
Scanner: Lexical Analysis
Readings: EAC2 Chapter 2

EECS4302 A:
Compilers and Interpreters

Fall 2022

CHEN-WEI WANG

Scanner in Context

○ Recall:

Scanner
Source Program

(seq. of characters) seq. of tokens Parser AST1

Lexical Analysis Syntactic Analysis

ASTn… Target Program

Semantic Analysis

pretty printed

○ Treats the input programas as a a sequence of characters○ Applies rules recognizing character sequences as tokens
[lexical analysis]○ Upon termination:

● Reports character sequences not recognizable as tokens● Produces a a sequence of tokens○ Only part of compiler touching every character in input program.○ Tokens recognizable by scanner constitute a regular language .

2 of 68

Scanner: Formulation & Implementation

42 CHAPTER 2 Scanners

Review Questions
1. Recall the RE for a six-character identifier, written using a finite closure.

([A. . . Z] | [a. . . z]) ([A. . . Z] | [a. . . z] | [0. . . 9])5

Rewrite it in terms of the three basic RE operations: alternation,
concatenation, and closure.

2. In PL/I, the programmer can insert a quotation mark into a string by
writing two quotation marks in a row. Thus, the string

The quotation mark, ", should be typeset in italics

would be written in a PL/I program as

"The quotation mark, "", should be typeset in italics."

Design an RE and an FA to recognize PL/I strings. Assume that strings
begin and end with quotation marks and contain only symbols drawn
from an alphabet, designated as 6. Quotation marks are the only
special case.

2.4 FROM REGULAR EXPRESSION TO SCANNER
The goal of our work with finite automata is to automate the derivation
of executable scanners from a collection of res. This section develops the
constructions that transform an re into an fa that is suitable for direct imple-
mentation and an algorithm that derives an re for the language accepted by
an fa. Figure 2.3 shows the relationship between all of these constructions.

To present these constructions, we must distinguish between deterministic

fas, or dfas, and nondeterministic fas, or nfas, in Section 2.4.1. Next,

Kleene’s Construction

DFA

NFA

RE DFA Minimization

Code for
a scanner

Subset
Construction

Thompson’s
Construction

n FIGURE 2.3 The Cycle of Constructions.3 of 68

Alphabets

An alphabet is a finite, nonempty set of symbols.
○ The convention is to write ⌃ , possibly with a informative

subscript, to denote the alphabet in question.○ Use either a set enumeration or a set comprehension to define
your own alphabet.
e.g., ⌃eng = {a,b, . . . ,z,A,B, . . . ,Z} [the English alphabet]
e.g., ⌃bin = {0,1} [the binary alphabet]
e.g., ⌃dec = {d � 0 ≤ d ≤ 9} [the decimal alphabet]
e.g., ⌃key [the keyboard alphabet]

4 of 68

Strings (1)
● A string or a word is finite sequence of symbols chosen

from some alphabet .
e.g., Oxford is a string over the English alphabet ⌃eng

e.g., 01010 is a string over the binary alphabet ⌃bin

e.g., 01010.01 is not a string over ⌃bin

e.g., 57 is a string over the decimal alphabet ⌃dec● It is not correct to say, e.g., 01010 ∈ ⌃bin [Why?]● The length of a string w , denoted as �w �, is the number of
characters it contains.○ e.g., �Oxford � = 6○ ✏ is the empty string (�✏� = 0) that may be from any alphabet.

● Given two strings x and y , their concatenation , denoted as xy ,
is a new string formed by a copy of x followed by a copy of y .○ e.g., Let x = 01101 and y = 110, then xy = 01101110○ The empty string ✏ is the identity for concatenation :

✏w = w = w✏ for any string w
5 of 68

Strings (2)
● Given an alphabet ⌃, we write ⌃k , where k ∈ N, to denote the

set of strings of length k from ⌃

⌃k = {w � w is a string over ⌃���
more formal?

∧ �w � = k}
○ e.g., {0,1}2 = {00, 01, 10, 11}
○ Given ⌃, ⌃0 is {✏}

● Given ⌃, ⌃+ is the set of nonempty strings.

⌃+ = ⌃1 ∪⌃2 ∪⌃3 ∪ . . . = {w � w ∈ ⌃k ∧ k > 0} = �
k>0 ⌃k

● Given ⌃, ⌃∗ is the set of strings of all possible lengths.

⌃∗ = ⌃+ ∪ {✏}
6 of 68

Review Exercises: Strings

1. What is �{a,b, . . . ,z}5�?
2. Enumerate, in a systematic manner, the set {a,b,c}4.
3. Explain the difference between ⌃ and ⌃1.
4. Prove or disprove: ⌃1 ⊆ ⌃2 ⇒ ⌃∗1 ⊆ ⌃∗2

7 of 68

Languages

● A language L over ⌃ (where �⌃� is finite) is a set of strings s.t.
L ⊆ ⌃∗● When useful, include an informative subscript

to denote the language L in question.○ e.g., The language of compilable Java programs
LJava = {prog � prog ∈ ⌃∗

key
∧ prog compiles in Eclipse}

Note. prog compiling means no lexical , syntactical , or type errors.

○ e.g., The language of strings with n 0’s followed by n 1’s (n ≥ 0){✏,01,0011,000111, . . .} = {0n1n � n ≥ 0}
○ e.g., The language of strings with an equal number of 0’s and 1’s{✏,01,10,0011,0101,0110,1100,1010,1001, . . .}= {w � # of 0’s in w = # of 1’s in w}

8 of 68

Review Exercises: Languages
1. Use set comprehensions to define the following languages.

Be as formal as possible.○ A language over {0,1} consisting of strings beginning with some
0’s (possibly none) followed by at least as many 1’s.○ A language over {a,b,c} consisting of strings beginning with
some a’s (possibly none), followed by some b’s and then some c’s,
s.t. the # of a’s is at least as many as the sum of #’s of b’s and c’s.

