Scanner: Lexical Analysis

Readings: EAC2 Chapter 2

EECS4302 A:

YORK
 UN IVERS I TÉ
 UN IVERS I TY

Compilers and Interpreters Fall 2022

Chen-Wei Wang

3 of 68

Alphabets

An alphabet is a finite, nonempty set of symbols.

- The convention is to write Σ, possibly with a informative subscript, to denote the alphabet in question.
- Use either a set enumeration or a set comprehension to define your own alphabet.
e.g., $\Sigma_{\text {eng }}=\{a, b, \ldots, z, A, B, \ldots, Z\} \quad$ [the English alphabet]
e.g., $\Sigma_{\text {bin }}=\{0,1\}$
e.g., $\Sigma_{\text {dec }}=\{d \mid 0 \leq d \leq 9\}$
e.g., $\Sigma_{\text {key }}$
[the binary alphabet]
[the decimal alphabet] [the keyboard alphabet]
- A string or a word is finite sequence of symbols chosen from some alphabet.
e.g., Oxford is a string over the English alphabet $\Sigma_{\text {eng }}$
e.g., 01010 is a string over the binary alphabet $\Sigma_{\text {bin }}$
e.g., 01010.01 is not a string over $\Sigma_{\text {bin }}$
e.g., 57 is a string over the decimal alphabet $\Sigma_{\text {dec }}$
- It is not correct to say, e.g., $01010 \in \Sigma_{\text {bin }}$
- The length of a string w, denoted as $|w|$, is the number of characters it contains.
- e.g., \mid Oxford $\mid=6$
- ϵ is the empty string $(|\epsilon|=0)$ that may be from any alphabet.
- Given two strings x and y, their concatenation, denoted as $x y$, is a new string formed by a copy of x followed by a copy of y.
- e.g., Let $x=01101$ and $y=110$, then $x y=01101110$
- The empty string ϵ is the identity for concatenation:
${ }_{5 \text { ㅇf } 68} \epsilon W=W=W \epsilon$ for any string w

Strings (2)

- Given an alphabet Σ, we write Σ^{k}, where $k \in \mathbb{N}$, to denote the set of strings of length k from Σ

$$
\Sigma^{k}=\{w|\underbrace{w \text { is a string over } \Sigma} \wedge| w \mid=k\}
$$

more formal?

- e.g., $\{0,1\}^{2}=\{00,01,10,11\}$
- Given Σ, Σ^{0} is $\{\epsilon\}$
- Given Σ, Σ^{+}is the set of nonempty strings.

$$
\Sigma^{+}=\Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \ldots=\left\{w \mid w \in \Sigma^{k} \wedge k>0\right\}=\bigcup_{k>0} \Sigma^{k}
$$

- Given Σ, Σ^{*} is the set of strings of all possible lengths.

$$
\Sigma^{*}=\Sigma^{+} \cup\{\epsilon\}
$$

Languages

- A language L over Σ (where $|\Sigma|$ is finite) is a set of strings s.t. $L \subseteq \Sigma^{*}$
- When useful, include an informative subscript to denote the language L in question.
- e.g., The language of compilable Java programs

$$
L_{\text {Java }}=\left\{p r o g \mid p r o g \in \sum_{\text {key }}^{*} \wedge p r o g \text { compiles in Eclipse }\right\}
$$

Note. prog compiling means no lexical, syntactical, or type errors.

- e.g., The language of strings with $n 0$'s followed by $n 1$'s $(n \geq 0)$

$$
\{\epsilon, 01,0011,000111, \ldots\}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- e.g., The language of strings with an equal number of 0's and 1's $\{\epsilon, 01,10,0011,0101,0110,1100,1010,1001, \ldots\}$ $=\left\{w \mid \#\right.$ of 0 's in $w=\#$ of $1^{\prime} s$ in $\left.w\right\}$

Review Exercises: Languages
LASSONDE

1. Use set comprehensions to define the following languages. Be as formal as possible.

- A language over $\{0,1\}$ consisting of strings beginning with some 0 's (possibly none) followed by at least as many 1 's.
- A language over $\{a, b, c\}$ consisting of strings beginning with some a's (possibly none), followed by some b's and then some c's, s.t. the \# of a's is at least as many as the sum of \#'s of b's and c's.

