new node for the start symbol S
 focus := root
 initialize an empty stack trace
 trace.push(null)
 word ·= NextWord()
 while (true):
   if focus ∈ V then
       if \exists unvisited rule focus \rightarrow \beta_1 \beta_2 \dots \beta_n \in R \land word \in START(\beta) then
         create \beta_1, \beta_2 \dots \beta_n as children of focus
         trace. push (\beta_n \beta_{n-1} \dots \beta_2)
         focus := \beta_1
       else
         if focus = S then report syntax error
          else backtrack
    elseif word matches focus then
       word := NextWord()
       focus := trace.pop()
    elseif word = EOF \( \) focus = null then return root
    else backtrack
```

backtrack = pop *focus*.siblings; *focus* := *focus*.parent; *focus*.resetChildren

51 of 96

Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?

```
 \begin{array}{lll} \circ & \epsilon \notin \mathsf{FIRST}(\mathit{Factor}) \Rightarrow \mathsf{START}(\mathit{Factor}) = \mathsf{FIRST}(\mathit{Factor}) \\ \circ & \mathsf{FIRST}(\mathit{Factor} \rightarrow \mathsf{name}) & = \{\mathsf{name}\} \\ \circ & \mathsf{FIRST}(\mathit{Factor} \rightarrow \mathsf{name} \  \, [\mathit{ArgList}]\,) & = \{\mathsf{name}\} \\ \circ & \mathsf{FIRST}(\mathit{Factor} \rightarrow \mathsf{name} \  \, (\mathit{ArgList})\,) & = \{\mathsf{name}\} \\ \end{array}
```

... The above grammar is **not** backtrack free.

⇒ To expand an AST node of *Factor*, with a *lookahead* of name, the parser has no basis to choose among rules 11, 12, and 13.

Backtrack-Free Grammar: Left-Factoring

- A CFG is <u>not</u> backtrack free if there exists a <u>common prefix</u> (name) among the RHS of <u>multiple</u> production rules.
- To make such a CFG backtrack-free, we may transform it using left factoring: a process of extracting and isolating common prefixes in a set of production rules.
 - \circ | Identify | a common prefix α :

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_j$$
[each of $\gamma_1, \gamma_2, \dots, \gamma_i$ does not begin with α]

• Rewrite that production rule as:

$$\begin{array}{ccc}
A & \rightarrow & \alpha B \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_j \\
B & \rightarrow & \beta_1 \mid \beta_2 \mid \dots \mid \beta_n
\end{array}$$

- ∘ New rule $B \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$ may <u>also</u> contain *common prefixes*.
- Rewriting continues until no common prefixes are identified.

53 of 96

Left-Factoring: Exercise

 Use <u>left-factoring</u> to remove all <u>common prefixes</u> from the following grammar.

• Identify common prefix name and rewrite rules 11, 12, and 13:

Factor
$$\rightarrow$$
 name Arguments Arguments \rightarrow [ArgList] | (ArgList) | ϵ

Any more *common prefixes*?

[No]

54 of 96

TDP: Terminating and Backtrack-Free

- Given an arbitrary CFG as input to a **top-down parser**:
 - Q. How do we avoid a *non-terminating* parsing process?
 - **A.** Convert left-recursions to right-recursion.
 - Q. How do we minimize the need of backtracking?
 - A. left-factoring & one-symbol lookahead using START
- <u>Not</u> every context-free <u>language</u> has a corresponding <u>backtrack-free</u> context-free grammar.

Given a CFL I, the following is **undecidable**:

$$\exists cfg \mid L(cfg) = I \land isBacktrackFree(cfg)$$

• Given a CFG $g = (V, \Sigma, R, S)$, whether or not g is **backtrack-free** is **decidable**:

For each $A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n \in R$:

$$\forall i, j : 1 \le i, j \le n \land i \ne j \bullet \mathbf{START}(\gamma_i) \cap \mathbf{START}(\gamma_j) = \emptyset$$

55 of 96

Backtrack-Free Parsing (2.1)

- A recursive-descent parser is:
 - A top-down parser
 - Structured as a set of mutually recursive procedures
 Each procedure corresponds to a non-terminal in the grammar.
 See an example.
- Given a **backtrack-free** grammar, a tool (a.k.a. parser generator) can automatically generate:
 - FIRST, FOLLOW, and START sets
 - An efficient *recursive-descent* parser

This generated parser is called an *LL(1) parser*, which:

- Processes input from Left to right
- Constructs a Leftmost derivation
- Uses a lookahead of 1 symbol
- *LL(1) grammars* are those working in an *LL(1)* scheme. *LL(1) grammars* are *backtrack-free* by definition.