2. Explain the difference between the two languages {✏} and �.
3. Justify that ⌃∗, �, and {✏} are all languages over ⌃.
4. Prove or disprove: If L is a language over ⌃, and ⌃2 ⊇ ⌃, then L

is also a language over ⌃2.
Hint: Prove that ⌃ ⊆ ⌃2 ∧ L ⊆ ⌃∗ ⇒ L ⊆ ⌃∗2

5. Prove or disprove: If L is a language over ⌃, and ⌃2 ⊆ ⌃, then L

is also a language over ⌃2.
Hint: Prove that ⌃2 ⊆ ⌃ ∧ L ⊆ ⌃∗ ⇒ L ⊆ ⌃∗2

9 of 68

Problems

● Given a language L over some alphabet ⌃, a problem is the
decision on whether or not a given string w is a member of L.

w ∈ L

Is this equivalent to deciding w ∈ ⌃∗? [No]
w ∈ ⌃∗ ⇒ w ∈ L is not necessarily true.

● e.g., The Java compiler solves the problem of deciding if a
user-supplied string of symbols is a member of LJava.

10 of 68

Regular Expressions (RE): Introduction
● Regular expressions (RegExp’s) are:
○ A type of language-defining notation
● This is similar to the equally-expressive DFA, NFA, and ✏-NFA.○ Textual and look just like a programming language
● e.g., Set of strings denoted by 01∗ + 10

∗? [specify formally]
L = {0x � x ∈ {1}∗} ∪ {1x � x ∈ {0}∗}

● e.g., Set of strings denoted by (0∗10∗10∗)∗10∗?
L = {w � w has odd # of 1’s}

● This is dissimilar to the diagrammatic DFA, NFA, and ✏-NFA.● RegExp’s can be considered as a “user-friendly” alternative to NFA for
describing software components. [e.g., text search]● Writing a RegExp is like writing an algebraic expression, using the
defined operators, e.g., ((4 + 3) * 5) % 6● Despite the programming convenience they provide, RegExp’s,

DFA, NFA, and ✏-NFA are all provably equivalent .○ They are capable of defining all and only regular languages.
11 of 68

RE: Language Operations (1)

● Given ⌃ of input alphabets, the simplest RegExp is? [s ∈ ⌃1]○ e.g., Given ⌃ = {a,b,c}, expression a denotes the language { a }
consisting of a single string a.

● Given two languages L,M ∈ ⌃∗, there are 3 operators for
building a larger language out of them:
1. Union

L ∪M = {w � w ∈ L ∨w ∈M}
In the textual form, we write + for union.

2. Concatenation
LM = {xy � x ∈ L ∧ y ∈M}

In the textual form, we write either . or nothing at all for
concatenation.

12 of 68

RE: Language Operations (2)
3. Kleene Closure (or Kleene Star)

L
∗ =�

i≥0
L

i

where
L

0 = {✏}
L

1 = L

L
2 = {x1x2 � x1 ∈ L ∧ x2 ∈ L}

. . .
L

i = { x1x2 . . .xi���������������������������������������
i concatenations

� xj ∈ L ∧ 1 ≤ j ≤ i}
. . .

In the textual form, we write * for closure.

Question: What is �Li � (i ∈ N)? [�L�i]
Question: Given that L = {0}∗, what is L

∗? [L]
13 of 68

RE: Construction (1)
We may build regular expressions recursively :
● Each (basic or recursive) form of regular expressions denotes

a language (i.e., a set of strings that it accepts).● Base Case:○ Constants ✏ and � are regular expressions.

L(✏) = {✏}
L(�) = �

○ An input symbol a ∈ ⌃ is a regular expression.

L(a) = {a}
If we want a regular expression for the language consisting of only
the string w ∈ ⌃∗, we write w as the regular expression.○ Variables such as L, M, etc., might also denote languages.

14 of 68

RE: Construction (2)
● Recursive Case: Given that E and F are regular expressions:○ The union E + F is a regular expression.

L(E + F) = L(E) ∪ L(F)
○ The concatenation EF is a regular expression.

L(EF) = L(E)L(F)
○ Kleene closure of E is a regular expression.

L(E
∗) = (L(E))∗

○ A parenthesized E is a regular expression.

L((E)) = L(E)
15 of 68

RE: Construction (3)

Exercises:
● � + L [�+L = L = �+L]
● �L [�L = � = L�]
● �∗ �∗ = �0 ∪�1 ∪�2 ∪ . . .= {✏} ∪� ∪� ∪ . . .= {✏}
● �∗L [�∗L = L = L�∗]

16 of 68

RE: Construction (4)

Write a regular expression for the following language

{ w � w has alternating 0’s and 1’s }
● Would (01)∗ work? [alternating 10’s?]
● Would (01)∗ + (10)∗ work? [starting and ending with 1?]
● 0(10)∗ + (01)∗ + (10)∗ + 1(01)∗
● It seems that:○ 1st and 3rd terms have (10)∗ as the common factor.○ 2nd and 4th terms have (01)∗ as the common factor.
● Can we simplify the above regular expression?
● (✏ + 0)(10)∗ + (✏ + 1)(01)∗
17 of 68

RE: Review Exercises
Write the regular expressions to describe the following languages:● { w � w ends with 01 }
● { w � w contains 01 as a substring }
● { w � w contains no more than three consecutive 1’s }
● { w � w ends with 01 ∨w has an odd # of 0’s }
● �������������

sx .y

������������������

s ∈ {+,−, ✏}∧ x ∈ ⌃∗
dec∧ y ∈ ⌃∗
dec∧ ¬(x = ✏ ∧ y = ✏)

�������������
● ���������

xy

�������������
x ∈ {0,1}∗ ∧ y ∈ {0,1}∗∧ x has alternating 0’s and 1’s∧ y has an odd # 0’s and an odd # 1’s

���������
18 of 68

RE: Operator Precedence

● In an order of decreasing precedence:○ Kleene star operator○ Concatenation operator○ Union operator
● When necessary, use parentheses to force the intended order

of evaluation.
● e.g.,○ 10∗ vs. (10)∗ [10∗ is equivalent to 1(0∗)]○ 01∗ + 1 vs. 0(1∗ + 1) [01∗ + 1 is equivalent to (0(1∗)) + (1)]○ 0 + 1∗ vs. (0 + 1)∗ [0 + 1∗ is equivalent to (0) + (1∗)]