2. Explain the difference between the two languages $\{\epsilon\}$ and \varnothing.
3. Justify that Σ^{*}, \varnothing, and $\{\epsilon\}$ are all languages over Σ.
4. Prove or disprove: If L is a language over Σ, and $\Sigma_{2} \supseteq \Sigma$, then L is also a language over Σ_{2}.
Hint: Prove that $\Sigma \subseteq \Sigma_{2} \wedge L \subseteq \Sigma^{*} \Rightarrow L \subseteq \Sigma_{2}^{*}$
5. Prove or disprove: If L is a language over Σ, and $\Sigma_{2} \subseteq \Sigma$, then L is also a language over Σ_{2}.
Hint: Prove that $\Sigma_{2} \subseteq \Sigma \wedge L \subseteq \Sigma^{*} \Rightarrow L \subseteq \Sigma_{2}^{*}$
9 of 68

Regular Expressions (RE): Introduction

- Regular expressions (RegExp's) are:
- A type of language-defining notation
- This is similar to the equally-expressive DFA, NFA, and ϵ-NFA.
- Textual and look just like a programming language
- e.g., Set of strings denoted by $01^{*}+10^{*}$? specify formally]
$L=\left\{0 x \mid x \in\{1\}^{*}\right\} \cup\left\{1 x \mid x \in\{0\}^{*}\right\}$
- e.g., Set of strings denoted by $\left(0^{*} 10^{*} 10^{*}\right){ }^{*} 10^{*}$?
$L=\left\{w \mid w\right.$ has odd \# of $\left.1^{\prime} s\right\}$
- This is dissimilar to the diagrammatic DFA, NFA, and ϵ-NFA.
- RegExp's can be considered as a "user-friendly" alternative to NFA for describing software components. [e.g., text search]
- Writing a RegExp is like writing an algebraic expression, using the defined operators, e.g., $((4+3) * 5) \div 6$
- Despite the programming convenience they provide, RegExp's, DFA, NFA, and $\epsilon-$ NFA are all provably equivalent.
- They are capable of defining all and only regular languages.

RE: Language Operations (1)

- Given Σ of input alphabets, the simplest RegExp is? [$s \in \Sigma^{1}$]
- e.g., Given $\Sigma=\{a, b, c\}$, expression a denotes the language $\{a\}$ consisting of a single string a.
- Given two languages $L, M \in \Sigma^{*}$, there are 3 operators for building a larger language out of them:

1. Union

$$
L \cup M=\{w \mid w \in L \vee w \in M\}
$$

In the textual form, we write + for union.
2. Concatenation

$$
L M=\{x y \mid x \in L \wedge y \in M\}
$$

In the textual form, we write either . or nothing at all for concatenation.

RE: Language Operations (2)
3. Kleene Closure (or Kleene Star)

$$
L^{*}=\bigcup_{i \geq 0} L^{i}
$$

where

$$
\begin{aligned}
& L^{0}=\{\epsilon\} \\
& L^{1}=L \\
& L^{2}=\left\{x_{1} x_{2} \mid x_{1} \in L \wedge x_{2} \in L\right\} \\
& \ldots \\
& L^{i}=\{\underbrace{x_{1} x_{2} \ldots x_{i}}_{i \text { concatenations }} \mid x_{j} \in L \wedge 1 \leq j \leq i\}
\end{aligned}
$$

In the textual form, we write $*$ for closure.
Question: What is $\left|L^{i}\right|(i \in \mathbb{N})$?
Question: Given that $L=\{0\}^{*}$, what is L^{*} ?
13 of 68
[L]

RE: Construction (1)

We may build regular expressions recursively:

- Each (basic or recursive) form of regular expressions denotes a language (i.e., a set of strings that it accepts).
- Base Case:
- Constants ϵ and \varnothing are regular expressions.

$$
\begin{aligned}
& L(\epsilon)=\{\epsilon\} \\
& L(\varnothing)=\varnothing
\end{aligned}
$$

- An input symbol $a \in \Sigma$ is a regular expression.

$$
L(a)=\{a\}
$$

If we want a regular expression for the language consisting of only the string $w \in \Sigma^{*}$, we write w as the regular expression.

- Variables such as L, M, etc., might also denote languages.
- $\varnothing+L$
- $\varnothing L$

$$
[\varnothing+L=L=\varnothing+L]
$$

$[\varnothing L=\varnothing=L \varnothing]$

- \varnothing^{*}

$$
\begin{aligned}
\varnothing^{*} & =\varnothing^{0} \cup \varnothing^{1} \cup \varnothing^{2} \cup \ldots \\
& =\{\epsilon\} \cup \varnothing \cup \varnothing \cup \ldots \\
& =\{\epsilon\}
\end{aligned}
$$

- $\varnothing^{*} L$
[$\varnothing^{*} L=L=L \varnothing^{*}$]

Write a regular expression for the following language

$$
\left\{w \mid w \text { has alternating } 0^{\prime} s \text { and } 1^{\prime} s\right\}
$$