Backtrack-Free Parsing (2.2)

• Consider this CFG with START sets of the RHSs:

		Pı	FIRST ⁺	
2	Expr'	\rightarrow	+ Term Expr'	{+}
3			- Term Expr'	{ - }
4			ϵ	$\{\epsilon, eof, \underline{)}\}$

• The corresponding *recursive-descent* parser is structured as:

```
ExprPrim()
if word = + v word = - then /* Rules 2, 3 */
    word := NextWord()
    if(Term())
        then return ExprPrim()
        else return false
    elseif word = ) v word = eof then /* Rule 4 */
        return true
    else
        report a syntax error
        return false
    end

Term()
    ...
57 of 96
```

See: parser generator

LL(1) Parser: Exercise

Consider the following grammar:

- Q. Is it suitable for a top-down predictive parser?
- If so, show that it satisfies the *LL(1)* condition.
- If not, identify the problem(s) and correct it (them). Also show that the revised grammar satisfies the LL(1) condition.

- In TDP, we build the <u>start variable</u> as the *root node*, and then work towards the *leaves*. [leftmost derivation]
- In Bottom-Up Parsing (BUP):
 - Words (terminals) are still returned from left to right by the scanner.
 - As terminals, or a mix of terminals and variables, are identified as
 reducible to some variable A (i.e., matching the RHS of some
 production rule for A), then a layer is added.
 - Eventually:
 - accept:

The *start variable* is reduced and <u>all</u> words have been consumed.

• reject:

The next word is not eof, but no further reduction can be identified.

- **Q.** Why can BUP find the *rightmost* derivation (RMD), if any?
- **A.** BUP discovers steps in a *RMD* in its *reverse* order.

59 of 96

BUP: Discovering Rightmost Derivation (1)

- *table*-driven *LR(1)* parser: an implementation for BUP, which
 - ∘ Processes input from <u>L</u>eft to right
 - Constructs a Rightmost derivation
 - Uses a lookahead of <u>1</u> symbol
- A language has the *LR(1)* property if it:
 - ∘ Can be parsed in a single <u>L</u>eft to right scan,
 - To build a *reversed* **R**ightmost derivation,
 - $\circ~$ Using a lookahead of $\underline{\textbf{1}}$ symbol to determine parsing actions.
- Critical step in a bottom-up parser is to find the next handle.

BUP: Discovering Rightmost Derivation (2)

```
ALGORITHM: BUParse
 INPUT: CFG G = (V, \Sigma, R, S), Action & Goto Tables
 OUTPUT: Report Parse Success or Syntax Error
PROCEDURE:
 initialize an empty stack trace
 trace.push(0) /* start state */
 word := NextWord()
 while (true)
   state := trace.top()
   act := Action[state, word]
  if act = ''accept'' then
    succeed()
   elseif act = ''reduce based on A \rightarrow \beta'' then
    trace.pop() 2 \times |\beta| times /* word + state */
    state := trace.top()
    trace.push(A)
    next := Goto[state, A]
    trace.push(next)
   elseif act = ''shift to Si'' then
    trace.push(word)
    trace.push(i)
    word := NextWord()
   else
    fail()
```

61 of 96

BUP: Example Tracing (1)

Consider the following grammar for parentheses:

• Assume: tables *Action* and *Goto* constructed accordingly:

		Action Table			tion Table Goto Tab l	
	State	eof	<u>(</u>	<u>)</u>	List	Pair
	0		s 3		1	2
	1	acc	s 3			4
	2	r 3	r 3			
	3		s 6	s 7		5
	4	r 2	r 2			
	5			s 8		
	6		s 6	s 10		9
	7	r 5	r 5			
	8	r 4	r 4			
	9			s 11		
	10			r 5		
00 100	11			r 4		
62 of 96						

In Action table:

- s_i: shift to state i
- r_i: reduce to the LHS of production #j

LASSONDE

BUP: Example Tracing (2.1)

Consider the steps of performing BUP on input ():

Iteration	State	word	Stack	Handle	Action
initial	_	<u>(</u>	\$ 0	— none —	_
1	0	(\$ 0	— none —	shift 3
2	3	<u>)</u>	\$ 0 <u>(</u> 3	— none —	shift 7
3	7	eof	\$ 0 <u>(</u> 3 <u>)</u> 7	<u>()</u>	reduce 5
4	2	eof	\$ 0 <i>Pair</i> 2	Pair	reduce 3
5	1	eof	\$ 0 <i>List</i> 1	List	accept

63 of 96

BUP: Example Tracing (2.2)

Consider the steps of performing BUP on input (())():

