
Classes and Objects

EECS2030 F: Advanced
Object Oriented Programming

Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Required: Review Tutorials on OOP in Java

Current slides are cross-referenced throughout this review
tutorials on Java OOP:
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#refurbished_store

2 of 90

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#refurbished_store
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#refurbished_store


Optional: Tutorial Videos to Help You Review

● Link to Tutorial Series:
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#java_from_scratch_w21
○ Week 1: Eclipse work environment
○ Week 2c, 2d, 2e: Debugger in Eclipse
○ Weeks 2, 3: Programming/Debugging Conditionals
○ Weeks 4, 5: Programming/Debugging Arrays and Loops
○ Weeks 6, 7, 8: Classes and Objects

● iPad Notes: https://www.eecs.yorku.ca/˜jackie/
teaching/tutorials/notes/EECS1022%20Tutorial%
20on%20Java.pdf

3 of 90

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/EECS1022%20Tutorial%20on%20Java.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/EECS1022%20Tutorial%20on%20Java.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/EECS1022%20Tutorial%20on%20Java.pdf


Required: Written Notes to Review

● Inferring Classes/Methods from JUnit Tests:
https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2021/F/EECS2030/notes/EECS2030_F21_
Inferring_Classes_from_JUnit.pdf

● Declaring and Manipulating Reference-Typed, Multi-Valued
Attributes: https://www.eecs.yorku.ca/˜jackie/
teaching/lectures/2021/F/EECS2030/notes/
EECS2030_F21_Tracing_PointCollectorTester.pdf

4 of 90

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Tracing_PointCollectorTester.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Tracing_PointCollectorTester.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Tracing_PointCollectorTester.pdf


Learning Outcomes

Understand:
● Object Orientation
● Classes as Templates:

○ attributes, constructors, (accessor and mutator) methods
○ use of this

● Objects as Instances:
○ use of new
○ the dot notation, method invocations
○ reference aliasing

● Reference-Typed Attributes: Single-Valued vs. Multi-Valued
● Non-Static vs. Static Variables
● Helper Methods

5 of 90



Separation of Concerns: App/Tester vs. Model
● In EECS1022/EECS1021:

○ Model Component : One or More Java Classes
e.g., Person vs. SMS, Student, CourseRecord

○ Another Java class that “manipulates” the model class(es)
● Controller (e.g., BMIActivity, LEDController). Effects?

Visualized at a connected physical device (e.g., tablet, LED lightbulbs)
● Tester (e.g., PersonTester, BankTester). Effects?

Seen (as textual outputs) at console
Asserting expected vs. actual Values in JUnit tests

● In Java:
○ We may define more than one classes.
○ Each class may contain more than one methods.
Object-Oriented Programming (OOP) in Java:
○ Use classes to define templates
○ Use objects to instantiate classes
○ At runtime, create objects and call methods on objects, to simulate

interactions between real-life entities.
6 of 90



Object Orientation:
Observe, Model, and Execute

Real World: Entities

Entities: 
jim, jonathan, …

Entities: 
p1(2, 3), p2(-1, -2), …

…

Compile-Time: Classes
(definitions of templates)

class Person {
    String name;
    double weight;
    double height;
}

class Potint {
    double x;
    double y;
}

…

Run-Time: Objects
(instantiations of templates)

Person
name
weight
height

“Jim”
80

1.80
jim

Person
name
weight
height

“Jonathan”
80

1.80
jonathan

Point
x
y

2
3

p1

Point
x
y

-1
-2

p2

…

Model Execute

○ Study this tutorial video that walks you through the idea of
object orientation .

○ We observe how real-world entities behave.
○ We model the common attributes and behaviour of a set of

entities in a single class.
○ We execute the program by creating instances of classes, which

interact in a way analogous to that of real-world entities.
7 of 90

https://www.youtube.com/watch?v=y7qOhn6Ep4A&index=15&t=4s&list=PL5dxAmCmjv_7WvY_QnJrcPczM_KjABxBn


Object-Oriented Programming (OOP)

● In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.

● Entities:
○ Possess attributes;
○ Exhibit bebaviour ; and
○ Interact with each other.

● Goals: Solve problems programmatically by
○ Classifying entities of interest

Entities in the same class share common attributes and bebaviour.
○ Manipulating data that represent these entities

Each entity is represented by specific values.

8 of 90



OO Thinking: Templates vs. Instances (1.1)

Points on a two-dimensional plane are identified by their signed
distances from the X- and Y-axises. A point may move
arbitrarily towards any direction on the plane. Given two points,
we are often interested in knowing the distance between them.

● A template called Point defines the common
○ attributes (e.g., x, y) [≈ nouns]
○ behaviour (e.g., move up, get distance from) [≈ verbs]

9 of 90



OO Thinking: Templates vs. Instances (1.2)

● A template (e.g., class Point) defines what’s shared by a set
of related entities (i.e., 2-D points).
○ Common attributes (x, y)
○ Common behaviour (move left, move up)

● Each template may be instantiated as multiple instances,
each with instance-specific values for attributes x and y:
○ Point instance p1 is located at (3,4)
○ Point instance p2 is located at (−4,−3)

● Instances of the same template may exhibit distinct behaviour .
○ When p1 moves up for 1 unit, it will end up being at (3,5)
○ When p2 moves up for 1 unit, it will end up being at (−4,−2)
○ Then, p1’s distance from origin: [

√
32 + 52]

○ Then, p2’s distance from origin: [
√
(−4)2 + (−2)2]

10 of 90



OO Thinking: Templates vs. Instances (2.1)

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

● A template called Person defines the common
○ attributes (e.g., age, weight, height) [≈ nouns]
○ behaviour (e.g., get older, gain weight) [≈ verbs]

11 of 90



OO Thinking: Templates vs. Instances (2.2)
● A template (e.g., class Person) defines what’s shared by a

set of related entities (i.e., persons).
○ Common attributes (age, weight, height)
○ Common behaviour (get older, lose weight, grow taller)

● Each template may be instantiated as multiple instances,
each with instance-specific values for attributes age, weight,
and height.
○ Person instance jim is

50-years old, 1.8-meters tall and 80-kg heavy
○ Person instance jonathan is

65-years old, 1.73-meters tall and 90-kg heavy
● Instances of the same template may exhibit distinct behaviour .