- Would (01)* work?
[alternating 10's?]
- Would $(01)^{*}+(10)^{*}$ work? [starting and ending with 1?]
- $0(10)^{*}+(01)^{*}+(10)^{*}+1(01)^{*}$
- It seems that:
- 1st and 3rd terms have (10)* as the common factor.
- 2nd and 4th terms have (01)* as the common factor.
- Can we simplify the above regular expression?
- $(\epsilon+0)(10)^{*}+(\epsilon+1)(01)^{*}$

17 of 68

RE: Review Exercises

Write the regular expressions to describe the following languages:

- $\{w \mid w$ ends with 01$\}$
- $\{w \mid w$ contains 01 as a substring $\}$
- $\left\{w \mid w\right.$ contains no more than three consecutive $\left.1^{\prime} s\right\}$
- $\{w \mid w$ ends with $01 \vee w$ has an odd \# of 0 's \}
-

$$
\left\{\begin{array}{l|l}
& \begin{array}{l}
\\
s \in\{+,-, \epsilon\} \\
s x . y
\end{array} \\
\wedge & \wedge \in \Sigma_{d e c}^{*} \\
& \wedge y \in \Sigma_{d e c}^{*} \\
& \wedge(x=\epsilon \wedge y=\epsilon)
\end{array}\right\}
$$

-

$$
\left.\begin{array}{l|l}
& x \in\{0,1\}^{*} \wedge y \in\{0,1\}^{*} \\
\wedge y \text { has alternating } 0^{\prime} s \text { and } 1^{\prime} \mathrm{s} \\
\wedge \quad y \text { has an odd } \# 0^{\prime} \mathrm{s} \text { and an odd } \# 1^{\prime} \mathrm{s}
\end{array}\right\}
$$

DFA: Deterministic Finite Automata (1.1)

- A deterministic finite automata (DFA) is a finite state machine (FSM) that accepts (or recognizes) a pattern of behaviour.
- For lexical analysis, we study patterns of strings (i.e., how alphabet symbols are ordered).
- Unless otherwise specified, we consider strings in $\{0,1\}^{*}$
- Each pattern contains the set of satisfying strings.
- We describe the patterns of strings using set comprehensions:
- $\left\{w \mid w\right.$ has an odd number of $\left.0^{\prime} s\right\}$
- $\left\{\boldsymbol{w} \mid \boldsymbol{w}\right.$ has an even number of $\left.1^{\prime} s\right\}$
- $\{w \mid \quad w \neq \epsilon$
- $\{w \mid \wedge w$ has equal \# of alternating 0 's and 1's $\}$
- $\{w \mid w$ contains 01 as a substring $\}$
- $\left\{w \left\lvert\, \wedge \begin{array}{l}w \text { has an even number of } 0^{\prime} s \\ \boldsymbol{w} \text { has an odd number of } 1^{\prime} s\end{array}\right.\right\}$
- Given a pattern description, we design a DFA that accepts it.
- The resulting DFA can be transformed into an executable program.
- The transition diagram below defines a DFA which accepts/recognizes exactly the language

- Each incoming or outgoing arc (called a transition) corresponds to an input alphabet symbol.
- s_{0} with an unlabelled incoming transition is the start state.
- s_{3} drawn as a double circle is a final state.
- All states have outgoing transitions covering $\{0,1\}$.

21 of 68

DFA: Deterministic Finite Automata (1.3)
The transition diagram below defines a DFA which accepts/recognizes exactly the language
$\left\{w \left\lvert\, \quad \begin{array}{l}w \neq \epsilon\end{array}\right.\right.$

$$
\left.\wedge \quad w \text { has equal \# of alternating } 0^{\prime} s \text { and } 1^{\prime} s\right\}
$$

DFA: Deterministic Finite Automata (2.2)

We formalize the above DFA as $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- $Q=\left\{s_{0}, s_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta=\left\{\left(\left(s_{0}, 0\right), s_{1}\right),\left(\left(s_{0}, 1\right), s_{0}\right),\left(\left(s_{1}, 0\right), s_{0}\right),\left(\left(s_{1}, 1\right), s_{1}\right)\right\}$

state \backslash input	0	1
s_{0}	s_{1}	s_{0}
s_{1}	s_{0}	s_{1}

- $q_{0}=s_{0}$
- $F=\left\{s_{1}\right\}$

DFA: Deterministic Finite Automata (2.3.1)

We formalize the above DFA as $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- $Q=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$
- $\Sigma=\{0,1\}$
- $q_{0}=s_{0}$
- $F=\left\{s_{3}, s_{4}\right\}$

26 of 68

DFA: Deterministic Finite Automata (2.3.2)