19 of 68

DFA: Deterministic Finite Automata (1.1)
● A deterministic finite automata (DFA) is a finite state

machine (FSM) that accepts (or recognizes) a pattern of
behaviour.○ For lexical analysis, we study patterns of strings (i.e., how

alphabet symbols are ordered).○ Unless otherwise specified, we consider strings in {0,1}∗○ Each pattern contains the set of satisfying strings.○ We describe the patterns of strings using set comprehensions:● { w � w has an odd number of 0’s }● { w � w has an even number of 1’s }
● �w � w ≠ ✏∧ w has equal # of alternating 0’s and 1’s

�
● { w � w contains 01 as a substring }
● �w � w has an even number of 0’s∧ w has an odd number of 1’s

�
● Given a pattern description, we design a DFA that accepts it.○ The resulting DFA can be transformed into an executable program.
20 of 68

DFA: Deterministic Finite Automata (1.2)
○ The transition diagram below defines a DFA which

accepts/recognizes exactly the language

{ w � w has an odd number of 0’s }

s0:
even
0’s

1 1

0

s1:
odd
0’s

0○ Each incoming or outgoing arc (called a transition) corresponds
to an input alphabet symbol.○ s0 with an unlabelled incoming transition is the start state.○ s3 drawn as a double circle is a final state.○ All states have outgoing transitions covering {0,1}.

21 of 68

DFA: Deterministic Finite Automata (1.3)
The transition diagram below defines a DFA which
accepts/recognizes exactly the language

�w � w ≠ ✏∧ w has equal # of alternating 0’s and 1’s
�

s0:
empty
string

s1:
more
0’s

s2:
more
1’s

0

1

1

0

0

1
s4:

equal
(10)+

s5:
not

alter-
nating

0

1

0, 1

s3:
equal
(01)+

1

0

22 of 68

Review Exercises: Drawing DFAs

Draw the transition diagrams for DFAs which accept other
example string patterns:
● { w � w has an even number of 1’s }
● { w � w contains 01 as a substring }
● �w � w has an even number of 0’s∧ w has an odd number of 1’s

�

23 of 68

DFA: Deterministic Finite Automata (2.1)

A deterministic finite automata (DFA) is a 5-tuple

M = (Q, ⌃, �, q0, F)
○ Q is a finite set of states.○ ⌃ is a finite set of input symbols (i.e., the alphabet).○ � ∶ (Q ×⌃)→Q is a transition function

� takes as arguments a state and an input symbol and returns a state.○ q0 ∈ Q is the start state.○ F ⊆ Q is a set of final or accepting states.

24 of 68

DFA: Deterministic Finite Automata (2.2)

s0:
even
0’s

1 1

0

s1:
odd
0’s

0

We formalize the above DFA as M = (Q, ⌃, �, q0, F), where
● Q = {s0,s1}● ⌃ = {0,1}
● � = {((s0,0),s1), ((s0,1),s0), ((s1,0),s0), ((s1,1),s1)}

state � input 0 1
s0 s1 s0
s1 s0 s1● q0 = s0● F = {s1}

25 of 68

DFA: Deterministic Finite Automata (2.3.1)

s0:
empty
string

s1:
more
0’s

s2:
more
1’s

0

1

1

0

0

1
s4:

equal
(10)+

s5:
not

alter-
nating

0

1

0, 1

s3:
equal
(01)+

1

0

We formalize the above DFA as M = (Q, ⌃, �, q0, F), where
● Q = {s0,s1,s2,s3,s4,s5}● ⌃ = {0,1}
● q0 = s0● F = {s3,s4}
26 of 68

DFA: Deterministic Finite Automata (2.3.2)

s0:
empty
string

s1:
more
0’s

s2:
more
1’s

0

1

1

0

0

1
s4:

equal
(10)+

s5:
not

alter-
nating

0

1

0, 1

s3:
equal
(01)+

1

0

● � =
state � input 0 1

s0 s1 s2
s1 s5 s3
s2 s4 s5
s3 s1 s5
s4 s5 s2
s5 s5 s5

27 of 68

DFA: Deterministic Finite Automata (2.4)

● Given a DFA M = (Q, ⌃, �, q0, F):
○ We write L(M) to denote the language of M : the set of strings

that M accepts.○ A string is accepted if it results in a sequence of transitions:
beginning from the start state and ending in a final state.

L(M) = � a1a2 . . .an �
1 ≤ i ≤ n ∧ ai ∈ ⌃ ∧ �(qi−1,ai) = qi ∧ qn ∈ F

�
○ M rejects any string w �∈ L(M).

● We may also consider L(M) as concatenations of labels from
the set of all valid paths of M ’s transition diagram; each such
path starts with q0 and ends in a state in F .

28 of 68

DFA: Deterministic Finite Automata (2.5)
● Given a DFA M = (Q, ⌃, �, q0, F), we may simplify the

definition of L(M) by extending � (which takes an input symbol)
to �̂ (which takes an input string).

�̂ ∶ (Q ×⌃∗)→Q

We may define �̂ recursively, using �!
�̂(q, ✏) = q

�̂(q,xa) = �(�̂(q,x),a)
where q ∈ Q, x ∈ ⌃∗, and a ∈ ⌃● A neater definition of L(M) : the set of strings w ∈ ⌃∗ such that
�̂(q0,w) is an accepting state.

L(M) = {w � w ∈ ⌃∗ ∧ �̂(q0,w) ∈ F}
● A language L is said to be a regular language , if there is some

DFA M such that L = L(M).
29 of 68

Review Exercises: Formalizing DFAs

Formalize DFAs (as 5-tuples) for the other example string patterns
mentioned:
● { w � w has an even number of 0’s }
● { w � w contains 01 as a substring }
● �w � w has an even number of 0’s∧ w has an odd number of 1’s

�

30 of 68

NFA: Nondeterministic Finite Automata (1.1)
Problem: Design a DFA that accepts the following language:

L = { x01 � x ∈ {0,1}∗ }
That is, L is the set of strings of 0s and 1s ending with 01.

q0

1

0 q2q1 1

0

0
1

Given an input string w , we may simplify the above DFA by:○ nondeterministically treating state q0 as both:
● a state ready to read the last two input symbols from w● a state not yet ready to read the last two input symbols from w○ substantially reducing the outgoing transitions from q1 and q2

Compare the above DFA with the DFA in slide 39.31 of 68

NFA: Nondeterministic Finite Automata (1.2)
● A non-deterministic finite automata (NFA) that accepts the

same language:

q0

0, 1

0 q2q1 1

● How an NFA determines if an input 00101 should be processed:

32 of 68

NFA: Nondeterministic Finite Automata (2)

● A nondeterministic finite automata (NFA) , like a DFA, is a
FSM that accepts (or recognizes) a pattern of behaviour.

