Scanner: Lexical Analysis
Readings: EAC2 Chapter 2

EECS4302 A:
Compilers and Interpreters

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

Scanner in Context

I

LASSONDE

o Recall:

Lexical Analysis Syntactic Analysis

ource Program

(seq. of characters)

2o
(n
&
8
5
3
g
@
2
=
=3
g
=
3
3
@
bl
g
@
E

-)
' Il
i
1| AST, - ! pretty printed
T
! Il
i

,,

Semantic Analysis

Target Program

(e]

o

[¢]

Upon termination:

Treats the input programas as a a sequence of characters
Applies rules recognizing character sequences as fokens

[lexical analysis]

e Reports character sequences not recognizable as tokens

e Produces a a sequence of tokens

[e]

[e]

Only part of compiler touching every character in input program.
Tokens recognizable by scanner constitute a regular language .

Scanner: Formulation & Implementation [sono:

Kleene’s Construction

Code for
a scanner
RE DFA Minimization DFA
Thompson’s Subset
Construction Construction

NFA

I

Alphabets i

An alphabet is a finite, nonempty set of symbols.

o The convention is to write X , possibly with a informative
subscript, to denote the alphabet in question.

o Use either a set enumeration or a set comprehension to define
your own alphabet.

eg. Xeng={ab,...,z,AB,....Z} [the English alphabet]
e.g., Xpin=10,1} [the binary alphabet]
€.0., Xgec={d|0<d<9} [the decimal alphabet]

e.0., ey [the keyboard alphabet]

I

Strings (1) LASSONDE

e A string ora word is finite sequence of symbols chosen
from some alphabet.
e.g., Oxford is a string over the English alphabet 3,4
e.g., 01010 is a string over the binary alphabet ¥,
e.g., 01010.01 is not a string over L,
e.g., 57 is a string over the decimal alphabet ¥ 4.
e |tis not correct to say, e.g., 01010 € L, [Why?]
e The length of a string w, denoted as |w|, is the number of
characters it contains.
o e.g., |Oxford| =6
o e isthe empty string (|e| = 0) that may be from any alphabet.
» Given two strings x and y, their concatenation , denoted as xy,
is a new string formed by a copy of x followed by a copy of y.
o eg.,Letx=071107and y =110, then xy=01101110
o The empty string ¢ is the identity for concatenation :
— e for any string w

I

Strings (2) s

« Given an alphabet 5, we write £X | where k ¢ N, to denote the
set of strings of length k from %

YK = {w| wisastring over ¥ A |w| =k}

more formal?

o e.g., {0,132 ={00, 01, 10, 11}

o Given X, £0 is {¢}
e Given X, X* is the set of nonempty strings.

st=y'ur?uriu... = {w|wexkak>0}=J =¥
k>0
e Given X, ¥* is the set of strings of all possible lengths.
Y =Y u{e}

I

Review Exercises: Strings e sous

1. What is [{a, b, ..., z}°|?

2. Enumerate, in a systematic manner, the set {a, b, 0}4.
3. Explain the difference between ¥ and X '.

4. Prove or disprove: Y1 Sy =X cX;

I

Languages LASSONDE

e Alanguage L over ¥ (where || is finite) is a set of strings s.t.
Lcy*
e When useful, include an informative subscript
to denote the language L in question.
o e.g., The language of compilable Java programs
Luava = {prog | prog € X, Aprog compiles in Eclipse}

Note. prog compiling means no lexical, syntactical, or type errors.

o e.g., The language of strings with n 0’s followed by n 1’s (n > 0)
{¢,01,0011,000111,...} ={0™" | n>0}

o e.g., The language of strings with an equal number of 0’s and 1’s
{¢,01,10,0011,0101,0110,1100,1010,1001,...}
= {w|# of 0’s in w = # of 1’s in w}

I

Review Exercises: Languages

1.

w N

Use set comprehensions to define the following languages.

Be as formal as possible.

o A language over {0, 1} consisting of strings beginning with some
0’s (possibly none) followed by at least as many 1’s.

o A language over {a, b, c} consisting of strings beginning with
some a’s (possibly none), followed by some b’s and then some C’s,
s.t. the # of a’s is at least as many as the sum of #s of b’s and c’s.

Explain the difference between the two languages {¢} and @.

. Justify that ¥*, @, and {¢} are all languages over ¥.