○ When jim gets older, he becomes 51
○ When jonathan gets older, he becomes 66.
○ jim’s BMI is based on his own height and weight [ 80

1.82 ]
○ jonathan’s BMI is based on his own height and weight [ 90

1.732 ]
12 of 90



OOP: Classes ≈ Templates

In Java, you use a class to define a template that enumerates
attributes that are common to a set of entities of interest.

public class Person {
private int age;
private String nationality;
private double weight;
private double height;

}

public class Point {
private double x;
private double y;

}

13 of 90



Java Data Types (1)
A (data) type denotes a set of related runtime values.

1. Primitive Types
○ Integer Type

● int [set of 32-bit integers]
● long [set of 64-bit integers]

○ Floating-Point Number Type
● double [set of 64-bit FP numbers]

○ Character Type
● char [set of single characters]

○ Boolean Type
● boolean [set of true and false]

2. Reference Type : Complex Type with Attributes and Methods
○ String [set of references to character sequences]
○ Person [set of references to Person objects]
○ Point [set of references to Point objects]
○ Scanner [set of references to Scanner objects]

14 of 90



Java Data Types (2)
● A variable that is declared with a type but uninitialized is

implicitly assigned with its default value .
○ Primitive Type

● int i; [ 0 is implicitly assigned to i]
● double d; [ 0.0 is implicitly assigned to d]
● boolean b; [ false is implicitly assigned to b]

○ Reference Type
● String s; [ null is implicitly assigned to s]
● Person jim; [ null is implicitly assigned to jim]
● Point p1; [ null is implicitly assigned to p1]
● Scanner input; [ null is implicitly assigned to input]

● You can use a primitive variable that is uninitialized .
Make sure the default value is what you want!

● Calling a method on a uninitialized reference variable crashes
your program. [ NullPointerException ]
Always initialize reference variables!

15 of 90



OOP: Methods (1.1)
● A method is a named block of code, reusable via its name.

{ 
   … 
   /* implementation of method m */
}

m

…
RT

T1T1 p1p1

T2T2 p2p2

TnTn pnpn

● The Header of a method consists of:
○ Return type [ RT (which can be void) ]
○ Name of method [ m ]
○ Zero or more parameter names [ p1, p2, . . . , pn ]
○ The corresponding parameter types [ T1, T2, . . . , Tn ]

● A call to method m has the form: m(a1,a2, . . . ,an)

Types of argument values a1, a2, . . . , an must match the the
corresponding parameter types T1, T2, . . . , Tn.

16 of 90



OOP: Methods (1.2)
● In the body of the method, you may

○ Declare new local variables (whose scope is within that method).
○ Use or change values of attributes.
○ Use values of parameters, if any.

public class Person {
private String nationality;
public void changeNationality(String newNationality) {
nationality = newNationality; } }

● Call a method , with a context object , by passing arguments.
public class PersonTester {
public static void main(String[] args) {
Person jim = new Person(50, "British");
Person jonathan = new Person(60, "Canadian");
jim.changeNationality("Korean");
jonathan.changeNationality("Korean"); } }

17 of 90



OOP: Methods (2)

● Each class C defines a list of methods.
○ A method m is a named block of code.

● We reuse the code of method m by calling it on an object obj
of class C.

For each method call obj.m(. . .):
○ obj is the context object of type C
○ m is a method defined in class C
○ We intend to apply the code effect of method m to object obj.

e.g., jim.getOlder() vs. jonathan.getOlder()
e.g., p1.moveUp(3) vs. p2.moveUp(3)

● All objects of class C share the same definition of method m.
● However:
∵ Each object may have distinct attribute values.
∴ Applying the same definition of method m has distinct effects.

18 of 90



OOP: Methods (3)
1. Constructor

○ Same name as the class. No return type. Initializes attributes.
○ Called with the new keyword.
○ e.g., Person jim = new Person(50, "British");

2. Mutator
○ Changes (re-assigns) attributes
○ void return type
○ Cannot be used when a value is expected
○ e.g., double h = jim.setHeight(78.5) is illegal!

3. Accessor
○ Uses attributes for computations (without changing their values)
○ Any return type other than void
○ An explicit return statement (typically at the end of the method)

returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g., println(p1.getDistanceFromOrigin());

19 of 90



OOP: Class Constructors (1.1)

● The purpose of defining a class is to be able to create
instances out of it.

● To instantiate a class, we use one of its constructors .
● A constructor

○ declares input parameters
○ uses input parameters to initialize some or all of its attributes

20 of 90



OOP: Class Constructors (1.2)

For each class, you may define one or more constructors :
○ Names of all constructors must match the class name.
○ No return types need to be specified for constructors.
○ Overloaded constructor have distinct lists of parameter types.

● Person(String n), Person(String n, int age) ✓
● Person(String n, int age), Person(int age, String n) ✓
● Person(String fN, int age), Person(String lN, int id) ×

○ Each parameter that is used to initialize an attribute must have a
matching type.

○ The body of each constructor specifies how some or all
attributes may be initialized .

21 of 90



OOP: Class Constructors (2.1)

public class Point {
private double x;
private double y;

public Point(double initX, double initY) {
x = initX;
y = initY;

}

public Point(char axis, double distance) {
if (axis == ’x’) { x = distance; }
else if (axis == ’y’) { y = distance; }
else { /* Error: invalid axis */ }

}
}

22 of 90



OOP: Class Constructors (2.2)
public class Person {
private int age;
private String nationality;
private double weight;
private double height;
public Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;

}
public Person (double initW, double initH) {
weight = initW;
height = initH;

}
public Person(int initAge, String initNat,

double initW, double initH) {
. . . /* initialize all attributes using the parameters */

}
}

23 of 90



Visualizing Objects at Runtime (1)

● To trace a program with sophisticated manipulations of objects,
it’s critical for you to visualize how objects are:
○ Created using constructors

Person jim = new Person(50, "British", 80, 1.8);
○ Inquired using accessor methods

double bmi = jim.getBMI();
○ Modified using mutator methods

jim.gainWeightBy(10);
● To visualize an object:

○ Draw a rectangle box to represent contents of that object:

● Title indicates the name of class from which the object is instantiated.