● An NFA being nondeterministic means that from a given state,
the same input label might corresponds to multiple
transitions that lead to distinct states.○ Each such transition offers an alternative path.○ Each alternative path is explored in parallel.○ If there exists an alternative path that succeeds in processing the

input string, then we say the NFA accepts that input string.○ If all alternative paths get stuck at some point and fail to process
the input string, then we say the NFA rejects that input string.

● NFAs are often more succinct (i.e., fewer states) and easier to
design than DFAs.● However, NFAs are just as expressive as are DFAs.○ We can always convert an NFA to a DFA.

33 of 68

NFA: Nondeterministic Finite Automata (3.1)

● A nondeterministic finite automata (NFA) is a 5-tuple

M = (Q, ⌃, �, q0, F)
○ Q is a finite set of states.○ ⌃ is a finite set of input symbols (i.e., the alphabet).○ � ∶ (Q ×⌃)→ P(Q) is a transition function

● Given a state and an input symbol, � returns a set of states.● Equivalently, we can write: � ∶ (Q ×⌃)� Q [a partial function]○ q0 ∈ Q is the start state.○ F ⊆ Q is a set of final or accepting states.
● What is the difference between a DFA and an NFA?○ � of a DFA returns a single state.○ � of an NFA returns a (possibly empty) set of states.

34 of 68

NFA: Nondeterministic Finite Automata (3.2)

q0

0, 1

0 q2q1 1

Given an input string 00101:
● Read 0: �(q0 ,0) = { q0 ,q1 }
● Read 0: �(q0 ,0) ∪ �(q1,0) = { q0 ,q1 } ∪� = { q0,q1 }
● Read 1: �(q0 ,1) ∪ �(q1,1) = { q0 } ∪ { q2 } = { q0 ,q2 }
● Read 0: �(q0 ,0) ∪ �(q2,0) = { q0,q1 } ∪� = { q0, q1 }
● Read 1: �(q0,1) ∪ �(q1 ,1) = { q0,q1 } ∪ { q2 } = { q0,q1, q2 }∵{ q0,q1,q2 } ∩ { q2 } ≠ �∴ 00101 is accepted

35 of 68

NFA: Nondeterministic Finite Automata (3.3)
● Given a NFA M = (Q, ⌃, �, q0, F), we may simplify the

definition of L(M) by extending � (which takes an input symbol)
to �̂ (which takes an input string).

�̂ ∶ (Q ×⌃∗)→ P(Q)
We may define �̂ recursively, using �!

�̂(q, ✏) = {q}
�̂(q,xa) = �{�(q′,a) � q′ ∈ �̂(q,x)}

where q ∈ Q, x ∈ ⌃∗, and a ∈ ⌃● A neater definition of L(M) : the set of strings w ∈ ⌃∗ such that
�̂(q0,w) contains at least one accepting state.

L(M) = {w � w ∈ ⌃∗ ∧ �̂(q0,w) ∩ F ≠ �}
36 of 68

DFA ≡ NFA (1)
○ For many languages, constructing an accepting NFA is easier than

a DFA.○ From each state of an NFA:
● Outgoing transitions need not cover the entire ⌃.● From a given state, the same symbol may non-deterministically lead

to multiple states.○ In practice:
● An NFA has just as many states as its equivalent DFA does.● An NFA often has fewer transitions than its equivalent DFA does.○ In the worst case:
● While an NFA has n states, its equivalent DFA has 2n states.○ Nonetheless, an NFA is still just as expressive as a DFA.
● A language accepted by some NFA is accepted by some DFA:

∀N ● N ∈ NFA⇒ (∃D ● D ∈ DFA ∧ L(D) = L(N))
● And vice versa, trivially?

∀D ● D ∈ DFA⇒ (∃N ● N ∈ NFA ∧ L(D) = L(N))
37 of 68

DFA ≡ NFA (2.2): Lazy Evaluation (1)
Given an NFA:

q0

0, 1

0 q2q1 1

Subset construction (with lazy evaluation) produces a DFA with � as:
state � input 0 1

{q0} �(q0,0)= {q0,q1}
�(q0,1)= {q0}

{q0,q1}
�(q0,0) ∪ �(q1,0)= {q0,q1} ∪�= {q0,q1}

�(q0,1) ∪ �(q1,1)= {q0} ∪ {q2}= {q0,q2}
{q0,q2}

�(q0,0) ∪ �(q2,0)= {q0,q1} ∪�= {q0,q1}
�(q0,1) ∪ �(q2,1)= {q0} ∪�= {q0}

38 of 68

DFA ≡ NFA (2.2): Lazy Evaluation (2)
Applying subset construction (with lazy evaluation), we arrive
in a DFA transition table:

state � input 0 1

{q0} {q0,q1} {q0}{q0,q1} {q0,q1} {q0,q2}{q0,q2} {q0,q1} {q0}
We then draw the DFA accordingly:

{q0}

1

0 {q0,q2}{q0,q1} 1

0

0
1

Compare the above DFA with the DFA in slide 31.
39 of 68

DFA ≡ NFA (2.2): Lazy Evaluation (3)
● Given an NFA N = (QN ,⌃N , �N ,q0,FN):

ALGORITHM: ReachableSubsetStates

INPUT: q0 ∶ QN ; OUTPUT: Reachable ⊆ P(QN)
PROCEDURE:
Reachable := { {q0} }
ToDiscover := { {q0} }
while(ToDiscover ≠ �) {

choose S ∶ P(QN) such that S ∈ ToDiscover

remove S from ToDiscover

NotYetDiscovered :=

({ {�N(s,0) � s ∈ S} } ∪ { {�N(s,1) � s ∈ S} })�Reachable
Reachable := Reachable ∪ NotYetDiscovered
ToDiscover := ToDiscover ∪ NotYetDiscovered

}

return Reachable

● RT of ReachableSubsetStates? [O(2�QN �)]● Often only a small portion of the �P(QN)� subset states is
reachable from {q0}⇒ Lazy Evaluation efficient in practice!