- $\delta=$

state \backslash input	0	1
s_{0}	s_{1}	s_{2}
s_{1}	s_{5}	s_{3}
s_{2}	s_{4}	s_{5}
s_{3}	s_{1}	s_{5}
s_{4}	s_{5}	s_{2}
s_{5}	s_{5}	s_{5}

27 of 68

- Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$:
- We write $L(M)$ to denote the language of M : the set of strings that M accepts.
- A string is accepted if it results in a sequence of transitions: beginning from the start state and ending in a final state.

$$
L(M)=\left\{\begin{array}{c}
a_{1} a_{2} \ldots a_{n} \mid \\
1 \leq i \leq n \wedge a_{i} \in \Sigma \wedge \delta\left(q_{i-1}, a_{i}\right)=q_{i} \wedge q_{n} \in F
\end{array}\right\}
$$

- M rejects any string $w \notin L(M)$.
- We may also consider $L(M)$ as concatenations of labels from the set of all valid paths of M 's transition diagram; each such path starts with q_{0} and ends in a state in F.
- Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we may simplify the definition of $L(M)$ by extending δ (which takes an input symbol) to $\hat{\delta}$ (which takes an input string).

$$
\hat{\delta}:\left(Q \times \Sigma^{*}\right) \rightarrow Q
$$

We may define $\hat{\delta}$ recursively, using δ !

$$
\begin{aligned}
& \hat{\delta}(q, \epsilon)=q \\
& \hat{\delta}(q, x a)=\delta(\hat{\delta}(q, x), a)
\end{aligned}
$$

where $q \in Q, x \in \Sigma^{*}$, and $a \in \Sigma$

- A neater definition of $L(M)$: the set of strings $w \in \Sigma^{*}$ such that $\hat{\delta}\left(q_{0}, w\right)$ is an accepting state.

$$
L(M)=\left\{w \mid w \in \Sigma^{*} \wedge \hat{\delta}\left(q_{0}, w\right) \in F\right\}
$$

- A language L is said to be a regular language, if there is some DFA M such that $L=L(M)$.
29 of 68

Review Exercises: Formalizing DFAs

Formalize DFAs (as 5-tuples) for the other example string patterns mentioned:

- $\left\{w \mid w\right.$ has an even number of $\left.0^{\prime} s\right\}$
- $\{w \mid w$ contains 01 as a substring $\}$
- $\left\{w \left\lvert\, \begin{array}{l}w \text { has an even number of } 0^{\prime} s \\ \wedge \text { has an odd number of } 1^{\prime} s\end{array}\right.\right\}$

Problem: Design a DFA that accepts the following language:

$$
L=\left\{x 01 \mid x \in\{0,1\}^{*}\right\}
$$

That is, L is the set of strings of 0 s and 1 s ending with 01 .

Given an input string w, we may simplify the above DFA by:

- nondeterministically treating state q_{0} as both:
- a state ready to read the last two input symbols from w
- a state not yet ready to read the last two input symbols from w
- substantially reducing the outgoing transitions from q_{1} and q_{2}

31 of 68
Compare the above DFA with the DFA in slide 39 .

NFA: Nondeterministic Finite Automata (1.2)

- A non-deterministic finite automata (NFA) that accepts the same language:

- How an NFA determines if an input 00101 should be processed:

- A nondeterministic finite automata (NFA), like a DFA, is a FSM that accepts (or recognizes) a pattern of behaviour.
- An NFA being nondeterministic means that from a given state, the same input label might corresponds to multiple transitions that lead to distinct states.
- Each such transition offers an alternative path.
- Each alternative path is explored in parallel.
- If there exists an alternative path that succeeds in processing the input string, then we say the NFA accepts that input string.
- If all alternative paths get stuck at some point and fail to process the input string, then we say the NFA rejects that input string.
- NFAs are often more succinct (i.e., fewer states) and easier to design than DFAs.
- However, NFAs are just as expressive as are DFAs. - We can always convert an NFA to a DFA.

33 of 68

NFA: Nondeterministic Finite Automata (3.1)

- A nondeterministic finite automata (NFA) is a 5-tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Q is a finite set of states.
- Σ is a finite set of input symbols (i.e., the alphabet).
- $\delta:(Q \times \Sigma) \rightarrow \mathbb{P}(Q)$ is a transition function
- Given a state and an input symbol, δ returns a set of states.
- Equivalently, we can write: $\delta:(Q \times \Sigma) \rightarrow Q$
[a partial function]
- $q_{0} \in Q$ is the start state.
- $F \subseteq Q$ is a set of final or accepting states.
- What is the difference between a DFA and an NFA?
- δ of a DFA returns a single state.
- δ of an NFA returns a (possibly empty) set of states.