Prove or disprove: If L is a language over ¥, and ¥, 2 ¥, then L
is also a language over ¥».

Hint: Provethat Y c Yo AL cYy* = Lc Y5

Prove or disprove: If L is a language over ¥, and ¥» c ¥, then L
is also a language over ¥».

Hint: Provethat S c Y ALcY* = Lc¥;

I

Pr0b|emS LASSONDE

e Given a language L over some alphabet >, a problem is the
decision on whether or not a given string w is a member of L.

wel

Is this equivalent to deciding w € ¥*? [No]
weX* = we Lis not necessarily true.

e e.g., The Java compiler solves the problem of deciding if a
user-supplied string of symbols is a member of L ;...

i or by

I

Regular Expressions (RE): Introduction

* Regular expressions (RegExp’s) are:
o A type of language-defining notation
e This is similar to the equally-expressive DFA, NFA, and ¢-NFA.
o Textual and look just like a programming language
e e.g., Set of strings denoted by 01* + 10*? [specify formally]
L={0x|xe{1}*}u{ix|xe{0}}
e e.g., Set of strings denoted by (0*10*10%) *10*?
L={w|w has odd # of 1’s}
This is dissimilar to the diagrammatic DFA, NFA, and e-NFA.
e RegExp’s can be considered as a “user-friendly” alternative to NFA for
describing software components. [e.g., text search]
o Writing a RegExp is like writing an algebraic expression, using the
defined operators, e.g., ((4 + 3) %= 5) % 6
» Despite the programming convenience they provide, RegExp’s,
DFA, NFA, and ¢-NFA are all provably equivalent .

o They are capable of defining all and only regular languages.

Lot b

I

RE: Language Operations (1)

« Given X of input alphabets, the simplest RegExp is? [seX']
o e.g., Given X ={a, b, c}, expression a denotes the language { a }
consisting of a single string a.
e Given two languages L, M € **, there are 3 operators for
building a larger language out of them:

1. Union
LuM={w|welLvweM}

In the textual form, we write + for union.
2. Concatenation
IM={xy|xeLryeM}

In the textual form, we write either . or nothing at all for
concatenation.

17 ot b

I

RE: Language Operations (2)

3. Kleene Closure (or Kleene Star)
L* = ULI
>0

where

{e}
L

{X1X2|X1 EL/\XZEL}

~ =~
N = O
I

=
I

{ xixa...x; [xela1<j<i}
(S —
i concatenations

In the textual form, we write « for closure.

Question: What is |L'| (i € N)? [IL)]
Question: Given that L = {0}*, what is L*? [L]

I

RE: Construction (1)

We may build regular expressions recursively:

e Each (basic or recursive) form of regular expressions denotes
a language (i.e., a set of strings that it accepts).

* Base Case:
o Constants ¢ and @ are regular expressions.

L(e) = {e}
L) = ©

o Aninput symbol a€ X is a regular expression.

L(a)={a}

If we want a regular expression for the language consisting of only
the string w € *, we write w as the regular expression.
o Variables such as L, M, etc., might also denote languages.

I

RE: Construction (2)

e Recursive Case: Given that E and F are regular expressions:
o The union E + F is a regular expression.

L(CE+F)=L(E)uL(F)

o The concatenation EF is a regular expression.
L(EF)=L(E)L(F)

o Kleene closure of E is a regular expression.
LCE")=(L(E))”

o A parenthesized E is a regular expression.
L((E)) = L(E)

I

RE: Construction (3)
Exercises:
e g+L [o+L=L=g+L]
e gL [ol=2=Lz]
o ¥
gt = gPuglug?u...

= {eJugugu...

= {e}
.Q*L [g*L:L:Lg*]

b ot b

I

RE: Construction (4)

Write a regular expression for the following language

{w]|w has alternating 0’s and 1’s}

Would (01)* work? [alternating 10’s?]
Would (01)* + (10)* work? [starting and ending with 17]
0(10)* + (01)* + (10)* + 1(01)*

It seems that:

o 1st and 3rd terms have (10)* as the common factor.
o 2nd and 4th terms have (01)* as the common factor.

Can we simplify the above regular expression?
e (e+0)(10)* + (e+1)(01)*

1ot b

I

RE: Review Exercises LASSONDE

Write the regular expressions to describe the following languages:
e {w|w ends with 01}

e {w|w contains 01 as a substring}

e {wW|w contains no more than three consecutive 1’s}

{w]|w ends with 01vw has an odd # of 0’s}

se{+,— €}

*
A XeEXH .