● Left column enumerates names of attributes of the instantiated class.

● Right column fills in values of the corresponding attributes.

○ Draw arrow(s) for variable(s) that store the object’s address .
24 of 90



Visualizing Objects at Runtime (2.1)
After calling a constructor to create an object:

Person jim = new Person(50, "British", 80, 1.8);

“British”nationality

Person

jim

80

1.8

weight

height

50age

25 of 90



Visualizing Objects at Runtime (2.2)
After calling an accessor to inquire about context object jim:
double bmi = jim.getBMI();

● Contents of the object pointed to by jim remain intact.
● Retuned value 80

(1.8)2 of jim.getBMI() stored in variable bmi.

“British”nationality

Person

jim

80

1.8

weight

height

50age

26 of 90



Visualizing Objects at Runtime (2.3)
After calling a mutator to modify the state of context object jim:
jim.gainWeightBy(10);

● Contents of the object pointed to by jim change.
● Address of the object remains unchanged.
⇒ jim points to the same object!

“British”nationality

Person

jim

80    90

1.8

weight

height

50age

27 of 90



Visualizing Objects at Runtime (2.4)
After calling the same accessor to inquire the modified state of
context object jim:
bmi = jim.getBMI();

● Contents of the object pointed to by jim remain intact.
● Retuned value 90

(1.8)2 of jim.getBMI() stored in variable bmi.

“British”nationality

Person

jim

80    90

1.8

weight

height

50age

28 of 90



Object Creation (1.1)

Point p1 = new Point(2, 4);

1. RHS (Source) of Assignment: new Point(2, 4) creates
a new Point object in memory.

2.0

4.0

x

y

Point

2. LHS (Target) of Assignment: Point p1 declares a variable
that is meant to store the address of some Point object .

3. Assignment: Executing = stores new object’s address in p1.

2.0

4.0

x

y

Point

p1

29 of 90



Object Creation (1.2)
Person jim = new Person(50, "British");

1. RHS (Source) of Assignment: new Person(50, "British")

creates a new Person object in memory.

50

“British”

age

nationality

Person

0.0

0.0

weight

height

2. LHS (Target) of Assignment: Point jim declares a variable
that is meant to store the address of some Person object .

3. Assignment: Executing = stores new object’s address in jim.

50

“British”

age

nationality

Person

jim

0.0

0.0

weight

height

30 of 90



Object Creation (2)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + p1.getX()+", "+p1.getY() + ")");

(2.0, 4.0)

31 of 90



OOP: Object Creation (3.1.1)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PointTester {
public static void main(String[] args) {
Point p1 = new Point(3, 4);
Point p2 = new Point(-3 -2);
Point p3 = new Point(’x’, 5);
Point p4 = new Point(’y’, -7);

}
}

32 of 90



OOP: Object Creation (3.1.2)

3.0

4.0

x

y

Person

p1

Point p1 = new Point(3, 4)

-3.0

-2.0

x

y

Person

p2

Point p2 = new Point(-3, -2)

5.0

0

x

y

Person

p3

Point p3 = new Point(‘x’, 5)

0

-7.0

x

y

Person

p4

Point p4 = new Point(‘y’, -7)

33 of 90



OOP: Object Creation (3.2.1)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PersonTester {
public static void main(String[] args) {
/* initialize age and nationality only */
Person jim = new Person(50, "BRI");
/* initialize age and nationality only */
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/* initialize all attributes of a person */
Person mark = new Person(40, "CAN", 69, 1.78);

}
}

34 of 90



OOP: Object Creation (3.2.2)

50age

nationality

Person

jim

0.0

0.0

weight

height

“BRI”

Person jim = new Person(50, “BRI”)

65age

nationality

Person

jonathan

0.0

0.0

weight

height

“CAN”

Person jonathan = new Person(65, “CAN”)

0age

nationality

Person

alan

75.0

1.80

weight

height

null

Person alan = new Person(75, 1.80)

40age

nationality

Person

mark

69.0

1.78

weight

height

“CAN”

Person mark = new Person(40, “CAN”, 69, 1.78)

35 of 90



OOP: Object Creation (4)

● When using the constructor, pass valid argument values:
○ The type of each argument value must match the corresponding

parameter type.
○ e.g., Person(50, "BRI") matches
Person(int initAge, String initNationality)

○ e.g., Point(3, 4) matches
Point(double initX, double initY)

● When creating an instance, uninitialized attributes implicitly get
assigned the default values .
○ Set uninitialized attributes properly later using mutator methods

Person jim = new Person(50, "British");
jim.setWeight(85);
jim.setHeight(1.81);

36 of 90



OOP: The Dot Notation (1)
● A binary operator:

○ LHS an object
○ RHS an attribute or a method

● Given a variable of some reference type that is not null:
○ We use a dot to retrieve any of its attributes .

Analogous to ’s in English
e.g., jim.nationality means jim’s nationality

○ We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
e.g., jim.changeNationality("CAN") changes the
nationality attribute of jim

○ We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI() computes and returns the BMI calculated
based on jim’s weight and height

○ Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = jim.getBMI()

37 of 90



The this Reference (1)
● Each class may be instantiated to multiple objects at runtime.
public class Point {
private double x; private double y;
public void moveUp(double units) { y += units; }

}

● Each time when we call a method of some class, using the dot
notation, there is a specific target /context object.

1 Point p1 = new Point(2, 3);
2 Point p2 = new Point(4, 6);
3 p1.moveUp(3.5);
4 p2.moveUp(4.7);

○ p1 and p2 are called the call targets or context objects .
○ Lines 3 and 4 apply the same definition of the moveUp method.
○ But how does Java distinguish the change to p1.y versus the

change to p2.y?
38 of 90



The this Reference (2)
● In the method definition, each attribute has an implicit this

which refers to the context object in a call to that method.
public class Point {
private double x;
private double y;
public Point(double newX, double newY) {
this.x = newX;
this.y = newY;

}
public void moveUp(double units) {
this.y = this.y + units;

}
}

● Each time when the class definition is used to create a new
Point object , the this reference is substituted by the name of
the new object.