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ 0	— none —	_
1	0	(\$ 0	— none —	shift 3
2	3	(\$ 0 <u>(</u> 3	— none —	shift 6
3	6	<u>)</u>	\$ 0 <u>(</u> 3 <u>(</u> 6	— none —	shift 10
4	10	<u>)</u>	\$ 0 <u>(</u> 3 <u>(</u> 6 <u>)</u> 10	<u>()</u>	reduce 5
5	5)	\$ 0 <u>(</u> 3 Pair 5	— none —	shift 8
6	8	(\$ 0 <u>(</u> 3 Pair 5 <u>)</u> 8	<u>(</u> Pair <u>)</u>	reduce 4
7	2	<u>(</u>	\$ 0 Pair 2	Pair	reduce 3
8	1	<u>(</u>	\$ 0 <i>List</i> 1	— none —	shift 3
9	3)	\$ 0 <i>List</i> 1 <u>(</u> 3	— none —	shift 7
10	7	eof	\$ 0 List 1 <u>(</u> 3 <u>)</u> 7	<u>()</u>	reduce 5
11	4	eof	\$ 0 List 1 Pair 4	List Pair	reduce 2
12	1	eof	\$ 0 <i>List</i> 1	List	accept

BUP: Example Tracing (2.3)

Consider the steps of performing BUP on input ()):

Iteration	State	word	Stack	Handle	Action
initial	_	<u>(</u>	\$ 0	— none —	_
1	0	(\$ 0	— none —	shift 3
2	3	<u>)</u>	\$ 0 <u>(</u> 3	— none —	shift 7
3	7	<u>)</u>	\$ 0 <u>(</u> 3 <u>)</u> 7	— none —	error

LR(1) Items: Definition

- In LR(1) parsing, Action and Goto tabeles encode legitimate ways (w.r.t. a CFG) for finding handles (for reductions).
- In a table-driven LR(1) parser, the table-construction algorithm represents each potential handle (for a reduction) with an LR(1) item e.g.,

$$[A \rightarrow \beta \bullet \gamma, a]$$

where:

- A *production rule* $A \rightarrow \beta \gamma$ is currently being applied.
- A terminal symbol a servers as a lookahead symbol.
- A *placeholder* indicates the parser's *stack top*.
 - \checkmark The parser's **stack** contains β ("left context").
 - $\checkmark \ \ \gamma$ is yet to be matched.
 - Upon matching βγ, if a matches the current word, then we "replace" βγ (and their associated states) with A (and its associated state).

LR(1) Items: Scenarios

An *LR(1) item* can denote:

1. Possibility

$$[A \rightarrow \bullet \beta \gamma, a]$$

- In the current parsing context, an A would be valid.
- represents the position of the parser's *stack top*
- Recognizing a β next would be one step towards discovering an A.

2. PARTIAL COMPLETION

$$[A \rightarrow \beta \bullet \gamma, a]$$

- The parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing β .
- Recognizing a γ next would be one step towards discovering an A.

3. COMPLETION

$$[A \rightarrow \beta \gamma \bullet, a]$$

- Parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing $\beta \gamma$.
- $\beta \gamma$ found in a context where an *A* followed by a would be valid.
- o If the current input word matches a, then:
 - Current *complet item* is a *handle*.
 - Parser can **reduce** $\beta \gamma$ to A
 - Accordingly, in the *stack*, $\beta\gamma$ (and their associated <u>states</u>) are replaced with *A* (and its associated state).

67 of 96

LR(1) Items: Example (1.1)

Consider the following grammar for parentheses:

```
 \begin{array}{cccc} 1 & Goal \rightarrow List \\ 2 & List \rightarrow List \ Pair \\ 3 & | \ Pair \\ 4 & Pair \rightarrow (\underline{\ Pair \ }\underline{\ }) \\ 5 & | \ (\underline{\ }\underline{\ }\underline{\ }) \end{array}
```

Initial State: [Goal → •List, eof]
Desired Final State: [Goal → List•, eof]

Intermediate States: Subset Construction

- **Q.** Derive all LR(1) items for the above grammar.
- FOLLOW(List) = {eof, (} FOLLOW(Pair) = {eof, (,)}
- For each production $A \rightarrow \beta$, given **Follow**(A), *LR*(1) *items* are:

```
 \left\{ \begin{array}{l} \left[ A \rightarrow \bullet \beta \gamma, \text{ a} \right] \mid a \in \mathsf{FoLLow}(A) \right. \right\} \\ \left\{ \left[ A \rightarrow \beta \bullet \gamma, \text{ a} \right] \mid a \in \mathsf{FoLLow}(A) \right. \right\} \\ \cup \\ \left\{ \left[ A \rightarrow \beta \gamma \bullet, \text{ a} \right] \mid a \in \mathsf{FoLLow}(A) \right. \right\}
```


LR(1) Items: Example (1.2)

- **Q.** Given production $A \rightarrow \beta$ (e.g., $Pair \rightarrow (Pair)$), how many LR(1) items can be generated?