A YeXi.
A =(X=€eAny=¢€)

sx.y

xe{0,1}*Aye{0,1}*
A X has alternating 0’s and 1’'s
A ¥ has an odd # 0’s and an odd # 1’s

I

RE: Operator Precedence

¢ In an order of decreasing precedence:
o Kleene star operator
o Concatenation operator
o Union operator
* When necessary, use parentheses to force the intended order
of evaluation.

° e.g.,
o 10* vs. (10)* [10* is equivalent to 1(0%)]
o 01*+1vs. 0(1*+1) [01* + 1 is equivalentto (0(1*)) + (1)]
o 0+1*vs. (0+1)" [0+1*is equivalentto (0) + (1*)]

19 ot b

I

DFA: Deterministic Finite Automata (1.1)

e A deterministic finite automata (DFA) is a finite state

machine (FSM) that accepts (or recognizes) a pattern of

behaviour.

o For lexical analysis, we study patterns of strings (i.e., how
alphabet symbols are ordered).

o Unless otherwise specified, we consider strings in {0,1}*

o Each pattern contains the set of satisfying strings.

o We describe the patterns of strings using set comprehensions:
e {w|w has an odd number of 0’s }
e {wW|WwW has an even number of 1’s}

W +e
* {W| A W has equal # of alternating 0’s and 1’s }
e {w|w contains 01 as a substring}
W has an even number of 0’'s
A W has an odd number of 1’s
¢ Given a pattern description, we design a DFA that accepts it.

o The resulting DFA can be transformed into an executable program.

o {w|

DFA: Deterministic Finite Automata (1.2)

o The transition diagram below defines a DFA which
accepis/recognizes exactly the language

{w|w has an odd number of 0’s}

o Each incoming or outgoing arc (called a transition) corresponds
to an input alphabet symbol.

o sp with an unlabelled incoming transition is the start state.

o sz drawn as a double circle is a final state.

o All states have outgoing transitions covering {0, 1}.

DFA: Deterministic Finite Automata (1.3)

The transition diagram below defines a DFA which
accepis/recognizes exactly the language

W +e
w .
{ | A W has equal # of alternating 0’s and 1’s }

v ot b

I

Review Exercises: Drawing DFAs LASSONDE

Draw the transition diagrams for DFAs which accept other
example string patterns:

e {w|w has an even number of 1’s}
e {w|w contains 01 as a substring }

. W| W has an even number of 0’s
A W has an odd number of 1’s

P30t

I

DFA: Deterministic Finite Automata (2.1) |ssooe

A deterministic finite automata (DFA) is a 5-tuple

M:(Qv Z? 67 Qo F)

Q is a finite set of states.
Y is afinite set of input symbols (i.e., the alphabet).
d:(QxX)— Qis a transition function
0 takes as arguments a state and an input symbol and returns a state.
Qo € Q is the start state.
F < Qis a set of final or accepting states.

[e]

o

[e]

[e]

[e]

PZiwe 3

DFA: Deterministic Finite Automata (2.2) |ssonoe

We formalize the above DFA as M = (Q, X, 6, qo, F), where
* Q={so,s1}
e > ={0,1}
* 0={((50,0),51),((S0,1),%0), ((51,0), %), ((s1,1),81)}
state \ input || 0 | 1
So S1 | So
Sq So | S1

® o = So
s F={s1}

DFA: Deterministic Finite Automata (2.3.1) |ssoo

string

We formalize the above DFA as M = (Q, X, ¢, qo, F), where
* Q={s0,51,52,853,54, S5}

e > ={0,1}

® o =350

o = {33,34}

DFA: Deterministic Finite Automata (2.3.2)

P ot b

state \ input || 0 | 1
So S1 | So
Sq S5 | S3
So S4 | S5
S3 S1 | S5
S4 S5 | So
S5 S5 | S5

I

DFA: Deterministic Finite Automata (2.4) |sonoe

e GivenaDFAM=(Q, &, 6, qu, F):
o We write L(M) to denote the language of M : the set of strings

that M accepts.
o A string is accepted if it results in a sequence of transitions:
beginning from the start state and ending in a final state.

_ aids...an |
L(M)_{ 1sisnAa,-eZA(S(qH,a,-):q,-/\q,,eF}
o M rejects any string w ¢ L(M).
e We may also consider L(M) as concatenations of labels from

the set of all valid paths of M ’s transition diagram; each such
path starts with go and ends in a state in F.