Given an input string 00101:

- Read 0: $\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\}$
- Read 0: $\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{1}\right\} \cup \varnothing=\left\{q_{0}, q_{1}\right\}$
- Read 1: $\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right)=\left\{q_{0}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{2}\right\}$
- Read 0: $\delta\left(q_{0}, 0\right) \cup \delta\left(q_{2}, 0\right)=\left\{q_{0}, q_{1}\right\} \cup \varnothing=\left\{q_{0}, q_{1}\right\}$
- Read 1: $\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right)=\left\{q_{0}, q_{1}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{1}, q_{2}\right\}$ $\therefore\left\{q_{0}, q_{1}, q_{2}\right\} \cap\left\{q_{2}\right\} \neq \varnothing \therefore 00101$ is accepted

NFA: Nondeterministic Finite Automata (3.3)

- Given a NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we may simplify the definition of $L(M)$ by extending δ (which takes an input symbol) to $\hat{\delta}$ (which takes an input string).

$$
\hat{\delta}:\left(Q \times \Sigma^{*}\right) \rightarrow \mathbb{P}(Q)
$$

We may define $\hat{\delta}$ recursively, using δ !

$$
\begin{aligned}
& \hat{\delta}(q, \epsilon)=\{q\} \\
& \hat{\delta}(q, x a)=\bigcup\left\{\delta\left(q^{\prime}, a\right) \mid q^{\prime} \in \hat{\delta}(q, x)\right\}
\end{aligned}
$$

where $q \in Q, x \in \Sigma^{*}$, and $a \in \Sigma$

- A neater definition of $L(M)$: the set of strings $w \in \Sigma^{*}$ such that $\hat{\delta}\left(q_{0}, w\right)$ contains at least one accepting state.

$$
L(M)=\left\{w \mid w \in \Sigma^{*} \wedge \hat{\delta}\left(q_{0}, w\right) \cap F \neq \varnothing\right\}
$$

DFA \equiv NFA (2.2): Lazy Evaluation (2)
Applying subset construction (with lazy evaluation), we arrive in a DFA transition table:

state \backslash input	0	1
$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$

We then draw the DFA accordingly:

39 of 68
Compare the above DFA with the DFA in slide 31 .

DFA \equiv NFA (2.2): Lazy Evaluation (3)

- Given an NFA $N=\left(Q_{N}, \Sigma_{N}, \delta_{N}, q_{0}, F_{N}\right)$:

```
ALGORITHM: ReachableSubsetStates
    INPUT: \(q_{0}: Q_{N}\)
        OUTPUT: Reachable \(\subseteq \mathbb{P}\left(Q_{N}\right)\)
PROCEDURE:
    Reachable := \{ \(\left.\left\{q_{0}\right\}\right\}\)
    ToDiscover : \(=\left\{\left\{q_{0}\right\}\right\}\)
    while \((\) ToDiscover \(\neq \varnothing)\)
        choose \(S: \mathbb{P}\left(Q_{N}\right)\) such that \(S \in\) ToDiscover
        remove \(S\) from ToDiscover
        NotYetDiscovered :=
            ( \(\left.\left\{\left\{\delta_{N}(s, 0) \mid s \in S\right\}\right\} \cup\left\{\left\{\delta_{N}(s, 1) \mid s \in S\right\}\right\}\right) \backslash\) Reachable
        Reachable := ReachableU NotYetDiscovered
        ToDiscover := ToDiscover \(\cup\) NotYetDiscovered
    \}
    return Reachable
```

- RT of ReachableSubsetStates?
- Often only a small portion of the $\left|\mathbb{P}\left(Q_{N}\right)\right|$ subset states is reachable from $\left\{q_{0}\right\} \Rightarrow$ Lazy Evaluation efficient in practice! 40 of 68
ϵ-NFA: Examples (1)
Draw the NFA for the following two languages:

1.

$$
\left\{\begin{array}{l|l}
& x \in\{0,1\}^{*} \\
x y & \wedge \\
\wedge \in\{0,1\}^{*} \\
\wedge x \text { has alternating } 0^{\prime} \mathrm{s} \text { and } 1^{\prime} \mathrm{s} \\
& \wedge y \text { has an odd \# } 0^{\prime} \mathrm{s} \text { and an odd \# } 1^{\prime} \mathrm{s}
\end{array}\right\}
$$

2.

$$
\left\{w:\{0,1\}^{*} \left\lvert\, \begin{array}{l}
w \text { has alternating } 0^{\prime} \mathrm{s} \text { and } 1^{\prime} \mathrm{s} \\
\vee \quad \text { has an odd \# } 0^{\prime} \mathrm{s} \text { and an odd \# 1's }
\end{array}\right.\right\}
$$