39 of 90



The this Reference (3)
● After we create p1 as an instance of Point
Point p1 = new Point(2, 3);

● When invoking p1.moveUp(3.5), a version of moveUp that is
specific to p1 will be used:
public class Point {
private double x;
private double y;
public Point(double newX, double newY) {

p1 .x = newX;

p1 .y = newY;

}
public void moveUp(double units) {

p1 .y = p1 .y + units;

}
}

40 of 90



The this Reference (4)
● After we create p2 as an instance of Point
Point p2 = new Point(4, 6);

● When invoking p2.moveUp(4.7), a version of moveUp that is
specific to p2 will be used:
public class Point {
private double x;
private double y;
public Point(double newX, double newY) {

p2 .x = newX;

p2 .y = newY;

}
public void moveUp(double units) {

p2 .y = p2 .y + units;

}
}

41 of 90



The this Reference (5)

The this reference can be used to disambiguate when the
names of input parameters clash with the names of class
attributes.
public class Point {
private double x;
private double y;
public Point(double x, double y) {
this.x = x;
this.y = y;

}
public void setX(double x) {
this.x = x;

}
public void setY(double y) {
this.y = y;

}
}

42 of 90



The this Reference (6.1): Common Error

The following code fragment compiles but is problematic:

1 public class Person {
2 private String name;
3 private int age;
4 public Person(String name, int age) {
5 name = name;
6 age = age;
7 }
8 public void setAge(int age) {
9 age = age;

10 }
11 }

○ Why? [ variable shadowing ]
Target (LHS) of the assignment (L5) refers to parameter name (L4).

○ Fix?
43 of 90



The this Reference (6.2): Common Error

Always remember to use this when input parameter names
clash with class attribute names.

public class Person {
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;

}
public void setAge(int age) {
this.age = age;

}
}

44 of 90



OOP: Mutator Methods

● These methods change values of attributes.
● We call such methods mutators (with void return type).

public class Person {
. . .
public void gainWeight(double units) {
this.weight = this.weight + units;

}
}

public class Point {
. . .
public void moveUp() {
this.y = this.y + 1;

}
}

45 of 90



OOP: Accessor Methods
● These methods return the result of computation based on

attribute values.
● We call such methods accessors (with non-void return type).
public class Person {
. . .
public double getBMI() {
double bmi = this.height / (this.weight * this.weight);
return bmi;

} }

public class Point {
. . .
public double getDistanceFromOrigin() {
double dist =

Math.sqrt(this.x * this.x + this.y * this.y);
return dist;

} }

46 of 90



OOP: Method Calls
1 Point p1 = new Point (3, 4);

2 Point p2 = new Point (-4, -3);

3 System.out.println(p1. getDistanceFromOrigin() );

4 System.out.println(p2. getDistanceFromOrigin() );

5 p1. moveUp(1) ;

6 p2. moveUp(1) ;

7 System.out.println(p1. getDistanceFromOrigin() );

8 System.out.println(p2. getDistanceFromOrigin() );

● Lines 1 and 2 create two different instances of Point
● Lines 3 and 4: invoking the same accessor method on two different

instances returns distinct values
● Lines 5 and 6: invoking the same mutator method on two different instances

results in independent changes
● Lines 3 and 7: invoking the same accessor method on the same instance

may return distinct values, why? Line 5

See the lecture recording on tracing the above program here.
47 of 90

https://www.youtube.com/watch?v=bIV_sLN0yiU&list=PL5dxAmCmjv_72mk1biVOf19Zf8qVMPrNg&index=6


OOP: Use of Mutator vs. Accessor Methods

● Calls to mutator methods cannot be used as values.
○ e.g., System.out.println(jim.setWeight(78.5)); ×

○ e.g., double w = jim.setWeight(78.5); ×

○ e.g., jim.setWeight(78.5); ✓

● Calls to accessor methods should be used as values.
○ e.g., jim.getBMI(); ×

○ e.g., System.out.println(jim.getBMI()); ✓

○ e.g., double w = jim.getBMI(); ✓

48 of 90



OOP: Method Parameters

● Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.
e.g., Person(double w, double h) vs.
Person(String fName, String lName)

● Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.
e.g., In Point, void moveToXAxis() vs.
void moveUpBy(double unit)

● Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.
e.g., In Point, double getDistFromOrigin() vs.
double getDistFrom(Point other)

49 of 90



OOP: Reference Aliasing (1)
1 int i = 3;
2 int j = i; System.out.println(i == j);/*true*/
3 int k = 3; System.out.println(k == i && k == j);/*true*/

○ Line 2 copies the number stored in i to j.
○ After Line 4, i, j, k refer to three separate integer placeholder,

which happen to store the same value 3.

1 Point p1 = new Point(2, 3);
2 Point p2 = p1; System.out.println(p1 == p2);/*true*/
3 Point p3 = new Point(2, 3);
4 Systme.out.println(p3 == p1 || p3 == p2);/*false*/
5 Systme.out.println(p3.x == p1.x && p3.y == p1.y);/*true*/
6 Systme.out.println(p3.x == p2.x && p3.y == p2.y);/*true*/

○ Line 2 copies the address stored in p1 to p2.
○ Both p1 and p2 refer to the same object in memory!
○ p3, whose contents are same as p1 and p2, refer to a different

object in memory.
50 of 90



OOP: Reference Aliasing (2.1)

Problem: Consider assignments to primitive variables:

1 int i1 = 1;
2 int i2 = 2;
3 int i3 = 3;
4 int[] numbers1 = {i1, i2, i3};
5 int[] numbers2 = new int[numbers1.length];
6 for(int i = 0; i < numbers1.length; i ++) {
7 numbers2[i] = numbers1[i];
8 }
9 numbers1[0] = 4;