PE ot b

I

DFA: Deterministic Finite Automata (2.5) [.sonoe
e Givena DFAM = (Q, ¥, 9, qu, F), we may simplify the
definition of L(M) by extending ¢ (which takes an input symbol)
to & (which takes an input string).
0:(QxT) - Q
We may define 4 recursively, using ¢!
() = q
o(q, xa) 0(0(g,x),a)
where ge Q, x e X*,and aec X
¢ A neater definition of L(M) : the set of strings w € ¥* such that
5(qo, w) is an accepting state.
LIM)={w|weX*rd(qo,w)eF}
e Alanguage L is said to be a regular language , if there is some

DFA M such that L = L(M).

I

Review Exercises: Formalizing DFAs

Formalize DFAs (as 5-tuples) for the other example string patterns
mentioned:

e {wW|w has an even number of 0’s}
e {w|w contains 01 as a substring }

. W| W has an even number of 0’s
A W has an odd number of 1’s

ClINe E3Y

NFA: Nondeterministic Finite Automata (1.1)sono:
Problem: Design a DFA that accepts the following language:
L={x01|xe{0,1}"}

That is, L is the set of strings of 0Os and 1s ending with 01.
1 [4)

Given an input string w, we may simplify the above DFA by:
o nondeterministically treating state qp as both:

¢ a state ready to read the last two input symbols from w
o a state not yet ready to read the last two input symbols from w
o substantially reducing the outgoing transitions from ¢; and @

Compare the above DFA with the DFA in slide

NFA: Nondeterministic Finite Automata (1.2) sono:

e A non-deterministic finite automata (NFA) that accepts the
same language:

e How an NFA determines if an input 00707 should be processed:

KIO;—qO;—qO*—%;—qO;—qO

S,

q q q

! (stuck) \ \

32 o1 b

I

NFA: Nondeterministic Finite Automata (2) |.assonoe

e A nondeterministic finite automata (NFA) , like a DFA, is a
FSM that accepts (or recognizes) a pattern of behaviour.

e An NFA being nondeterministic means that from a given state,
the same input label might corresponds to multiple
transitions that lead to distinct states.

o Each such transition offers an alternative path.

o Each alternative path is explored in parallel.

o If there exists an alternative path that succeeds in processing the
input string, then we say the NFA accepts that input string.

o If all alternative paths get stuck at some point and fail to process
the input string, then we say the NFA rejects that input string.

e NFAs are often more succinct (i.e., fewer states) and easier to
design than DFAs.
e However, NFAs are just as expressive as are DFAs.

o We can always convert an NFA to a DFA.

I

NFA: Nondeterministic Finite Automata (3.1) oo

e A nondeterministic finite automata (NFA) is a 5-tuple

M:(Qv Zv 67 CIO7 F)

Q is a finite set of states.
3 is a finite set of input symbols (i.e., the alphabet).
o §:(QxX)—P(Q)is a transition function
¢ Given a state and an input symbol, ¢ returns a set of states.
o Equivalently, we can write: 6: (QxX) » Q [a partial function]
o qp € Qis the start state.
o Fc Qis asetof final or accepting states.

¢ What is the difference between a DFA and an NFA?

o § of a DFA returns a single state.
o ¢ of an NFA returns a (possibly empty) set of states.

[e]

[e]

34 ot b

NFA: Nondeterministic Finite Automata (3.2)) oo

Given an input string 00101:

* Read 0: 6(q0,0)={ qo,q1 }

Read 0: 6(g0 .0)ud(g1,0)={ qo.q1 }va={qo,q }
Read 1: 6(qo,1)ui(gi,1)={q u{g}={ q,.q}
Read 0: 5(g0 ,0)ui(92,0)={q,q1 }vo={q, G }

Read":(s(qO"I)U(S(a1 ’1):{070#71 }U{Q2}={QOaQ1> q2 }

{ Qo, 41, Q2 }ﬁ{ Qo } #@..00101 is accepted

I

NFA: Nondeterministic Finite Automata (3.3).

e Givena NFAM=(Q, X, §, qo, F), we may simplify the

definition of L(M) by extending § (which takes an input symbol)

to 4 (which takes an input string).
E (QAxTZ")->P(Q)
We may define 4 recursively, using ¢!
@(076) = {q} X
o(g,xa) = U{0(q",a)[q €i(q,x)}
where ge Q, xeX*,and aec X