40 of 68

✏-NFA: Examples (1)
Draw the NFA for the following two languages:
1.

�������������
xy

������������������

x ∈ {0,1}∗∧ y ∈ {0,1}∗∧ x has alternating 0’s and 1’s∧ y has an odd # 0’s and an odd # 1’s

�������������
2.

� w ∶ {0,1}∗ � w has alternating 0’s and 1’s∨ w has an odd # 0’s and an odd # 1’s �
3. �������������

sx .y

������������������

s ∈ {+,−, ✏}∧ x ∈ ⌃∗
dec∧ y ∈ ⌃∗
dec∧ ¬(x = ✏ ∧ y = ✏)

�������������
41 of 68

✏-NFA: Examples (2)
�������������

sx .y

������������������

s ∈ {+,−, ✏}∧ x ∈ ⌃∗
dec∧ y ∈ ⌃∗
dec∧ ¬(x = ✏ ∧ y = ✏)

�������������

q0

0,1,…,9

q5q1
.

q2 q3
0,1,…,9

q4

0,1,…,9 .

0,1,…,9

✏✏,+,- ✏✏

From q0 to q1, reading a sign is optional: a plus or a minus, or
nothing at all (i.e., ✏).

42 of 68

✏-NFA: Formalization (1)

An ✏-NFA is a 5-tuple

M = (Q, ⌃, �, q0, F)
○ Q is a finite set of states.○ ⌃ is a finite set of input symbols (i.e., the alphabet).○ � ∶ (Q × (⌃ ∪ {✏}))→ P(Q) is a transition function

� takes as arguments a state and an input symbol, or an empty string

✏, and returns a set of states.○ q0 ∈ Q is the start state.○ F ⊆ Q is a set of final or accepting states.

43 of 68

✏-NFA: Formalization (2)

q0

0,1,…,9

q5q1
.

q2 q3
0,1,…,9

q4

0,1,…,9 .

0,1,…,9

✏✏,+,- ✏✏

Draw a transition table for the above NFA’s � function:
✏ +, - . 0 .. 9

q0 {q1} {q1} � �
q1 � � {q2} {q1,q4}
q2 � � � {q3}
q3 {q5} � � {q3}
q4 � � {q3} �
q5 � � � �

44 of 68

✏-NFA: Epsilon-Closures (1)

● Given ✏-NFA N

N = (Q, ⌃, �, q0, F)
we define the epsilon closure (or ✏-closure) as a function

ECLOSE ∶ Q→ P(Q)

● For any state q ∈ Q

ECLOSE(q) = {q} ∪ �
p∈�(q,✏)ECLOSE(p)

45 of 68

✏-NFA: Epsilon-Closures (2)

q0 q6

q1

q3 q5

q4

✏✏

0,1

q2

✏✏

✏✏

1

✏✏

0
✏✏

1

ECLOSE(q0)= { �(q0, ✏) = {q1,q2} }{q0} ∪ ECLOSE(q1) ∪ ECLOSE(q2)= { ECLOSE(q1), �(q1, ✏) = {q3}, ECLOSE(q2), �(q2, ✏) = � }{q0} ∪ ({q1} ∪ ECLOSE(q3)) ∪ ({q2} ∪�)= { ECLOSE(q3), �(q3, ✏) = {q5} }{q0} ∪ ({q1} ∪ ({q3} ∪ ECLOSE(q5))) ∪ ({q2} ∪�)= { ECLOSE(q5), �(q5, ✏) = � }{q0} ∪ ({q1} ∪ ({q3} ∪ ({q5} ∪ �))) ∪ ({q2} ∪�)
46 of 68

✏-NFA: Formalization (3)
● Given a ✏-NFA M = (Q, ⌃, �, q0, F), we may simplify the

definition of L(M) by extending � (which takes an input symbol)
to �̂ (which takes an input string).

�̂ ∶ (Q ×⌃∗)→ P(Q)
We may define �̂ recursively, using �!

�̂(q, ✏) = ECLOSE(q)
�̂(q,xa) = �{ ECLOSE(q′′) � q′′ ∈ �(q′,a) ∧ q

′ ∈ �̂(q,x) }
where q ∈ Q, x ∈ ⌃∗, and a ∈ ⌃● Then we define L(M) as the set of strings w ∈ ⌃∗ such that
�̂(q0,w) contains at least one accepting state.

L(M) = {w � w ∈ ⌃∗ ∧ �̂(q0,w) ∩ F ≠ �}
47 of 68

✏-NFA: Formalization (4)

q0

0,1,…,9

q5q1
.

q2 q3
0,1,…,9

q4

0,1,…,9 .

0,1,…,9

✏✏,+,- ✏✏

Given an input string 5.6:
�̂(q0, ✏) = ECLOSE(q0) = {q0,q1}● Read 5: �(q0,5) ∪ �(q1,5) = � ∪ {q1,q4} = { q1,q4 }
�̂(q0,5) = ECLOSE(q1) ∪ ECLOSE(q4) = {q1} ∪ {q4} = {q1,q4}● Read .: �(q1, .) ∪ �(q4, .) = {q2} ∪ {q3} = { q2,q3 }
�̂(q0,5.) = ECLOSE(q2) ∪ ECLOSE(q3) = {q2} ∪ {q3,q5} = {q2,q3,q5}

● Read 6: �(q2,6) ∪ �(q3,6) ∪ �(q5,6) = {q3} ∪ {q3} ∪� = { q3 }
�̂(q0,5.6) = ECLOSE(q3) = {q3,q5} [5.6 is accepted]

48 of 68

DFA ≡ ✏-NFA: Extended Subset Const. (1)
Subset construction (with lazy evaluation and
epsilon closures) produces a DFA transition table.