10 System.out.println(numbers1[0]);
11 System.out.println(numbers2[0]);

51 of 90



OOP: Reference Aliasing (2.2)
Exercise: Consider assignments to reference variables:
1 Person alan = new Person("Alan");
2 Person mark = new Person("Mark");
3 Person tom = new Person("Tom");
4 Person jim = new Person("Jim");
5 Person[] persons1 = {alan, mark, tom};
6 Person[] persons2 = new Person[persons1.length];
7 for(int i = 0; i < persons1.length; i ++) {
8 persons2[i] = persons1[i]; }
9 persons1[0].setAge(70);

10 System.out.println(jim.getAge());
11 System.out.println(alan.getAge());
12 System.out.println(persons2[0].getAge());
13 persons1[0] = jim;
14 persons1[0].setAge(75);
15 System.out.println(jim.getAge());
16 System.out.println(alan.getAge());
17 System.out.println(persons2[0].getAge());

See the lecture recording on tracing the above program here.
52 of 90

https://www.youtube.com/watch?v=jz--KP0Sf14&list=PL5dxAmCmjv_72mk1biVOf19Zf8qVMPrNg&index=9


Java Data Types (3.1)
● An attribute may store the reference to another object.
public class Person { private Person spouse; }

● Methods may take as parameters references to other objects.
public class Person {
public void marry(Person other) { . . . } }

● Return values from methods may be references to objects.
public class Point {
public void moveUpBy(int i) { y = y + i; }
Point movedUpBy(int i) {
Point np = new Point(x, y);
np.moveUpBy(i);
return np;

}
}

See the lecture recording on tracing the above program here.53 of 90

https://www.youtube.com/watch?v=zLd86l5WbFU&list=PL5dxAmCmjv_7n9WdC3CgEaCOwStJkf4MH&index=3


Java Data Types (3.2.1)
An attribute may be multi-valued, reference-typed
e.g., of type Point[] , storing references to Point objects.

1 public class PointCollector {
2 private Point[] points; private int nop;/* number of points */
3 public PointCollector() { this.points = new Point[100]; }
4 public void addPoint(double x, double y) {
5 this.points[this.nop] = new Point(x, y); this.nop++; }
6 public Point[] getPointsInQuadrantI() {
7 Point[] ps = new Point[this.nop];
8 int count = 0; /* number of points in Quadrant I */
9 for(int i = 0; i < this.nop; i++) {

10 Point p = this.points[i];
11 if(p.x > 0 && p.y > 0) { ps[count] = p; count++; } }

12 Point[] q1Points = new Point[count];
13 /* ps contains null if count < nop */
14 for(int i = 0; i < count; i++) { q1Points[i] = ps[i] }

15 return q1Points ;

16 } }

Required Reading: Point and PointCollector
54 of 90

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Tracing_PointCollectorTester.pdf


Java Data Types (3.2.2)
1 public class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.getNumberOfPoints()); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.getNumberOfPoints()); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.getNumberOfPoints()); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.getNumberOfPoints()); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.getNumberOfPoints()); /* 4 */
13 Point[] ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" +
16 ps[0].getX() + ", " + ps[0].getY() + ")"); /* (3, 4) */
17 }
18 }

See the lecture recording on tracing the above program here.
55 of 90

https://www.youtube.com/watch?v=2v1q9TAwUYM&list=PL5dxAmCmjv_7n9WdC3CgEaCOwStJkf4MH&index=4


Anonymous Objects (1)
● What’s the difference between these two fragments of code?

1 double square(double x) {
2 double sqr = x * x;
3 return sqr; }

1 double square(double x) {
2 return x * x; }

After L2, the result of x * x:
○ LHS: it can be reused (without recalculating) via the name sqr.
○ RHS: it is not stored anywhere and returned right away.

● Same principles applies to objects:
1 Person getP(String n) {

2 Person p = new Person(n) ;
3 return p; }

1 Person getP(String n) {

2 return new Person(n) ; }

new Person(n) is an object whose address is not stored in a variable.
○ LHS: L2 stores the address of this anonymous object in p.
○ RHS: L2 returns the address of this anonymous object directly.

56 of 90



Anonymous Objects (2.1)
Anonymous objects can also be used as assignment sources
or argument values:
class Member {
private Order[] orders;
private int noo;
/* constructor ommitted */
public void addOrder(Order o) {
this.orders[this.noo] = o;
this.noo++;

}
public void addOrder(String n, double p, double q) {

this.addOrder( new Order(n, p, q) );

/* Equivalent implementation:

* this.orders[this.noo] = new Order(n, p, q); noo ++;

*/
}

}

57 of 90



Anonymous Objects (2.2)

One more example on using anonymous objects:

public class MemberTester {
public static void main(String[] args) {
Member m = new Member("Alan");
Order o = new Order("Americano", 4.7, 3);
m.addOrder(o);

m.addOrder( new Order("Cafe Latte", 5.1, 4) );
}

}

58 of 90



The this Reference (7.1): Exercise

Consider the Person class

public class Person {
private String name;
private Person spouse;
public Person(String name) {
this.name = name;

}
}

How do you implement a mutator method marry which marries
the current Person object to an input Person object?

59 of 90



The this Reference (7.2): Exercise

public void marry(Person other) {
if(this.spouse != null || other.spouse != null) {
/* Error: both must be single */

}
else { this.spouse = other; other.spouse = this; }

}

When we call jim.marry(elsa): this is substituted by the
context object jim, and other by the argument elsa.

public void marry(Person ���other elsa) {
. . .
jim.spouse = elsa;
elsa.spouse = jim;

. . .
}

60 of 90



OOP: The Dot Notation (2)
● LHS of dot can be more complicated than a variable :

○ It can be a path that brings you to an object

public class Person {
private String name;/* public accessor: name() */
private Person spouse;/* public accessor: spouse() */

}

○ Say we have Person jim = new Person("Jim Davies")
○ Inquire about jim’s name? [jim.name()]
○ Inquire about jim’s spouse’s name? [jim.spouse().name()]
○ But what if jim is single (i.e., jim.spouse() == null)?