A neater definition of L(M) : the set of strings w € ¥* such that

(qo, w) contains at least one accepting state.
LIM)={w|weX*Ai(qo,w)nF %2}

36 or b

N
DFA = NFA (1) :A§SONDE

o

o

[e]

o

o

For many languages, constructing an accepting NFA is easier than
a DFA.
From each state of an NFA:
e QOutgoing transitions need not cover the entire %.
e From a given state, the same symbol may non-deterministically lead
to multiple states.
In practice:
e An NFA has just as many states as its equivalent DFA does.
¢ An NFA often has fewer transitions than its equivalent DFA does.

In the worst case:

e While an NFA has n states, its equivalent DFA has 2" states.

Nonetheless, an NFA is still just as expressive as a DFA.

o A language accepted by some NFA is accepted by some DFA:
VN ¢ Ne NFA= (3D e De DFAAL(D)=L(N))

e And vice versa, trivially?

VD e DeDFA= (3N o Ne NFAAL(D) = L(N))

32016

DFA = NFA (2.2): Lazy Evaluation (1)
Given an NFA:

0, 1

ons

Subset construction (with lazy evaluation) produces a DFA with ¢ as:

state \ input || 0 \ 1
5(qo,0) 9(qo, 1)
{0} = {q.q1) = {a0}
(S(QO,O)Uf;(Ch,O) c)‘(q071)uz5(q1,1)
{0, 91} = {Qoq}tve = {qo}u{g}
= {qo, a1} = {qo, g2}
9(qo;0) ud(ge,0) 9(qo;1) v (e, 1)
{90, g2} = {qv.q1}ue = {qtuo
= {qo, a1} = {q}

35 o1 b

DFA = NFA (2.2): Lazy Evaluation (2)

Applying subset construction (with lazy evaluation), we arrive

in a DFA transition table:
state \ input H 0 ‘ 1

{qo} {q,a1} | {q0}
{qo, a1} {qo0, a1} | {q, %}
{90, G2} {90,a1} | {qo}
We then draw the DFA accordingly:
1 0

Compare the above DFA with the DFA in slide Bl

39 o1 b

DFA = NFA (2.2): Lazy Evaluation (3)

et ae o

e Givenan NFA N = (Qun, X n, 0N, Qo, Fn):

ALGORITHM: ReachableSubsetStates
INPUT: qo: Qu ; OUTPUT: Reachable < P(Qy)
PROCEDURE:
Reachable := { {q} }
ToDiscover := { {qv} }
while (ToDiscover + @) {
choose S:P(Qy) such that S e ToDiscover
remove S from ToDiscover
NotYetDiscovered :=
({ {6n(s,0) | s€S} }u{ {on(s,1) | s€S} })\Reachable
Reachable := ReachableU NotYetDiscovered
ToDiscover := ToDiscover u NotYetDiscovered
}
return Reachable

e RT of ReachableSubsetStates? [029]

e Often only a small portion of the | P(Qy)| subset states is

reachable from {qy} = Lazy Evaluation efficient in practice!

dll ot hH

I

e-NFA: Examples (1) ngsgrg{gNE
Draw the NFA for the following two languages:
1.
xe{0,1}*
X A ye{0,1}*
Y1 A x has alternating 0’s and 1’s
A ¥ has an odd # 0’s and an odd # 1’s
2.
w0 11 W has alternating 0’s and 1’'s
0.1 V. W has an odd # 0’s and an odd # 1’'s
3.
se{+,— ¢}
A XeX}
SX. dec
Y1 a Y eX
A =(X=€eny=¢€)

e-NFA: Examples (2)

From qg to g4, reading a sign is optional: a p/us or a minus, or

nothing at all (i.e., €).

I

E'NFA: Formalizatlon (1) LASSONDE

An e-NFA is a 5-tuple

M=(Q, z? 57 Qo F)

Q is a finite set of states.

Y is a finite set of input symbols (i.e., the alphabet).

o §:(Qx(Xu{e}))—>P(Q) is a transition function
0 takes as arguments a state and an input symbol, or an empty string
¢, and returns a set of states.

Qo € Q is the start state.