- The current parsing progress (on matching the RHS) can be:

```
1. • ( Pair )
```

- **2.** (Pair)
- **3.** (Pair)
- **4.** (Pair) •
- Lookahead symbol following *Pair*? **Follow**(*Pair*) = {eof, (,) }
- All possible LR(1) items related to $Pair \rightarrow (Pair)$?

```
√ [ • ( Pair ), eof] [ • ( Pair ), (] [ • ( Pair ), )]
√ [ ( •Pair ), eof] [ ( •Pair ), (] [ ( •Pair ), )]
√ [ ( Pair • ), eof] [ ( Pair • ), (] [ ( Pair • ), )]
√ [ ( Pair ) •, eof] [ ( Pair ) •, (] [ ( Pair ) •, )]
```

A. How many in general (in terms of *A* and β)?

$$|\beta| + 1$$
 × |Follow(A)|

possible positions of • possible lookahead symbols

LR(1) Items: Example (1.3)

A. There are 33 *LR(1) items* in the parentheses grammar.

```
[Goal \rightarrow \bullet List, eof]
[Goal \rightarrow List \bullet, eof]
[List \rightarrow \bullet List \ Pair, eof] [List \rightarrow \bullet List \ Pair, ()]
[List \rightarrow List \bullet Pair.eof]
                                            [List \rightarrow List \bullet Pair,(]
[List \rightarrow List \ Pair \bullet, eof] \ [List \rightarrow List \ Pair \bullet, ()]
[List \rightarrow \bullet Pair, e of ]
                                             [List \rightarrow \bullet Pair,(]
[List \rightarrow Pair \bullet, e of]
                                             [List \rightarrow Pair \bullet,(]
[Pair \rightarrow \bullet (Pair), eof] [Pair \rightarrow \bullet (Pair),)
                                                                                      [Pair \rightarrow \bullet (Pair), (]
[Pair \rightarrow (\bullet Pair), eof] [Pair \rightarrow (\bullet Pair),)]
                                                                                      [Pair \rightarrow (\bullet Pair), (]
[Pair \rightarrow (Pair \bullet), eof] [Pair \rightarrow (Pair \bullet),)]
                                                                                      [Pair \rightarrow (Pair \bullet), (]
[Pair \rightarrow (Pair) \bullet, eof] [Pair \rightarrow (Pair) \bullet,)]
                                                                                      [Pair \rightarrow (Pair) \bullet, (]
[Pair \rightarrow \bullet (), eof]
                                             [Pair \rightarrow \bullet ( ), ( ]
                                                                                       [Pair \rightarrow \bullet (),)]
[Pair \rightarrow (\bullet), eof]
                                            [Pair \rightarrow ( \bullet ), ( ]
                                                                                      [Pair \rightarrow (\bullet),)]
[Pair \rightarrow () \bullet, eof]
                                             [Pair \rightarrow () \bullet, (]
                                                                                       [Pair \rightarrow () \bullet,)]
```


LR(1) Items: Example (2)

Consider the following grammar for expressions:

Q. Derive all LR(1) items for the above grammar.

Hints. First compute **Follow** for each non-terminal:

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

Tips. Ignore ϵ *production* such as $Expr' \rightarrow \epsilon$ since the **Follow** sets already take them into consideration.

Canonical Collection (\mathcal{CC}) vs. LR(1) items

LR(1) Items: 33 items

Initial State: [Goal → •List, eof]

Desired Final State: [Goal → List•, eof]

• The canonical collection

[Example of \mathcal{CC}]

 $\mathcal{CC} = \{ cc_0, cc_1, cc_2, \dots, cc_n \}$

denotes the set of valid subset states of a LR(1) parser.

- Each $cc_i \in CC$ $(0 \le i \le n)$ is a set of *LR(1) items*.
- CC ⊆ P(LR(1) items)
- $|\mathcal{CC}|$?

 $|CC| \le 2^{|LR(1)||Iems||}$

- To model a **LR(1) parser**, we use techniques analogous to how an ϵ -NFA is converted into a DFA (subset construction and ϵ -closure).
- Analogies.
 - √ LR(1) items ≈ states of source NFA
 - \checkmark $CC \approx$ subset states of target DFA

Constructing CC: The closure Procedure (1) LASSONDE

- **Line 8**: $[A \to \cdots \bullet C]_{\delta}$, $a] \in s$ indicates that the parser's next task is to match $C]_{\delta}$ with a lookahead symbol a.