3.

$$
\left\{\begin{array}{l|l}
& \begin{array}{l}
s \in\{+,-, \epsilon\} \\
s x . y
\end{array} \\
\wedge & x \in \sum_{d e c}^{*} \\
\wedge & y \in \Sigma_{\text {dec }}^{*} \\
\wedge & \neg(x=\epsilon \wedge y=\epsilon)
\end{array}\right\}
$$

41 of 68

From q_{0} to q_{1}, reading a sign is optional: a plus or a minus, or nothing at all (i.e., ϵ).
ϵ-NFA: Epsilon-Closures (1)

- Given $\epsilon-N F A N$

$$
N=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

we define the epsilon closure (or ϵ-closure) as a function

$$
\text { ECLOSE }: Q \rightarrow \mathbb{P}(Q)
$$

- For any state $q \in Q$

$$
\operatorname{ECLOSE}(q)=\{q\} \cup \bigcup_{p \in \delta(q, \epsilon)} \operatorname{ECLOSE}(p)
$$

45 of 68
ϵ-NFA: Epsilon-Closures (2)

$\operatorname{ECLOSE}\left(q_{0}\right)$
$=\left\{\delta\left(q_{0}, \epsilon\right)=\left\{q_{1}, q_{2}\right\}\right\}$
$\left\{q_{0}\right\} \cup \operatorname{ECLOSE}\left(q_{1}\right) \cup \operatorname{ECLOSE}\left(q_{2}\right)$
$=\left\{\operatorname{ECLOSE}\left(q_{1}\right), \delta\left(q_{1}, \epsilon\right)=\left\{q_{3}\right\}, \operatorname{ECLOSE}\left(q_{2}\right), \delta\left(q_{2}, \epsilon\right)=\varnothing\right\}$
$\left\{q_{0}\right\} \cup\left(\left\{q_{1}\right\} \cup \operatorname{ECLOSE}\left(q_{3}\right)\right) \cup\left(\left\{q_{2}\right\} \cup \varnothing\right)$
$=\left\{\operatorname{ECLOSE}\left(q_{3}\right), \delta\left(q_{3}, \epsilon\right)=\left\{q_{5}\right\}\right\}$
$\left\{q_{0}\right\} \cup\left(\left\{q_{1}\right\} \cup\left(\left\{q_{3}\right\} \cup \operatorname{ECLOSE}\left(q_{5}\right)\right)\right) \cup\left(\left\{q_{2}\right\} \cup \varnothing\right)$
$=\left\{\operatorname{ECLOSE}\left(q_{5}\right), \delta\left(q_{5}, \epsilon\right)=\varnothing\right\}$
$\left\{q_{0}\right\} \cup\left(\left\{q_{1}\right\} \cup\left(\left\{q_{3}\right\} \cup\left(\left\{q_{5}\right\} \cup \varnothing\right)\right)\right) \cup\left(\left\{q_{2}\right\} \cup \varnothing\right)$

ϵ-NFA: Formalization (3)

- Given a ϵ-NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we may simplify the definition of $L(M)$ by extending δ (which takes an input symbol) to $\hat{\delta}$ (which takes an input string).

$$
\hat{\delta}:\left(Q \times \Sigma^{*}\right) \rightarrow \mathbb{P}(Q)
$$

We may define $\hat{\delta}$ recursively, using δ !

$$
\begin{aligned}
& \hat{\delta}(q, \epsilon)=\operatorname{ECLOSE}(\mathrm{q}) \\
& \hat{\delta}(q, x a)=\bigcup\left\{\operatorname{ECLOSE}\left(q^{\prime \prime}\right) \mid q^{\prime \prime} \in \delta\left(q^{\prime}, a\right) \wedge q^{\prime} \in \hat{\delta}(q, x)\right\}
\end{aligned}
$$

where $q \in Q, x \in \Sigma^{*}$, and $a \in \Sigma$

- Then we define $L(M)$ as the set of strings $w \in \Sigma^{*}$ such that $\hat{\delta}\left(q_{0}, w\right)$ contains at least one accepting state.

$$
L(M)=\left\{w \mid w \in \Sigma^{*} \wedge \hat{\delta}\left(q_{0}, w\right) \cap F \neq \varnothing\right\}
$$

47 of 68
ϵ-NFA: Formalization (4)

Given an input string 5.6:

$$
\hat{\delta}\left(q_{0}, \epsilon\right)=\operatorname{ECLOSE}\left(q_{0}\right)=\left\{q_{0}, q_{1}\right\}
$$