Calling jim.spouse().name() will cause NullPointerException!!
○ Quesion. Assuming that:

● jim is not single. [ jim.spouse() != null ]
● The marriage is mutual. [ jim.spouse().spouse() != null ]

What does jim.spouse().spouse().name() mean?
Answer. jim.name()

61 of 90



OOP: Helper Methods (1)
● After you complete and test your program, feeling confident that

it is correct , you may find that there are lots of repetitions.
● When similar fragments of code appear in your program, we

say that your code “smells”!
● We may eliminate repetitions of your code by:

○ Factoring out recurring code fragments into a new method.

○ This new method is called a helper method :
● You can replace every occurrence of the recurring code fragment by a

call to this helper method, with appropriate argument values.
● That is, we reuse the body implementation, rather than repeating it

over and over again, of this helper method via calls to it.

● This process is called refactoring of your code:
Modify the code structure without compromising correctness.

See the lecture recording on helper methods here.
62 of 90

https://www.youtube.com/watch?v=uQu9bywfLlA&list=PL5dxAmCmjv_5h2HGWcCghusPOzypREiXG&index=6


OOP: Helper (Accessor) Methods (2.1)

public class PersonCollector {
private Person[] ps;
private final int MAX = 100;/* max # of persons to store */
private int nop; /* number of persons */
public PersonCollector() {
this.ps = new Person[MAX];

}
public void addPerson(Person p) {
this.ps[this.nop] = p;
this.nop++;

}
/* Tasks:

* 1. An accessor: boolean personExists(String n)

* 2. A mutator: void changeWeightOf(String n, double w)

* 3. A mutator: void changeHeightOf(String n, double h)

*/
}

63 of 90



OOP: Helper (Accessor) Methods (2.2.1)
public class PersonCollector {
/* ps, MAX, nop, PersonCollector(), addPerson */
public boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {
if(ps[i].getName().equals(n)) { found = true; } }

return found;
}
public void changeWeightOf(String n, double w) {
for(int i = 0; i < nop; i ++) {
if(ps[i].getName().equals(n)) { ps[i].setWeight(w); } }

}
public void changeHeightOf(String n, double h) {
for(int i = 0; i < nop; i ++) {
if(ps[i].getName().equals(n)) { ps[i].setHeight(h); } }

}
}

64 of 90



OOP: Helper (Accessor) Methods (2.2.2)
public class PersonCollector {/* code smells:repetitions! */
/* ps, MAX, nop, PersonCollector(), addPerson */

public boolean personExists( String n ) {

boolean found = false;
for(int i = 0; i < nop; i ++) {

if(ps[i].getName().equals(n)) { found = true; } }

return found;
}

public void changeWeightOf( String n , double w) {

for(int i = 0; i < nop; i ++) {

if(ps[i].getName().equals(n)) { ps[i] .setWeight(w);} }

}

public void changeHeightOf( String n , double h) {

for(int i = 0; i < nop; i ++) {

if(ps[i].getName().equals(n)) { ps[i] .setHeight(h);} }

}
}65 of 90



OOP: Helper (Accessor) Methods (2.3)
public class PersonCollector { /* Code Smell Eliminated */
/* ps, MAX, nop, PersonCollector(), addPerson */

private int indexOf (String n) { /* Helper Methods */

int i = -1;
for(int j = 0; j < nop; j ++) {
if(ps[j].getName().equals(n)) { i = j; }

}
return i; /* -1 if not found; >= 0 if found. */

}
public boolean personExists(String n) {

return this.indexOf (n) >= 0; }
public void changeWeightOf(String n, double w) {

int i = indexOf (n); if(i >= 0) { ps[i].setWeight(w); }
}
public void changeHeightOf(String n, double h) {

int i = indexOf (n); if(i >= 0) { ps[i].setHeight(h); }
}

}
66 of 90



OOP: Helper (Accessor) Methods (3.1)

Problems:
● A Point class with x and y coordinate values.
● Accessor double getDistanceFromOrigin().
p.getDistanceFromOrigin() returns the distance
between p and (0, 0).

● Accessor double getDistancesTo(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, and between p and p2.

● Accessor double getTriDistances(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, between p and p2, and between p1 and p2.

67 of 90



OOP: Helper (Accessor) Methods (3.2)
class Point { /* code smells:repetitions! */
double x; double y;

double getDistanceFromOrigin() {
return Math.sqrt(Math.pow(this.x - 0, 2) + Math.pow(this.y - 0, 2)); }

double getDistancesTo(Point p1, Point p2) {
return
Math.sqrt(Math.pow(this.x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(this.x - p2.x, 2) + Math.pow(y - p2.y, 2)); }

double getTriDistances(Point p1, Point p2) {
return
Math.sqrt(Math.pow(this.x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(this.x - p2.x, 2) + Math.pow(y - p2.y, 2))
+
Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2));

}
}

68 of 90



OOP: Helper (Accessor) Methods (3.3)

● The code pattern

Math.sqrt(Math.pow(. . . - . . ., 2) + Math.pow(. . . - . . ., 2))

is written down explicitly every time we need to use it.
● Create a helper method out of it, with the right parameter and

return types:

double getDistanceFrom(double otherX, double otherY) {
return Math.sqrt(
Math.pow(ohterX - this.x, 2)
+
Math.pow(otherY - this.y, 2));

}

69 of 90



OOP: Helper (Accessor) Methods (3.4)

public class Point { /* Code Smell Eliminated */
private double x; private double y;
double getDistanceFrom(double otherX, double otherY) {
return Math.sqrt(Math.pow(ohterX - this.x, 2) +

Math.pow(otherY - this.y, 2));
}
double getDistanceFromOrigin() {
return this.getDistanceFrom(0, 0);

}
double getDistancesTo(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y);
}
double getTriDistances(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y) +
p1.getDistanceFrom(p2.x, p2.y)

}
}

70 of 90



OOP: Helper (Mutator) Methods (4.1)

public class Student {
private String name;
private double balance;
public Student(String n, double b) {
name = n;
balance = b;

}

/* Tasks:

* 1. A mutator void receiveScholarship(double val)

* 2. A mutator void payLibraryOverdue(double val)

* 3. A mutator void payCafeCoupons(double val)

* 4. A mutator void transfer(Student other, double val)