- **Line 9**: Given: matching γ can reduce to C
- Line 10: Given: $b \in FIRST(\delta a)$ is a valid lookahead symbol after reducing γ to C
- Line 11: Add a new item [$C \rightarrow \bullet \gamma$, b] into s.
- Line 6: Termination is guaranteed.
 - \therefore Each iteration adds ≥ 1 item to s (otherwise *lastS* $\neq s$ is *false*).

Constructing CC: The closure Procedure (2.1)

Calculate $cc_0 = closure(\{ [Goal \rightarrow \bullet List, eof] \}).$

74 of 96

Constructing CC: The *goto* Procedure (1)


```
1 ALGORITHM: goto
2 INPUT: a set s of LR(1) items, a symbol x
3 OUTPUT: a set of LR(1) items
4 PROCEDURE:
5 moved := \emptyset
6 for item \in s:
7 if item = [\alpha \to \beta \bullet x\delta, a] then
8 moved := mtowed \cup { [\alpha \to \beta x \bullet \delta, a] }
9 end
10 return ctosure(mtoved)
```

Line 7: Given: item $[\alpha \to \beta \bullet x\delta, a]$ (where x is the next to match) **Line 8**: Add $[\alpha \to \beta x \bullet \delta, a]$ (indicating x is matched) to *moved* **Line 10**: Calculate and return *closure*(*moved*) as the "*next subset state*" from s with a "transition" x.

75 of 96

Constructing CC: The goto Procedure (2)

Calculate $goto(cc_0, \cdot)$. ["next state" from cc_0 taking (]

Constructing CC: The Algorithm (1)


```
ALGORITHM: BuildCC
         INPUT: a grammar G = (V, \Sigma, R, S), goal production S \to S'
           (1) a set \mathcal{CC} = \{\mathit{cc}_0, \mathit{cc}_1, \ldots, \mathit{cc}_n\} where \mathit{cc}_i \subseteq \mathit{G'} \text{ s } \mathit{LR}(1) items
            (2) a transition function
         cc_0 := closure(\{[S \rightarrow \bullet S', eof]\})
         \mathcal{C}\mathcal{C} := \{cc_0\}
         processed := \{cc_0\}
10
         lastCC := \emptyset
          while (lastCC \neq CC):
            lastCC := CC
13
            for cc_i s.t. cc_i \in CC \land cc_i \notin processed:
              processed := processed \cup \{cc_i\}
15
              for x s.t. [\cdots \rightarrow \cdots \bullet x \dots] \in CC_i
16
                temp := goto(cc_i, \times)
if temp \notin CC then
17
18
                  CC := CC \cup \{temp\}
                 \delta := \delta \cup (cc_i, x, temp)
```

77 of 96

Constructing CC: The Algorithm (2.1)

- Calculate $\mathcal{CC} = \{cc_0, cc_1, \dots, cc_{11}\}$
- Calculate the transition function $\delta : \mathcal{CC} \times (\Sigma \cup V) \to \mathcal{CC}$

Constructing CC: The Algorithm (2.2)

Resulting transition table:

Iteration	Item	Goal	List	Pair	<u>(</u>	<u>)</u>	eof
0	cc_0	Ø	cc_1	cc_2	CC ₃	Ø	Ø
1	cc_1	Ø	Ø	CC_4	CC_3	Ø	Ø
	CC_2	Ø	Ø	Ø	Ø	Ø	Ø
	CC_3	Ø	Ø	CC_5	CC_6	CC_7	Ø
2	CC_4	Ø	Ø	Ø	Ø	Ø	Ø
	CC_5	Ø	Ø	Ø	Ø	CC_8	Ø
	CC_6	Ø	Ø	CC ₉	CC_6	cc_{10}	Ø
	CC7	Ø	Ø	Ø	Ø	Ø	Ø
3	CC ₈	Ø	Ø	Ø	Ø	Ø	Ø
	CC9	Ø	Ø	Ø	Ø	cc_{11}	Ø
	cc_{10}	Ø	Ø	Ø	Ø	Ø	Ø
4	CC ₁₁	Ø	Ø	Ø	Ø	Ø	Ø

79 of 96

Constructing CC: The Algorithm (2.3)

Resulting DFA for the parser:

78 of 96

Constructing CC: The Algorithm (2.4.1)

Resulting canonical collection CC:

[Def. of \mathcal{CC}]

