
EECS2030 Fall 2022

Additional Notes

Static Types, Expectations, Dynamic Types, and Type Casts

Chen-Wei Wang

Contents

1 Inheritance Hierarchy 1

2 Static Types Define Expected Usages 2

3 Dynamic Types 2

4 Creating an Alias with a Different Static Type via a Cast 3
4.1 Does a Cast Compile? . 3
4.2 Does a (Compilable) Cast Cause a ClassCastException at Runtime? 4

1 Inheritance Hierarchy

Consider the following definitions of Java classes

class A {

int a;

A() {}

}

class B extends A {

int b;

B() {}

}

class C extends A {

int c;

C() {}

}

class D extends C {

int d;

D() {}

}

which form the class hierarchy as shown in Figure 1:

A int a

C int cBint b

D int d

Figure 1: Class Inheritance Hierarchy

1

2 Static Types Define Expected Usages

Consider the following line of Java code, declaring class C as the type of a reference variable oc:

C oc;

After the above declaration, we say that C is the static type of variable oc. The static type of
variable oc constrains that, at runtime, oc stores the address of some C object. Consequently,
only attributes and methods that are defined and inherited in class C are expected to be called
via oc as the context object:

• oc.a

• oc.c

Recall that a class only inherits code (i.e., attributes and methods) from its ancestor classes.
Therefore, it is not expected to call oc.b (∵ class B is not an ancestor class of C), and not
expected to call oc.d (∵ class D is actually a child class of C).

From the inheritance hierarchy in Figure 1 (page 1), we have the following expectations for
variables of the various types:

Declaration Expectations

A oa; oa.a

B ob;
ob.a

ob.b

C oc;
oc.a

oc.c

D od;

od.a

od.c

od.d

Figure 2: Declarations of Static Types and Expectations

3 Dynamic Types

Because a reference variable’s static type defines its expected usages at runtime, that variable’s
dynamic type must be consistent with the expectations. As an example, the following
assignments are not valid:

1 C oc1 = new A();

2 C oc2 = new B();

Both of the above assignments are not valid:

• For Line 1, if we allowed oc1 to point to an A object (which only possesses the attribute
a), then one of the expectations of oc, which is oc.c (see Figure 2), would not be met.

• Similarly, for Line 2, if we allowed oc2 to point to a B object (which possesses attributes
a and b), then one of the expectations of oc, which is oc.c (see Figure 2), would not be
met.

Instead, the following assignments are valid:

2

C oc3 = new C();

C oc4 = new D();

In the above assignments, the expectations of static type C can be met by dynamic types C and
D, which are both descendant classes of C.

4 Creating an Alias with a Different Static Type via a Cast

Always remember:

• To judge if a line of Java code compiles or not, you only need to consider the static types
of the variables involved (Section 4.1).

• To judge if a line of compilable Java code causes an exception at runtime, you need to
then consider the dynamic types of the variable involved (Section 4.2).

4.1 Does a Cast Compile?

Principles:

– Casting a reference variable does not change its static type. Instead, the cast creates
an alias whose static type matches the cast type.

– A reference variable may be cast to any class that is either a descendant or an ancestor
class of that variable’s declared static type.

– Casting a reference variable to a descendant class allows a wider range of expectations
(∵ a class’ descendant class contains at least as many attributes and methods as does
that class).

– Symmetrically, casting a reference variable to a ancestor class of its allows a narrower
range of expectations.

For example, given a variable oc whose declared static type is C, the following casts are
compilable:

1. (D) oc

Since D is a descendant class of oc’s static type (C), performing this cast allows a
wider range of expectations: we can now expect ((D) oc).d, whereas oc.d cannot
be expected.

2. (C) oc

Since C is both a descendant and an ancestor class of oc’s static type (C), performing
this cast results in the same expectations: ((C) oc).a and ((C) oc).c.

3. (A) oc

Since A is an ancestor class of oc’s static type (C), performing this cast allows a
narrower range of expectations: we can no longer expect ((A) oc).c, but only
((A) oc).a can be expected.

On the other hand, the following cast does not compile:

– (B) oc

3

This cast does not compile because B is neither a descendant nor an ancestor class of
oc’s static type (C).

The above example is summarized in Figure 3.

A int a

C int cBint b

D int d

Static Type of oc is C

Down-Casting to
Descendants Classes
widens expectations.

Up-Casting to
Ancestor Classes

narrows expectations.

Figure 3: Compilable Casts Given oc’s Static Type is C

4.2 Does a (Compilable) Cast Cause a ClassCastException at Runtime?

Consider the following line of Java code

A oa = new C();

which declares variable oa’s static type as A and initializes its dynamic type as C. According
to the principle in Section 4.1, we know that the following casts (where each class being cast
into is either a descendant class or an ancestor class of oa’s static type, i.e., A) are compilable:

• (A) oa

• (B) oa

• (C) oa

• (D) oa

However, a cast being compilable does not mean that it will not result in error at
runtime. To determine if there will be a runtime error or not, we need to also consider oa’s
dynamic type (i.e., C):

4

• (A) oa

You can use a C object as if it were an A object. This is because A only expects a, whereas
C provides a and c.

• (B) oa

You cannot use a C object as if it were a B object. This is because B expects both a and
b, but attribute b is not declare in class C.

• (C) oa

You can use a C object as if it were a C object. This is because C has the same expectations
as itself.

• (D) oa

You cannot use a C object as if it were a D object. This is because D expects both a, c,
and d, but attribute d is not declare in class C.

The above example is summarized in Figure 4.

A int a

C int cBint b

D int d

Static Type of oa is A

Down-Casting to
Descendants Classes of

oa’s Dynamic Type
causes ClassCastException

because the widened expectation
(e.g., in D) cannot be met.

Dynamic Type of oa is C

Figure 4: Compilable but Exceptional Casts Given oa’s Static Type is A and Dynamic Types is C

Again, at runtime there is a ClassCastException when the dynamic type cannot meet
the expectations of the reference variable, determined by either its declared static type or

temporary static type resulted from a cast .

5

	Inheritance Hierarchy
	Static Types Define Expected Usages
	Dynamic Types
	Creating an Alias with a Different Static Type via a Cast
	Does a Cast Compile?
	Does a (Compilable) Cast Cause a ClassCastException at Runtime?