- Read 5: $\delta\left(q_{0}, 5\right) \cup \delta\left(q_{1}, 5\right)=\varnothing \cup\left\{q_{1}, q_{4}\right\}=\left\{q_{1}, q_{4}\right\}$

$$
\hat{\delta}\left(q_{0}, 5\right)=\operatorname{ECLOSE}\left(q_{1}\right) \cup \operatorname{ECLOSE}\left(q_{4}\right)=\left\{q_{1}\right\} \cup\left\{q_{4}\right\}=\left\{q_{1}, q_{4}\right\}
$$

- Read.$: \delta\left(q_{1},.\right) \cup \delta\left(q_{4},.\right)=\left\{q_{2}\right\} \cup\left\{q_{3}\right\}=\left\{q_{2}, q_{3}\right\}$ $\hat{\delta}\left(q_{0}, 5.\right)=\operatorname{ECLOSE}\left(q_{2}\right) \cup \operatorname{ECLOSE}\left(q_{3}\right)=\left\{q_{2}\right\} \cup\left\{q_{3}, q_{5}\right\}=\left\{q_{2}, q_{3}, q_{5}\right\}$
- Read 6: $\delta\left(q_{2}, 6\right) \cup \delta\left(q_{3}, 6\right) \cup \delta\left(q_{5}, 6\right)=\left\{q_{3}\right\} \cup\left\{q_{3}\right\} \cup \varnothing=\left\{q_{3}\right\}$ $\hat{\delta}\left(q_{0}, 5.6\right)=\operatorname{ECLOSE}\left(q_{3}\right)=\left\{q_{3}, q_{5}\right\}$
[5.6 is accepted]

DFA $\equiv \epsilon-$ NFA: Extended Subset Const. (1)
Subset construction (with lazy evaluation and
epsilon closures) produces a DFA transition table.

	$d \in 0 \ldots 9$	$s \in\{+,-\}$.
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{1}, q_{4}\right\}$	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{1}, q_{4}\right\}$	$\left\{q_{1}, q_{4}\right\}$	\varnothing	$\left\{q_{2}, q_{3}, q_{5}\right\}$
$\left\{q_{1}\right\}$	$\left\{q_{1}, q_{4}\right\}$	\varnothing	$\left\{q_{2}\right\}$
$\left\{q_{2}\right\}$	$\left\{q_{3}, q_{5}\right\}$	\varnothing	\varnothing
$\left\{q_{2}, q_{3}, q_{5}\right\}$	$\left\{q_{3}, q_{5}\right\}$	\varnothing	\varnothing
$\left\{q_{3}, q_{5}\right\}$	$\left\{q_{3}, q_{5}\right\}$	\varnothing	\varnothing

For example, $\delta\left(\left\{q_{0}, q_{1}\right\}, d\right)$ is calculated as follows: $\quad[d \in 0 \ldots 9]$
$\cup\left\{\operatorname{ECLOSE}(q) \mid q \in \delta\left(q_{0}, d\right) \cup \delta\left(q_{1}, d\right)\right\}$
$=\cup\left\{\operatorname{ECLOSE}(q) \mid q \in \varnothing \cup\left\{q_{1}, q_{4}\right\}\right\}$
$=\cup\left\{\operatorname{ECLOSE}(q) \mid q \in\left\{q_{1}, q_{4}\right\}\right\}$
$=\operatorname{ECLOSE}\left(q_{1}\right) \cup \operatorname{ECLOSE}\left(q_{4}\right)$
$=\left\{q_{1}\right\} \cup\left\{q_{4}\right\}$
$=\left\{q_{1}, q_{4}\right\}$
49 of 68

DFA $\equiv \epsilon$-NFA: Extended Subset Const. (2)

Given an $\epsilon=N F A N=\left(Q_{N}, \Sigma_{N}, \delta_{N}, q_{0}, F_{N}\right)$, by applying the extended subset construction to it, the resulting DFA
$D=\left(Q_{D}, \Sigma_{D}, \delta_{D}, q_{D_{\text {statt }}}, F_{D}\right)$ is such that:

```
\SigmaD}=\quad=\mp@subsup{\Sigma}{N}{
q}\mp@subsup{D}{\mathrm{ start }}{}=\operatorname{ECLOSE}(\mp@subsup{q}{0}{}
F
QD}={\mp@code{S|S\subseteq\mp@subsup{Q}{N}{}\wedge(\existsw\bulletw\in\mp@subsup{\Sigma}{}{*}=>S=\mp@subsup{\hat{\delta}}{N}{}(\mp@subsup{q}{0}{},w))}
\delta, (S,a)=\bigcup{\operatorname{ECLOSE}(\mp@subsup{s}{}{\prime})|s\inS\wedge\mp@subsup{s}{}{\prime}\in\mp@subsup{\delta}{N}{}(s,a)}
```