*/
}

71 of 90



OOP: Helper (Mutator) Methods (4.2.1)

public class Student {
/* name, balance, Student(String n, double b) */
public void receiveScholarship(double val) {
balance = balance + val;

}
public void payLibraryOverdue(double val) {
balance = balance - val;

}
public void payCafeCoupons(double val) {
balance = balance - val;

}
public void transfer(Student other, double val) {
balance = balance - val;
other.balance = other.balance + val;

}
}

72 of 90



OOP: Helper (Mutator) Methods (4.2.2)

public class Student { /* code smells:repetitions! */
/* name, balance, Student(String n, double b) */
public void receiveScholarship(double val) {

balance = balance + val;
}
public void payLibraryOverdue(double val) {

balance = balance − val;
}
public void payCafeCoupons(double val) {

balance = balance − val;
}
public void transfer(Student other, double val) {

balance = balance − val;

balance = other.balance + val;
}

}

73 of 90



OOP: Helper (Mutator) Methods (4.3)

public class Student { /* Code Smell Eliminated */
/* name, balance, Student(String n, double b) */

public void deposit (double val) { /* Helper Method */

balance = balance + val;
}

public void withdraw (double val) { /* Helper Method */

balance = balance - val;
}

public void receiveScholarship(double val) { this. deposit (val); }

public void payLibraryOverdue(double val) { this. withdraw (val); }

public void payCafeCoupons(double val) { this. withdraw (val) }
public void transfer(Student other, double val) {

this. withdraw (val);

other. deposit (val);

}
}

74 of 90



Static Variables (1)

public class Account {
private int id;
private String owner;
public int getID() { return this.id; }
public Account(int id, String owner) {
this.id = id;
this.owner = owner;

}
}

class AccountTester {
Account acc1 = new Account(1, "Jim");
Account acc2 = new Account(2, "Jeremy");
System.out.println(acc1.getID() != acc2.getID());

}

But, managing the unique id’s manually is error-prone !
75 of 90



Static Variables (2)
class Account {

private static int globalCounter = 1 ;

private int id; String owner;
public Account(String owner) {

this.id = globalCounter ;

globalCounter ++ ;

this.owner = owner; } }

class AccountTester {
Account acc1 = new Account("Jim");
Account acc2 = new Account("Jeremy");
System.out.println(acc1.getID() != acc2.getID()); }

○ Each instance of a class (e.g., acc1, acc2) has a local copy of
each attribute or instance variable (e.g., id).
● Changing acc1.id does not affect acc2.id.

○ A static variable (e.g., globalCounter) belongs to the class.
● All instances of the class share a single copy of the static variable.
● Change to globalCounter via acc1 is also visible to acc2.

76 of 90



Static Variables (3)
public class Account {

private static int globalCounter = 1 ;

private int id; private String owner;
public Account(String owner) {

this.id = globalCounter ;

globalCounter ++ ;

this.owner = owner;
} }

● Static variable globalCounter is not instance-specific like
instance variable (i.e., attribute) id is.

● To access a static variable:
○ No context object is needed.
○ Use of the class name suffices, e.g., Account.globalCounter.

● Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects
of Account.

77 of 90



Static Variables (4.1): Common Error
public class Client {
private Account[] accounts;

private static int numberOfAccounts = 0;
public void addAccount(Account acc) {
accounts[this.numberOfAccounts] = acc;
this.numberOfAccounts ++;

} }

public class ClientTester {
Client bill = new Client("Bill");
Client steve = new Client("Steve");
Account acc1 = new Account();
Account acc2 = new Account();
bill.addAccount(acc1);
/* correctly added to bill.getAccounts()[0] */

steve.addAccount(acc2);
/* mistakenly added to steve.getAccounts()[1]! */

}

78 of 90



Static Variables (4.2): Common Error

● Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.

● If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberOfAccounts will be visible to
all Client objects.

● Here is the correct version:
public class Client {
private Account[] accounts;
private int numberOfAccounts;
public void addAccount(Account acc) {
accounts[this.numberOfAccounts] = acc;
this.numberOfAccounts ++;

}
}

79 of 90



Static Variables (5.1): Common Error

1 public class Bank {
2 private string branchName;
3 public String getBrachName() { return this.branchName; }
4 private static int nextAccountNumber = 0;
5 public static String getInfo() {
6 nextAccountNumber++;
7 return this.branchName + nextAccountNumber;
8 }
9 }

● Non-static method cannot be referenced from a static context
● Line 4 declares that we can call the method getInfo without

instantiating an object of the class Bank.
● However, in Line 7, the static method references a non-static

attribute, for which we must instantiate a Bank object.
80 of 90



Static Variables (5.2): Common Error
1 public class Bank {
2 private String branchName;
3 public String getBrachName() { return this.branchName; }
4 private static int nextAccountNumber = 0;
5 public static String getInfo() {
6 nextAccountNumber++;
7 return this.branchName + nextAccountNumber;
8 }
9 }

● To call getInfo(), no instances of Bank are required:

Bank .getInfo();

● Contradictorily , to access branchName, a context object is
required:
Bank b = new Bank(); b.setBranch("Songdo IBK");

System.out.println( b .getBranchName());

81 of 90



Static Variables (5.3): Common Error

There are two possible ways to fix:
1. Remove all uses of non-static variables (i.e., branchName) in

the static method (i.e., useAccountNumber).
2. Declare branchName as a static variable.

○ This does not make sense.
∵ branchName should be a value specific to each Bank instance.