F c Qis a set of final or accepting states.

o

o

[e]

o

a3 ot hH

I

«-NFA: Formalization (2)

9,1,..,9 9,1,..,9

@ €k, - @ 0,1,..,9

Draw a transition table for the above NFA'’s § function:

H € +, - . 0..9
QP | {¢) {m} o %)
a1 %) %) (G2} 191,04}
®R| 2 % @ {gs}
& | {95} o %) {a3}
Qs | @ 2 {g} %)
gs %) %) %) %)

da ot hH

I

E'NFA: EpSilon-C|OSUI‘eS (1) LASSONDE

e Given e-NFA N
N:(Qa zv 57 Qo, F)

we define the epsilon closure (or e-closure) as a function

ECLOSE : Q- P(Q)

e Forany state ge Q
ECLOSE(Q) ={q}u |J ECLOSE(p)

ped(q.e)

as ot hH

E'NFA: EpSilon-C|OSUI'eS (2) LASSONDE

ECLOSE(Qo)
= { (qo,e) ={q1,q} }
{Qo} UECLOSE(Q1) UECLOSE(Qz)
= { ECLOSE(q1), 0(q1,€)={qs}, ECLOSE(Qz), 0(Qz.€)=2 }
{@o}u({qi}uECLOSE(qs) YU ({G2} UD)
= { ECLOSE(q3), 6(gs,€)={gs} }
{ao} v ({aqi}u({gs}vECLOSE(gs)))u({ge}ud)
= { ECLOSE(Qs), d(Gs,€)=@ }

{gofu({gi}u({gtu({giva)))u({gluve)

I

E'NFA: Formalizatlon (3) i\gsoms

e Givenac¢-NFAM = (Q, =, §, qu, F), we may simplify the

definition of L(M) by extending § (which takes an input symbol)

to 4 (which takes an input string).
E (QAxTZ")->P(Q)
We may define 4 recursively, using ¢!
5(q,e) = ECLOSE(Q)
5(g,xa) = U{ECLOSE(Q")|q" ci(q',a)nq €i(q, %)}

where ge Q, xeX*,and ae X
e Then we define L(M) as the set of strings w € ¥* such that

(qo, w) contains at least one accepting state.
LIM)={w|weX*Ai(qo,w)nF %2}

a7 ot hH

«-NFA: Formalization (4)

0,1,.,9
0,1,.,9

Given an input string 5.6:
5(Qo,€) = ECLOSE(qo) = {qo, ¢1}
* Read 5: 9(q0,5)vd(q1,5) =2u{qr,qat ={q1,qs }
3(qo,5) = ECLOSE(Q1) UECLOSE(Qs) = {1} U {qu} = {1, qa}
e Read .: 0(q1,.)ud(qs,.) ={q}u{gs} ={ g, }
0(Qo,5.) = ECLOSE(Qe) UECLOSE(qs) = {G2} U {33, G5} = {q2, Gs, G5}
* Read 6: 0(q2,6)u(qs,6)Ld(05,6) = {g}u{giuo={qg}

5(qo,5.6) = ECLOSE(qs) = {q3, G5} [5.6 is accepted]

R
DFA = -NFA: Extended Subset Const. (1) |ssonoe

Subset construction (with lazy evaluation and
epsilon closures) produces a DFA transition table.

|| de0..9 | se{+,-} | .

{Qo, a1} (91,94} | {a1} {q}
{g1,04} {g1,q} | @ {92,05, 05}
{qi} {g1,q4} | @ {0}
{2} {93,05} | @ o
{qZ7Q37QS} {q37q5} 1%} %)
{3,095} {g5, G5} %) 1%}

For example, 6({qo, g1}, d) is calculated as follows: [d€0..9]

U{ECLOSE(Q) | g€ 9(qo,d) ud(qr,d)}
U{ECLOSE(Q) | g€ @u{qi,qa}}
U{ECLOSE(Q) | g€ {q1,qu}}
ECLOSE(Qy) UECLOSE(Qs)

{g1}u{a}

{g1,qu}

R
DFA = -NFA: Extended Subset Const. (2) |ssonoe

Given an e=NFA N = (Qu, Xy, 0n, o, Fn), by applying the
extended subset construction to it, the resulting DFA
D =(Qp,%p.dp.9p,.,.. Fp) is such that:

>p =
9Dstart =
Fp =
Qp =
5D (S, a)

bl ot b

Y

ECLOSE(Qp)

{S|ScQuASnFy+o}
{S|ScOQur(BweweX* = S=dy(qo,w)) }
U{ ECLOSE(S") | se SA S eip(s,a) }

I

Regu‘ar EXpI‘eSSiOI‘I tO E'NFA LASSONDE

¢ Just as we construct each complex regular expression
recursively, we define its equivalent ¢-NFA recursively .

e Given a regular expression R, we construct an e-NFA E, such
that L(R) = L(E), with
o Exactly one accept state.
o No incoming arc to the start state.
o No outgoing arc from the accept state.