Regular Expression to ϵ-NFA

Recursive Cases:
[R and S are RE's]

- $R+S$

- RS

- R^{*}

53 of 68

Regular Expression to ϵ-NFA: Examples (1.1)

- $0+1$

- $(0+1)^{*}$

Regular Expression to ϵ-NFA: Examples (1.2)

- $(0+1)^{*} 1(0+1)$

Minimizing DFA: Motivation

- Recall: Regular Expresion $\longrightarrow \epsilon$-NFA \longrightarrow DFA
- DFA produced by the extended subset construction (with lazy evaluation) may not be minimum on its size of state.
- When the required size of memory is sensitive (e.g., processor's cache memory),
the fewer number of DFA states, the better.

Minimizing DFA: Algorithm

```
ALGORITHM: MinimizeDFAStates
    INPUT: DFA M = (Q, \Sigma, \delta, q0,F)
    OUTPUT: M' s.t. minimum |Q| and equivalent behaviour as M
    PROCEDURE:
    P := \varnothing /* refined partition so far *
    T:={F,Q-F } /* last refined partition */
    while (P\not= T):
        P:= T
            F:= \varnothing
            for(p \in P):
                find the maximal S \subset p s.t. splittable(p, S)
                if S # \varnothing then
                T := T\cup{S, p-S}
            else
                T:= T\cup{p}
                end
```

 \(\operatorname{splittable}(p, S)\) holds iff there is \(c \in \Sigma\) s.t.
 1. \(S \subset p\) (or equivalently: \(p-S \neq \varnothing\))
 2. Transitions via \(c\) lead all \(s \in S\) to states in same partition \(p 1(p 1 \neq p)\).
 57 of 68

Minimizing DFA: Examples

Exercises: Minimize the DFA fromhere; Q1 \& Q2, p59, EAC2.

Exercise:

Regular Expression to Minimized DFA

Given regular expression r [0..9] + which specifies the pattern of a register name, derive the equivalent DFA with the minimum number of states. Show all steps.

59 of 68

Implementing DFA as Scanner

- The source language has a list of syntactic categories:

e.g., keyword while	[while]
e.g., identifiers	[$[a-z A-Z]\left[a-z A-Z 0-9 _\right] *$]
e.g., white spaces	[[\t $\backslash r$]+]

- A compiler's scanner must recognize words from all syntactic categories of the source language.
- Each syntactic category is specified via a regular expression.

$$
\underbrace{r_{1}}_{\text {syn. cat. } 1}+\underbrace{r_{1}}_{\text {syn. cat. } 2}+\ldots+\underbrace{r_{n}}_{\text {syn. cat. } n}
$$

- Overall, a scanner should be implemented based on the minimized DFA accommodating all syntactic categories.
- Principles of a scanner:
- Returns one word at a time
- Each returned word is the longest possible that matches a pattern
- A priority may be specified among patterns
(e.g., new is a keyword, not identifier)

Implementing DFA: Table-Driven Scanner (1)

- Consider the syntactic category of register names.
- Specified as a regular expression : $r[0 . .9]+$
- Afer conversion to ϵ-NFA, then to DFA, then to minimized DFA:

- The following tables encode knowledge about the above DFA:

61 of 68

Implementing DFA: Table-Driven Scanner (2) 2 ASsonot
The scanner then is implemented via a 4-stage skeleton:

```
    NextWord()
        - Stage 1: Initialization
    state := S0 ; word := \epsilon
    initialize an empty stack s ; s.push(bad)
        - Stage 2: Scanning Loop
    while (state # se)
        NextChar(char) ; word := word + char
        if state \in F then reset stack S end
        s.push(state)
        cat := CharCat[char]
        state := \delta[state, cat]
        Stage 3: Rollback Loop
    while (state &F^ state # bad)
        state := s.pop()
        truncate word
            Stage 4: Interpret and Report
        if state \in F then return Type[state]
        else return invalid
        end
```

62 of 68

Index (1)

Scanner in Context

Scanner: Formulation \& Implementation
Alphabets
Strings (1)
Strings (2)
Review Exercises: Strings
Languages
Review Exercises: Languages
Problems
Regular Expressions (RE): Introduction
RE: Language Operations (1)
63 of 68

Index (2)

RE: Language Operations (2)
RE: Construction (1)]
RE: Construction (2)
RE: Construction (3)
RE: Construction (4)
RE: Review Exercises
RE: Operator Precedence
DFA: Deterministic Finite Automata (1.1)
DFA: Deterministic Finite Automata (1.2)
DFA: Deterministic Finite Automata (1.3)
Review Exercises: Drawing DFAs
[840168