$ \text{CC}_0 = \begin{cases} [Gad \rightarrow \bullet List, \text{eof}] & [List \rightarrow \bullet List Pair, \text{eof}] & [List \rightarrow \bullet List Pair, \text{f}] \\ [List \rightarrow \bullet Pair, \text{eof}] & [List \rightarrow \bullet Pair, \text{f}] & [Pair \rightarrow \bullet \text{f} Pair, \text{f}, \text{eof}] \\ [Pair \rightarrow \bullet \text{f} Pair, \text{f}, \text{f}] & [Pair \rightarrow \bullet \text{f}, \text{f}, \text{f}] \end{cases} $	$ \text{CC}_1 = \left\{ \begin{matrix} [\textit{Goal} \rightarrow \textit{List} \bullet, \texttt{eof}] & [\textit{List} \rightarrow \textit{List} \bullet \textit{Pair}, \texttt{eof}] & [\textit{List} \rightarrow \textit{List} \bullet \textit{Pair}, \texttt{g}] \\ [\textit{Pair} \rightarrow \bullet \subseteq P \texttt{eof}] & [\textit{Pair} \rightarrow \bullet \subseteq P \texttt{eof}] & [\textit{Pair} \rightarrow \bullet \subseteq P \texttt{eof}] \\ [\textit{Pair} \rightarrow \bullet \subseteq P \texttt{eof}] & [\textit{Pair} \rightarrow \bullet \subseteq P \texttt{eof}] \end{matrix} \right\} $
$\operatorname{CC}_2 = \Big\{ [List \to Pair \bullet, \operatorname{eof}] \mid [List \to Pair \bullet, \subseteq] \Big\}$	$\mathbf{CC_3} = \begin{cases} [\mathit{Pair} \rightarrow \bullet \ (\mathit{Pair} \), \)] & [\mathit{Pair} \rightarrow (\bullet \ \mathit{Pair} \), \ \circ \cap] & [\mathit{Pair} \rightarrow (\bullet \), \)] \\ [\mathit{Pair} \rightarrow \bullet \ (\), \)] & [\mathit{Pair} \rightarrow (\bullet \), \ \circ] & [\mathit{Pair} \rightarrow (\bullet \), \)] \end{cases}$
$CC_4 = \left\{ [List \to List Pair \bullet, eof] \mid [List \to List Pair \bullet, \underline{()}] \right\}$	$CC_5 = \{ [Pair \rightarrow \underline{\ } Pair \bullet \underline{\ }, eof] \ [Pair \rightarrow \underline{\ } Pair \bullet \underline{\ }, \underline{\ }] \}$
$CC_{6} = \begin{cases} [Pair \rightarrow \bullet (Pair),)] & [Pair \rightarrow (\bullet Pair),)] \\ [Pair \rightarrow \bullet (),)] & [Pair \rightarrow (\bullet),)] \end{cases}$	$CC_7 = \{ [Pair \rightarrow (\underline{)} \bullet, eof] \mid [Pair \rightarrow (\underline{)} \bullet, \underline{]} \}$
$CC_8 = \Big\{ [Pair \rightarrow \underline{(Pair)} \bullet, eof] [Pair \rightarrow \underline{(Pair)} \bullet, \underline{(Pair)} \Big\} \Big\}$	$CC_9 = \left\{ [Pair \rightarrow \underline{(Pair \bullet \underline{)}, \underline{)}} \right\}$
$CC_{10} = \left\{ [Pair \rightarrow (\underline{)} \bullet, \underline{)}] \right\}$	$CC_{11} = \left\{ [Pair \rightarrow \underline{(Pair \underline{)} \bullet, \underline{)}} \right\}$

Constructing Action and Goto Tables (1)


```
ALGORITHM: BuildActionGotoTables
2
        INPUT:
3
           (1) a grammar G = (V, \Sigma, R, S)
           (2) goal production S \to S'
           (3) a canonical collection CC = \{cc_0, cc_1, \dots, cc_n\}
          (4) a transition function \delta: CC \times \Sigma \to CC
        OUTPUT: Action Table & Goto Table
      PROCEDURE:
        for CC_i \in CC:
10
          for item ∈ cci:
           if item = [A \rightarrow \beta \bullet x\gamma, a] \land \delta(cc_i, x) = cc_i then
11
            Action[i, x] := shift j
elseif item = [A \rightarrow \beta \bullet, a] then
12
13
              Action[i, a] := reduce A \rightarrow \beta
15
            elseif item = [S \rightarrow S' \bullet, eof] then
16
              Action[i, eof] := accept
17
18
          for v \in V:
19
            if \delta(cc_i, v) = cc_i then
              Goto[i, v] = j
```

- \circ L12, 13: Next valid step in discovering A is to match terminal symbol x.
- \circ **L14, 15**: Having recognized β , if current word matches lookahead a, reduce β to A.
- L16, 17: Accept if input exhausted and what's recognized reducible to start var. S.