d ∈ 0 .. 9 s ∈ {+,−} .
{q0,q1} {q1,q4} {q1} {q2}{q1,q4} {q1,q4} � {q2,q3,q5}{q1} {q1,q4} � {q2}{q2} {q3,q5} � �{q2,q3,q5} {q3,q5} � �{q3,q5} {q3,q5} � �

For example, �({q0,q1},d) is calculated as follows: [d ∈ 0 .. 9]
�{ECLOSE(q) � q ∈ �(q0,d) ∪ �(q1,d)}= �{ECLOSE(q) � q ∈ �∪ {q1,q4}}= �{ECLOSE(q) � q ∈ {q1,q4}}= ECLOSE(q1) ∪ ECLOSE(q4)= {q1} ∪ {q4}= {q1,q4}

49 of 68

DFA ≡ ✏-NFA: Extended Subset Const. (2)

Given an ✏=NFA N = (QN ,⌃N , �N ,q0,FN), by applying the
extended subset construction to it, the resulting DFA

D = (QD,⌃D, �D,qDstart
,FD) is such that:

⌃D = ⌃N

qDstart
= ECLOSE(q0)

FD = { S � S ⊆ QN ∧S ∩ FN ≠ � }
QD = { S � S ⊆ QN ∧ (∃w ●w ∈ ⌃∗ ⇒ S = �̂N(q0,w)) }
�D(S,a) = �{ ECLOSE(s′) � s ∈ S ∧ s

′ ∈ �N(s,a) } [S ∈ QD]

50 of 68

Regular Expression to ✏-NFA

● Just as we construct each complex regular expression

recursively, we define its equivalent ✏-NFA recursively .
● Given a regular expression R, we construct an ✏-NFA E , such

that L(R) = L(E), with○ Exactly one accept state.○ No incoming arc to the start state.○ No outgoing arc from the accept state.

51 of 68

Regular Expression to ✏-NFA
Base Cases:
● ✏

● �

● a [a ∈ ⌃]

52 of 68

Regular Expression to ✏-NFA
Recursive Cases: [R and S are RE’s]● R +S

● RS

● R
∗

53 of 68

Regular Expression to ✏-NFA: Examples (1.1)
● 0 + 1

● (0 + 1)∗

54 of 68

Regular Expression to ✏-NFA: Examples (1.2)
● (0 + 1)∗1(0 + 1)

55 of 68

Minimizing DFA: Motivation

● Recall: Regular Expresion �→ ✏-NFA �→ DFA
● DFA produced by the extended subset construction (with

lazy evaluation) may not be minimum on its size of state.
● When the required size of memory is sensitive

(e.g., processor’s cache memory),
the fewer number of DFA states, the better.

56 of 68

Minimizing DFA: Algorithm
ALGORITHM: MinimizeDFAStates

INPUT: DFA M = (Q, ⌃, �, q0, F)
OUTPUT: M

′
s.t. minimum |Q| and equivalent behaviour as M

PROCEDURE:
P := � /* refined partition so far */

T := { F, Q − F } /* last refined partition */

while (P ≠ T):

P := T

T := �
for(p ∈ P):

find the maximal S ⊂ p s.t. splittable(p, S)

if S ≠ � then
T := T ∪ {S, p − S}

else
T := T ∪ {p}

end

splittable(p,S) holds iff there is c ∈ ⌃ s.t.
1. S ⊂ p (or equivalently: p − S ≠ �)
2. Transitions via c lead all s ∈ S to states in same partition p1 (p1 ≠ p).

57 of 68

Minimizing DFA: Examples

56 CHAPTER 2 Scanners

(a) DFA for “fee | fie”

e

e

e

i

f

s3

s0 s1

s2

s4 s5

Examines

Step Partition Set Char Action
Current

0 { {s3, s5}, {s0, s1, s2, s4} } — — —
1 { {s3, s5}, {s0, s1, s2, s4} } {s3, s5} all none

2 { {s3, s5}, {s0, s1, s2, s4} } {s0, s1, s2, s4} e split {s2, s4}
3 {{s3, s5}, {s0, s1}, {s2, s4} } {s0, s1} f split {s1}
4 {{s3, s5}, {s0}, {s1}, {s2, s4} } all all none

(b) Critical Steps in Minimizing the DFA

(c) The Minimal DFA (States Renumbered)

n FIGURE 2.11 Applying the DFA Minimization Algorithm.

are accepting states entered only by a transition on the letter e. Neither has
a transition that leaves the state. We would expect the dfa minimization
algorithm to discover this fact and replace them with a single state.

Figure 2.11b shows the significant steps that occur in minimizing this
dfa. The initial partition, shown as step 0, separates accepting states from
nonaccepting states. Assuming that the while loop in the algorithm iterates
over the sets of P in order, and over the characters in 6 = {e,f,i} in order,
then it first examines the set {s3,s5}. Since neither state has an exiting transi-
tion, the state does not split on any character. In the second step, it examines
{s0,s1,s2,s4}; on the character e, it splits {s2,s4} out of the set. In the third
step, it examines {s0,s1} and splits it around the character f. At that point,
the partition is { {s3,s5}, {s0}, {s1}, {s2,s4}}. The algorithm makes one final
pass over the sets in the partition, splits none of them, and terminates.

To construct the new dfa, we must build a state to represent each set in
the final partition, add the appropriate transitions from the original dfa, and
designate initial and accepting state(s). Figure 2.11c shows the result for this
example.

2.4 From Regular Expression to Scanner 57

(a) Original DFA

b

c

c b

b

a

c

d0 d1

d2

d3

n FIGURE 2.12 DFA for a(b|c⇤) .

As a second example, consider the dfa for a (b | c)⇤ produced by Thomp-
son’s construction and the subset construction, shown in Figure 2.12a.
The first step of the minimization algorithm constructs an initial partition
{{d0}, {d1,d2,d3}}, as shown on the right. Since p1 has only one state, it
cannot be split. When the algorithm examines p2, it finds no transitions on a
from any state in p2. For both b and c, each state has a transition back into p2.
Thus, no symbol in 6 splits p2, and the final partition is { {d0}, {d1, d2, d3} }.

The resulting minimal dfa is shown in Figure 2.12b. Recall that this is
the dfa that we suggested a human would derive. After minimization, the
automatic techniques produce the same result.