Bl ot b

Regu‘ar EXpI‘eSSiOI‘I tO E'NFA LASSONDE

Base Cases:

® ¢

e a [aeX]

I

Regu‘ar EXpI‘eSSiOI‘I to «-NFA ngsgrg{gNE
Recursive Cases: [Rand S are RE’s]
e R+S

—=) @

e 0 s o7 °

e RS

5 ok 5 o)
e R*

3ot b

Regular Expression to -NFA: Examples (1.1])sono:

e 0+1

e (0+1)"

Regular Expression to <-NFA: Examples (1.

e (0+1)*1(0+1)

I

Minimizing DFA: Motivation LASSONDE

* Recall: ’ Regular Expresion ‘ —] e-NFA \ —] DFA\
¢ DFA produced by the extended subset construction (with
lazy evaluation) may not be minimum on its size of state.
e When the required size of memory is sensitive
(e.g., processor’s cache memory),
the fewer number of DFA states, the better.

bb ot b

-
—

Minimizing DFA: Algorithm LASSONDE

ALGORITHM: MinimizeDFAStates

INPUT: DFA M=(Q, X, 6, qo, F)
OUTPUT: M’ s.t. minimum |Q| and equivalent behaviour as M

PROCEDURE :

for(p € P):
find the maximal S c p s.t. splittable(p, S)

if S #J then

T :=TuU {s, p-S}
else

T :=TuU {p}

end

splittable(p, S) holds iff there is c € X s.t.

1. Scp(orequivalently: p- S + @)
2. Transitions via c lead all s € S to states in same partition p1 (p1 + p).

Dot b

Minimizing DFA: Examples

Exercises: Minimize the DFA from Jaere} Q1 & Q2, p59, EAC2.

Exercise: ‘i\%ﬁsom

Regular Expression to Minimized DFA

Given regular expression r [0. . 9]+ which specifies the pattern of
a register name, derive the equivalent DFA with the minimum
number of states. Show all steps.

Y or b

I

Implementing DFA as Scanner LASSONDE
o The source language has a list of syntactic categories:
e.g., keyword while [while]
e.g., identifiers [[a-zA-2] [a-zA-20-9_]]
e.g., white spaces [[\t\r]+]

o A compiler's scanner must recognize words from all syntactic
categories of the source language.
o Each syntactic category is specified via a regular expression.

r + r + ...+ I'n
~—— ~—— ~—~—
syn. cat. 1 syn. cat. 2 syn. cat. n

e Overall, a scanner should be implemented based on the minimized
DFA accommodating all syntactic categories.
o Principles of a scanner:
¢ Returns one word at a time
o Each returned word is the longest possible that matches a pattern
o A priority may be specified among patterns
(e.g., new is a keyword, not identifier)

Classifier (CharcCat)
r 0,1,2,...,9 EOF Other
Register Digit Other Other

Transition

Consider the syntactic category of register names.
Specified as a regular expression : r [0.
Afer conversion to e-NFA, then to DFA, then to minimized DFA:

.91+

The following tables encode knowledge about the above DFA:

(%)

So
51
s2
Se

Register Digit Other | Token Type (Type)

S
Se
Se
Se

Se
$2
52
Se

Se
Se
Se
Se

So S1 s2 Se

invalid invalid register invalid

The scanner then is implemented via a 4-stage skeleton:

NextWord()
-— Stage 1: Initialization
state := Sy ; word := €

initialize an empty stack S ; s.push (bad)
-—- Stage 2: Scanning Loop
while (state # Sg)
NextChar (char) ; word := word + char
if state € F then reset stack S end
s.push (state)
cat := CharCat|[char]
state := d[state, cat]
-— Stage 3: Rollback Loop
while (state ¢ F A state # bad)
state := s.pop ()
truncate word
—-— Stage 4: Interpret and Report
if state € F then return Type[state]
else return invalid
end

b2 ot hH

Index (1)