- \circ **L20, 21**: Record consequence of a reduction to non-terminal ν from state i

82 of 96

Constructing *Action* and *Goto* **Tables** (2)

Resulting **Action** and **Goto** tables:

	Acti	on T	Goto Table		
State	eof	<u>(</u>	<u>)</u>	List	Pair
0		s 3		1	2
1	acc	s 3			4
2	r 3	r 3			
3		s 6	s 7		5
4	r 2	r 2			
5			s 8		
6		s 6	s 10		9
7	r 5	r 5			
8	r 4	r 4			
9			s 11		
10			r 5		
11			r 4		

83 of 96

BUP: Discovering Ambiguity (1)

1	Goal	\rightarrow	Stmt
2	Stmt	\rightarrow	if expr then <i>Stmt</i>
3			if expr then <i>Stmt</i> else <i>Stmt</i>
4			assign

- Calculate $\mathcal{CC} = \{cc_0, cc_1, \dots, \}$
- Calculate the transition function $\delta : \mathcal{CC} \times \Sigma \to \mathcal{CC}$

BUP: Discovering Ambiguity (2.1)

Resulting transition table:

	Item	Goal	Stmt	if	expr	then	else	assign	eof
0	cc_0	Ø	cc_1	CC_2	Ø	Ø	Ø	CC ₃	Ø
1	cc_1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	CC_2	Ø	Ø	Ø	CC_4	Ø	Ø	Ø	Ø
	CC_3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
2	CC_4	Ø	Ø	Ø	Ø	CC_5	Ø	Ø	Ø
3	CC_5	Ø	cc_6	CC7	Ø	Ø	Ø	CC8	Ø
4	cc_6	Ø	Ø	Ø	Ø	Ø	CC9	Ø	Ø
	CC7	Ø	Ø	Ø	CC_{10}	Ø	Ø	Ø	Ø
	CC8	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
5	CC9	Ø	cc_{11}	cc_2	Ø	Ø	Ø	CC_3	Ø
	cc_{10}	Ø	Ø	Ø	Ø	cc_{12}	Ø	Ø	Ø
6	cc_{11}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	cc_{12}	Ø	cc_{13}	CC7	Ø	Ø	Ø	CC8	Ø
7	cc_{13}	Ø	Ø	Ø	Ø	Ø	cc_{14}	Ø	Ø
8	cc_{14}	Ø	cc_{15}	CC7	Ø	Ø	Ø	CC8	Ø
9	CC_{15}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

BUP: Discovering Ambiguity (2.2.1)

Resulting canonical collection CC:

$$cc_0 = \begin{bmatrix} Goal \rightarrow \bullet Simu, eof \\ [Simt \rightarrow \bullet expr. then Simt else Simt, eof] \end{bmatrix}$$

$$cc_0 = \begin{bmatrix} Goal \rightarrow \bullet Simu, eof \\ [Simt \rightarrow \bullet expr. then Simt else Simt, eof] \end{bmatrix}$$

$$cc_2 = \begin{bmatrix} [Simt \rightarrow if \bullet expr. then Simt else Simt, eof] \end{bmatrix}$$

$$cc_3 = \begin{bmatrix} [Simt \rightarrow if \bullet expr. then Simt else Simt, eof] \end{bmatrix}$$

$$cc_4 = \begin{bmatrix} [Simt \rightarrow if \bullet expr. \bullet then Simt, eof], \\ [Simt \rightarrow if \bullet expr. \bullet then Simt else Simt, eof] \end{bmatrix}$$

$$cc_6 = \begin{bmatrix} [Simt \rightarrow if \bullet expr. then Simt \bullet expr. then Simt \bullet expr. then Simt \bullet expr. then Simt, eof, else], \\ [Simt \rightarrow if \bullet expr. then Simt, eof, else] \end{bmatrix}$$

$$cc_6 = \begin{bmatrix} [Simt \rightarrow if \bullet expr. then Simt \bullet expr. then Simt \bullet expr. then Simt, eof, else] \end{bmatrix}$$

$$cc_7 = \begin{bmatrix} [Simt \rightarrow if \bullet expr. then Simt, eof, else] \end{bmatrix}, \\ [Simt \rightarrow if \bullet expr. then Simt, eof, else] \end{bmatrix}, \\ [Simt \rightarrow if \bullet expr. then Simt, eof, else] \end{bmatrix}$$

BUP: Discovering Ambiguity (2.2.2)

Resulting canonical collection CC:

$$\mathbf{CC}_{9} = \left\{ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix} \right\}$$

$$\mathbf{CC}_{9} = \left\{ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{else } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt \text{else } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{if expr then } Stmt. \text{eof}, \text{else} \end{bmatrix}, \\ \end{bmatrix}$$

BUP: Discovering Ambiguity (3)

Consider cc₁₃

87 of 96

$$cc_{13} = \begin{cases} [\mathit{Stmt} \to \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; , \{\mathsf{eof}, \mathsf{else}\}], \\ [\mathit{Stmt} \to \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; \mathsf{else} \; \mathit{Stmt}, \{\mathsf{eof}, \mathsf{else}\}] \end{cases}$$

Q. What does it mean if the current word to consume is else?

A. We can either **shift** (then expecting to match another *Stmt*) or **reduce** to a *Stmt*.

Action[13, else] cannot hold shift and reduce simultaneously.