82 of 90



Index (1)

Required: Review Tutorials on OOP in Java

Optional: Tutorial Videos to Help You Review

Required: Written Notes to Review

Learning Outcomes

Separation of Concerns: App/Tester vs. Model
Object Orientation:
Observe, Model, and Execute

Object-Oriented Programming (OOP)

OO Thinking: Templates vs. Instances (1.1)

OO Thinking: Templates vs. Instances (1.2)

OO Thinking: Templates vs. Instances (2.1)
83 of 90



Index (2)
OO Thinking: Templates vs. Instances (2.2)

OOP: Classes ≈ Templates

Java Data Types (1)

Java Data Types (2)

OOP: Methods (1.1)

OOP: Methods (1.2)

OOP: Methods (2)

OOP: Methods (3)

OOP: Class Constructors (1.1)

OOP: Class Constructors (1.2)

OOP: Class Constructors (2.1)
84 of 90



Index (3)
OOP: Class Constructors (2.2)

Visualizing Objects at Runtime (1)

Visualizing Objects at Runtime (2.1)

Visualizing Objects at Runtime (2.2)

Visualizing Objects at Runtime (2.3)

Visualizing Objects at Runtime (2.4)

Object Creation (1.1)

Object Creation (1.2)

Object Creation (2)

OOP: Object Creation (3.1.1)

OOP: Object Creation (3.1.2)
85 of 90



Index (4)
OOP: Object Creation (3.2.1)

OOP: Object Creation (3.2.2)

OOP: Object Creation (4)

OOP: The Dot Notation (1)

The this Reference (1)

The this Reference (2)

The this Reference (3)

The this Reference (4)

The this Reference (5)

The this Reference (6.1): Common Error

The this Reference (6.2): Common Error
86 of 90



Index (5)
OOP: Mutator Methods

OOP: Accessor Methods

OOP: Method Calls

OOP: Use of Mutator vs. Accessor Methods

OOP: Method Parameters

OOP: Reference Aliasing (1)

OOP: Reference Aliasing (2.1)

OOP: Reference Aliasing (2.2)

Java Data Types (3.1)

Java Data Types (3.2.1)

Java Data Types (3.2.2)
87 of 90



Index (6)
Anonymous Objects (1)

Anonymous Objects (2.1)

Anonymous Objects (2.2)

The this Reference (7.1): Exercise

The this Reference (7.2): Exercise

OOP: The Dot Notation (2)

OOP: Helper Methods (1)

OOP: Helper (Accessor) Methods (2.1)

OOP: Helper (Accessor) Methods (2.2.1)

OOP: Helper (Accessor) Methods (2.2.2)

OOP: Helper (Accessor) Methods (2.3)
88 of 90



Index (7)
OOP: Helper (Accessor) Methods (3.1)

OOP: Helper (Accessor) Methods (3.2)

OOP: Helper (Accessor) Methods (3.3)

OOP: Helper (Accessor) Methods (3.4)

OOP: Helper (Mutator) Methods (4.1)

OOP: Helper (Mutator) Methods (4.2.1)

OOP: Helper (Mutator) Methods (4.2.2)

OOP: Helper (Mutator) Methods (4.3)

Static Variables (1)

Static Variables (2)

Static Variables (3)
89 of 90



Index (8)
Static Variables (4.1): Common Error

Static Variables (4.2): Common Error

Static Variables (5.1): Common Error

Static Variables (5.2): Common Error

Static Variables (5.3): Common Error

90 of 90


	Required: Review Tutorials on OOP in Java
	Optional: Tutorial Videos to Help You Review
	Required: Written Notes to Review
	Learning Outcomes
	Separation of Concerns: App/Tester vs. Model
	Object Orientation: Observe, Model, and Execute
	Object-Oriented Programming (OOP)
	OO Thinking: Templates vs. Instances (1.1)
	OO Thinking: Templates vs. Instances (1.2)
	OO Thinking: Templates vs. Instances (2.1)
	OO Thinking: Templates vs. Instances (2.2)
	OOP: Classes  Templates
	Java Data Types (1)
	Java Data Types (2)
	OOP: Methods (1.1)
	OOP: Methods (1.2)
	OOP: Methods (2)
	OOP: Methods (3)
	OOP: Class Constructors (1.1)
	OOP: Class Constructors (1.2)
	OOP: Class Constructors (2.1)
	OOP: Class Constructors (2.2)
	Visualizing Objects at Runtime (1)
	Visualizing Objects at Runtime (2.1)
	Visualizing Objects at Runtime (2.2)
	Visualizing Objects at Runtime (2.3)
	Visualizing Objects at Runtime (2.4)
	Object Creation (1.1)
	Object Creation (1.2)
	Object Creation (2)
	OOP: Object Creation (3.1.1)
	OOP: Object Creation (3.1.2)
	OOP: Object Creation (3.2.1)
	OOP: Object Creation (3.2.2)
	OOP: Object Creation (4)
	OOP: The Dot Notation (1)
	The this Reference (1)
	The this Reference (2)
	The this Reference (3)
	The this Reference (4)
	The this Reference (5)
	The this Reference (6.1): Common Error
	The this Reference (6.2): Common Error
	OOP: Mutator Methods
	OOP: Accessor Methods
	OOP: Method Calls
	OOP: Use of Mutator vs. Accessor Methods
	OOP: Method Parameters
	OOP: Reference Aliasing (1)
	OOP: Reference Aliasing (2.1)
	OOP: Reference Aliasing (2.2)
	Java Data Types (3.1)
	Java Data Types (3.2.1)
	Java Data Types (3.2.2)
	Anonymous Objects (1)
	Anonymous Objects (2.1)
	Anonymous Objects (2.2)
	The this Reference (7.1): Exercise
	The this Reference (7.2): Exercise
	OOP: The Dot Notation (2)
	OOP: Helper Methods (1)
	OOP: Helper (Accessor) Methods (2.1)
	OOP: Helper (Accessor) Methods (2.2.1)
	OOP: Helper (Accessor) Methods (2.2.2)
	OOP: Helper (Accessor) Methods (2.3)
	OOP: Helper (Accessor) Methods (3.1)
	OOP: Helper (Accessor) Methods (3.2)
	OOP: Helper (Accessor) Methods (3.3)
	OOP: Helper (Accessor) Methods (3.4)
	OOP: Helper (Mutator) Methods (4.1)
	OOP: Helper (Mutator) Methods (4.2.1)
	OOP: Helper (Mutator) Methods (4.2.2)
	OOP: Helper (Mutator) Methods (4.3)
	Static Variables (1)
	Static Variables (2)
	Static Variables (3)
	Static Variables (4.1): Common Error
	Static Variables (4.2): Common Error
	Static Variables (5.1): Common Error
	Static Variables (5.2): Common Error
	Static Variables (5.3): Common Error