This algorithm is another example of a fixed-point computation. P is finite;
at most, it can contain |D| elements. The while loop splits sets in P , but
never combines them. Thus, |P| grows monotonically. The loop halts when
some iteration splits no sets in P . The worst-case behavior occurs when
each state in the dfa has different behavior; in that case, the while loop halts
when P has a distinct set for each di 2 D. This occurs when the algorithm is
applied to a minimal dfa.

2.4.5 Using a DFA as a Recognizer
Thus far, we have developed the mechanisms to construct a dfa implemen-
tation from a single re. To be useful, a compiler’s scanner must recognize
all the syntactic categories that appear in the grammar for the source lan-
guage. What we need, then, is a recognizer that can handle all the res for the
language’s microsyntax. Given the res for the various syntactic categories,
r1, r2, r3, . . . , rk , we can construct a single re for the entire collection by
forming (r1 | r2 | r3 | . . . | rk).

If we run this re through the entire process, building an nfa, constructing
a dfa to simulate the nfa, minimizing it, and turning that minimal dfa into
executable code, the resulting scanner recognizes the next word that matches
one of the ri’s. That is, when the compiler invokes it on some input, the

q3 q4 q5

q0 q1 q2

0 0

1

1

1

0

0

1

0, 1

0

1

q2q1

q4

Exercises: Minimize the DFA from here; Q1 & Q2, p59, EAC2.
58 of 68

Exercise:
Regular Expression to Minimized DFA

Given regular expression r[0..9]+ which specifies the pattern of
a register name, derive the equivalent DFA with the minimum
number of states. Show all steps.

59 of 68

Implementing DFA as Scanner
○ The source language has a list of syntactic categories:

e.g., keyword while [while]
e.g., identifiers [[a-zA-Z][a-zA-Z0-9_]*]
e.g., white spaces [[\t\r]+]○ A compiler’s scanner must recognize words from all syntactic

categories of the source language.
● Each syntactic category is specified via a regular expression.

r1���
syn. cat. 1

+ r1���
syn. cat. 2

+ . . . + rn���
syn. cat. n

● Overall, a scanner should be implemented based on the minimized
DFA accommodating all syntactic categories.○ Principles of a scanner:

● Returns one word at a time● Each returned word is the longest possible that matches a pattern● A priority may be specified among patterns
(e.g., new is a keyword, not identifier)

60 of 68

Implementing DFA: Table-Driven Scanner (1)

● Consider the syntactic category of register names.
● Specified as a regular expression : r[0..9]+
● Afer conversion to ✏-NFA, then to DFA, then to minimized DFA:

2.5 Implementing Scanners 61

NextWord()
state s0 ;
lexeme ‘‘’’;
clear stack;
push(bad);

while (state 6=se) do
NextChar(char);
lexeme lexeme + char;

if state 2 SA

then clear stack;

push(state);

cat CharCat[char];
state �[state,cat];

end;

while(state /2 SA and
state 6= bad) do

state pop();
truncate lexeme;
RollBack();

end;

if state 2 SA

then return Type[state];
else return invalid;

r 0,1,2, . . .,9 EOF Other

Register Digit Other Other

The Classifier Table, CharCat

Register Digit Other

s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

The Transition Table, �

s0 s1 s2 se

invalid invalid register invalid

The Token Type Table, Type

The Underlying DFA

s2

0…9

s0 s1
r 0…9

n FIGURE 2.14 A Table-Driven Scanner for Register Names.

as regular expressions. The scanner generator then produces tables that drive
the skeleton scanner.

Figure 2.14 shows a table-driven scanner for the re r [0. . . 9]+, which was
our first attempt at an re for iloc register names. The left side of the
figure shows the skeleton scanner, while the right side shows the tables for
r [0. . . 9]+ and the underlying dfa. Notice the similarity between the code
here and the recognizer shown in Figure 2.2 on page 32.

The skeleton scanner divides into four sections: initializations, a scanning
loop that models the dfa’s behavior, a roll back loop in case the dfa over-
shoots the end of the token, and a final section that interprets and reports the
results. The scanning loop repeats the two basic actions of a scanner: read
a character and simulate the dfa’s action. It halts when the dfa enters the

● The following tables encode knowledge about the above DFA:

Classifier (CharCat)

2.5 Implementing Scanners 61

NextWord()
state s0 ;
lexeme ‘‘’’;
clear stack;
push(bad);

while (state 6=se) do
NextChar(char);
lexeme lexeme + char;

if state 2 SA

then clear stack;

push(state);

cat CharCat[char];
state �[state,cat];

end;

while(state /2 SA and
state 6= bad) do

state pop();
truncate lexeme;
RollBack();

end;

if state 2 SA

then return Type[state];
else return invalid;

r 0,1,2, . . .,9 EOF Other

Register Digit Other Other

The Classifier Table, CharCat

Register Digit Other

s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

The Transition Table, �

s0 s1 s2 se

invalid invalid register invalid

The Token Type Table, Type

n FIGURE 2.14 A Table-Driven Scanner for Register Names.

as regular expressions. The scanner generator then produces tables that drive
the skeleton scanner.

Figure 2.14 shows a table-driven scanner for the re r [0. . . 9]+, which was
our first attempt at an re for iloc register names. The left side of the
figure shows the skeleton scanner, while the right side shows the tables for
r [0. . . 9]+ and the underlying dfa. Notice the similarity between the code
here and the recognizer shown in Figure 2.2 on page 32.

The skeleton scanner divides into four sections: initializations, a scanning
loop that models the dfa’s behavior, a roll back loop in case the dfa over-
shoots the end of the token, and a final section that interprets and reports the
results. The scanning loop repeats the two basic actions of a scanner: read
a character and simulate the dfa’s action. It halts when the dfa enters the

Transition (�)

2.5 Implementing Scanners 61

NextWord()
state s0 ;
lexeme ‘‘’’;
clear stack;
push(bad);

while (state 6=se) do
NextChar(char);
lexeme lexeme + char;

if state 2 SA

then clear stack;

push(state);

cat CharCat[char];
state �[state,cat];

end;

while(state /2 SA and
state 6= bad) do

state pop();
truncate lexeme;
RollBack();

end;

if state 2 SA

then return Type[state];
else return invalid;

r 0,1,2, . . .,9 EOF Other

Register Digit Other Other

The Classifier Table, CharCat

Register Digit Other

s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

The Transition Table, �

s0 s1 s2 se

invalid invalid register invalid

The Token Type Table, Type

n FIGURE 2.14 A Table-Driven Scanner for Register Names.

as regular expressions. The scanner generator then produces tables that drive
the skeleton scanner.