Scanner: Formulafion & Implementation|

Hewew Exercises: S[rln§§

U U S

[Review Exercises: Languages|
Problems

egular expressions . Introauctio

RE: Tanguage Operations (1)

Index (2)

RE: Language Operations (2]
RE: Construction (1)
RE: Construction (2]
RE: Construction (3)
RE: Construction (4]
BEBeview EXErcises
RE: Operator Precedence]
Review Exercises: Drawing DFAY

b4 ot hH

Index (3)

Feview Exercises: Formalizing DFAS
INFA: Nondeterministic Finite Automata (2]

b ot hH

Index (4)

IQFK Nondeterministic Finite Automata 132I
IQFK Nondeterministic Finite Automata i33|

= .<). Lazy evaiuation

= .2). Lazy evaiuation

= .2): Lazy Evaluafion
[-NFA: Examples (T)|

[-NFA: Examples (2}

[-NFA: Formalization (1)
[-NFA: Formalization (2}

- : Epsilon-Closures

Index (5)

- . Epslion-Closures
E-NFK Formalization igl
E-NFK Formalization MI

= e . EXtende ubset Const.

= €= . EXtende ubset Const.

Regular Expression fo c-NFA
Reqular Expression fo c-NFA
Regular Expression fo c-NFA
Reqular Expression to c-NFA: Examples (1.1)
Reqular Expression to c-NFA: Examples (1.2)

[Minimizing DFA: Mofivafion|

Index (6)

Minimizing DFA: AlGorthm|

Minimizing DFA: Examples

Exercise:]

Ee§ular Expression to Minimized DFA
Implemenhng DFA"as Scannei

Implemenhng DFA: Table-Driven Scanner i |I
Implemenhng DFA: Table-Driven Scanner iZI

b2 ot bH

	Scanner in Context
	Scanner: Formulation & Implementation
	Alphabets
	Strings (1)
	Strings (2)
	Review Exercises: Strings
	Languages
	Review Exercises: Languages
	Problems
	Regular Expressions (RE): Introduction
	RE: Language Operations (1)
	RE: Language Operations (2)
	RE: Construction (1)
	RE: Construction (2)
	RE: Construction (3)
	RE: Construction (4)
	RE: Review Exercises
	RE: Operator Precedence
	DFA: Deterministic Finite Automata (1.1)
	DFA: Deterministic Finite Automata (1.2)
	DFA: Deterministic Finite Automata (1.3)
	Review Exercises: Drawing DFAs
	DFA: Deterministic Finite Automata (2.1)
	DFA: Deterministic Finite Automata (2.2)
	DFA: Deterministic Finite Automata (2.3.1)
	DFA: Deterministic Finite Automata (2.3.2)
	DFA: Deterministic Finite Automata (2.4)
	DFA: Deterministic Finite Automata (2.5)
	Review Exercises: Formalizing DFAs
	NFA: Nondeterministic Finite Automata (1.1)
	NFA: Nondeterministic Finite Automata (1.2)
	NFA: Nondeterministic Finite Automata (2)
	NFA: Nondeterministic Finite Automata (3.1)
	NFA: Nondeterministic Finite Automata (3.2)
	NFA: Nondeterministic Finite Automata (3.3)
	DFA NFA (1)
	DFA NFA (2.2): Lazy Evaluation (1)
	DFA NFA (2.2): Lazy Evaluation (2)
	DFA NFA (2.2): Lazy Evaluation (3)
	-NFA: Examples (1)
	-NFA: Examples (2)
	-NFA: Formalization (1)
	-NFA: Formalization (2)
	-NFA: Epsilon-Closures (1)
	-NFA: Epsilon-Closures (2)
	-NFA: Formalization (3)
	-NFA: Formalization (4)
	DFA -NFA: Extended Subset Const. (1)
	DFA -NFA: Extended Subset Const. (2)
	Regular Expression to -NFA
	Regular Expression to -NFA
	Regular Expression to -NFA
	Regular Expression to -NFA: Examples (1.1)
	Regular Expression to -NFA: Examples (1.2)
	Minimizing DFA: Motivation
	Minimizing DFA: Algorithm
	Minimizing DFA: Examples
	Exercise: Regular Expression to Minimized DFA
	Implementing DFA as Scanner
	Implementing DFA: Table-Driven Scanner (1)
	Implementing DFA: Table-Driven Scanner (2)