- ⇒ This is known as the *shift-reduce conflict*.
- Consider another scenario:

$$cc_i = \left\{ \begin{array}{l} [A \to \gamma \delta \bullet, a], \\ [B \to \gamma \delta \bullet, a] \end{array} \right\}$$

- Q. What does it mean if the current word to consume is a?
- **A**. We can either **reduce** to A or **reduce** to B.

Action[i, a] cannot hold A and B simultaneously.

⇒ This is known as the *reduce-reduce conflict*.

Index (1)

Parser in Context

Context-Free Languages: Introduction

CFG: Example (1.1)

CFG: Example (1.2)

CFG: Example (1.2)

CFG: Example (2)

CFG: Example (3)

CFG: Example (4)

CFG: Example (5.1) Version 1

CFG: Example (5.2) Version 1

CFG: Example (5.3) Version 1

89 of 96

Index (2)

CFG: Example (5.5) Version 2

CFG: Example (5.6) Version 2

CFG: Example (5.7) Version 2

CFG: Formal Definition (1)

CFG: Formal Definition (2): Example

CFG: Formal Definition (3): Example

Regular Expressions to CFG's

DFA to CFG's

CFG: Leftmost Derivations (1)

CFG: Rightmost Derivations (1)

90 of 96

Index (3)

CFG: Leftmost Derivations (2)

CFG: Rightmost Derivations (2)

CFG: Parse Trees vs. Derivations (1)

CFG: Parse Trees vs. Derivations (2)

CFG: Ambiguity: Definition

CFG: Ambiguity: Exercise (1)

CFG: Ambiguity: Exercise (2.1)

CFG: Ambiguity: Exercise (2.2)

CFG: Ambiguity: Exercise (2.3)

Discovering Derivations

TDP: Discovering Leftmost Derivation

91 of 96

Index (4)

TDP: Exercise (1)

TDP: Exercise (2)

Left-Recursions (LF): Direct vs. Indirect

TDP: (Preventively) Eliminating LRs

CFG: Eliminating *ϵ*-Productions (1)

CFG: Eliminating ϵ -Productions (2)

Backtrack-Free Parsing (1)

The first Set: Definition

The first Set: Examples

Computing the first Set

Computing the first Set: Extension

Index (5)

Extended first Set: Examples

Is the first Set Sufficient?

The follow Set: Examples

Computing the follow Set

Backtrack-Free Grammar

TDP: Lookahead with One Symbol

Backtrack-Free Grammar: Exercise

Backtrack-Free Grammar: Left-Factoring

Left-Factoring: Exercise

TDP: Terminating and Backtrack-Free

Backtrack-Free Parsing (2.1)

93 of 96

Index (6)

Backtrack-Free Parsing (2.2)

LL(1) Parser: Exercise

BUP: Discovering Rightmost Derivation

BUP: Discovering Rightmost Derivation (1)

BUP: Discovering Rightmost Derivation (2)

BUP: Example Tracing (1)

BUP: Example Tracing (2.1)

BUP: Example Tracing (2.2)

BUP: Example Tracing (2.3)

LR(1) Items: Definition

LR(1) Items: Scenarios

94 of 96

Index (7)

LR(1) Items: Example (1.1)

LR(1) Items: Example (1.2)

LR(1) Items: Example (1.3)

LR(1) Items: Example (2)

Canonical Collection (CC) vs. LR(1) items

Constructing CC: The closure Procedure (1)

Constructing CC: The closure Procedure (2.1)

Constructing CC: The *goto* Procedure (1)

Constructing CC: The goto Procedure (2)

Constructing CC: The Algorithm (1)

Constructing CC: The Algorithm (2.1)

95 of 96

Index (8)

Constructing CC: The Algorithm (2.2)

Constructing CC: The Algorithm (2.3)

Constructing CC: The Algorithm (2.4)

Constructing Action and Goto Tables (1)

Constructing Action and Goto Tables (2)

BUP: Discovering Ambiguity (1)

BUP: Discovering Ambiguity (2.1)

BUP: Discovering Ambiguity (2.2.1)

BUP: Discovering Ambiguity (2.2.2)

BUP: Discovering Ambiguity (3)