Figure 2.14 shows a table-driven scanner for the re r [0. . . 9]+, which was
our first attempt at an re for iloc register names. The left side of the
figure shows the skeleton scanner, while the right side shows the tables for
r [0. . . 9]+ and the underlying dfa. Notice the similarity between the code
here and the recognizer shown in Figure 2.2 on page 32.

The skeleton scanner divides into four sections: initializations, a scanning
loop that models the dfa’s behavior, a roll back loop in case the dfa over-
shoots the end of the token, and a final section that interprets and reports the
results. The scanning loop repeats the two basic actions of a scanner: read
a character and simulate the dfa’s action. It halts when the dfa enters the

Token Type (Type)

2.5 Implementing Scanners 61

NextWord()
state s0 ;
lexeme ‘‘’’;
clear stack;
push(bad);

while (state 6=se) do
NextChar(char);
lexeme lexeme + char;

if state 2 SA

then clear stack;

push(state);

cat CharCat[char];
state �[state,cat];

end;

while(state /2 SA and
state 6= bad) do

state pop();
truncate lexeme;
RollBack();

end;

if state 2 SA

then return Type[state];
else return invalid;

r 0,1,2, . . .,9 EOF Other

Register Digit Other Other

The Classifier Table, CharCat

Register Digit Other

s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

The Transition Table, �

s0 s1 s2 se

invalid invalid register invalid

The Token Type Table, Type

n FIGURE 2.14 A Table-Driven Scanner for Register Names.

as regular expressions. The scanner generator then produces tables that drive
the skeleton scanner.

Figure 2.14 shows a table-driven scanner for the re r [0. . . 9]+, which was
our first attempt at an re for iloc register names. The left side of the
figure shows the skeleton scanner, while the right side shows the tables for
r [0. . . 9]+ and the underlying dfa. Notice the similarity between the code
here and the recognizer shown in Figure 2.2 on page 32.

The skeleton scanner divides into four sections: initializations, a scanning
loop that models the dfa’s behavior, a roll back loop in case the dfa over-
shoots the end of the token, and a final section that interprets and reports the
results. The scanning loop repeats the two basic actions of a scanner: read
a character and simulate the dfa’s action. It halts when the dfa enters the

61 of 68

Implementing DFA: Table-Driven Scanner (2)
The scanner then is implemented via a 4-stage skeleton:
NextWord()

-- Stage 1: Initialization

state := s0 ; word := ✏
initialize an empty stack s ; s.push(bad)
-- Stage 2: Scanning Loop

while (state ≠ se)

NextChar(char) ; word := word + char

if state ∈ F then reset stack s end
s.push(state)
cat := CharCat[char]

state := �[state, cat]

-- Stage 3: Rollback Loop

while (state �∈ F ∧ state ≠ bad)

state := s.pop()
truncate word

-- Stage 4: Interpret and Report

if state ∈ F then return Type[state]

else return invalid

end

62 of 68

Index (1)

Scanner in Context

Scanner: Formulation & Implementation

Alphabets

Strings (1)

Strings (2)

Review Exercises: Strings

Languages

Review Exercises: Languages

Problems

Regular Expressions (RE): Introduction

RE: Language Operations (1)
63 of 68

Index (2)
RE: Language Operations (2)

RE: Construction (1)

RE: Construction (2)

RE: Construction (3)

RE: Construction (4)

RE: Review Exercises

RE: Operator Precedence

DFA: Deterministic Finite Automata (1.1)

DFA: Deterministic Finite Automata (1.2)

DFA: Deterministic Finite Automata (1.3)

Review Exercises: Drawing DFAs
64 of 68

Index (3)
DFA: Deterministic Finite Automata (2.1)

DFA: Deterministic Finite Automata (2.2)

DFA: Deterministic Finite Automata (2.3.1)

DFA: Deterministic Finite Automata (2.3.2)

DFA: Deterministic Finite Automata (2.4)

DFA: Deterministic Finite Automata (2.5)

Review Exercises: Formalizing DFAs

NFA: Nondeterministic Finite Automata (1.1)

NFA: Nondeterministic Finite Automata (1.2)

NFA: Nondeterministic Finite Automata (2)

NFA: Nondeterministic Finite Automata (3.1)
65 of 68

Index (4)
NFA: Nondeterministic Finite Automata (3.2)

NFA: Nondeterministic Finite Automata (3.3)

DFA ≡ NFA (1)

DFA ≡ NFA (2.2): Lazy Evaluation (1)

DFA ≡ NFA (2.2): Lazy Evaluation (2)

DFA ≡ NFA (2.2): Lazy Evaluation (3)

✏-NFA: Examples (1)

✏-NFA: Examples (2)

✏-NFA: Formalization (1)

✏-NFA: Formalization (2)

✏-NFA: Epsilon-Closures (1)
66 of 68

Index (5)
✏-NFA: Epsilon-Closures (2)

✏-NFA: Formalization (3)

✏-NFA: Formalization (4)

DFA ≡ ✏-NFA: Extended Subset Const. (1)

DFA ≡ ✏-NFA: Extended Subset Const. (2)

Regular Expression to ✏-NFA

Regular Expression to ✏-NFA

Regular Expression to ✏-NFA

Regular Expression to ✏-NFA: Examples (1.1)

Regular Expression to ✏-NFA: Examples (1.2)

Minimizing DFA: Motivation
67 of 68

Index (6)
Minimizing DFA: Algorithm

Minimizing DFA: Examples
Exercise:
Regular Expression to Minimized DFA

Implementing DFA as Scanner

Implementing DFA: Table-Driven Scanner (1)

Implementing DFA: Table-Driven Scanner (2)

68 of 68

