
Generics in Java

EECS2030 B & E: Advanced
Object Oriented Programming

Fall 2021

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

This module is designed to help you learn about:
1. A general collection Object[]: storage vs. retrieval
2. A generic collection E[]: storage vs. retrieval
3. Reinforce: Polymorphism, Type Casting, instanceof checks

2 of 19

Motivating Example: A Book of Objects
1 public class Book {
2 private String[] names;
3 private Object[] records;
4 /* add a name-record pair to the book */
5 public void add (String name, Object record) { . . . }
6 /* return the record associated with a given name */
7 public Object get (String name) { . . . } }

Question: Which line has a type error?

1 Date birthday; String phoneNumber;
2 Book b; boolean isWednesday;
3 b = new Book();
4 phoneNumber = "416-67-1010";
5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);
7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

3 of 19

Motivating Example: Observations (1)
● In the Book class:

○ By declaring the attribute

Object[] records

We meant that each book instance may store any object whose
static type is a descendant class of Object.

○ Accordingly, from the return type of the get method, we only know
that the returned record is an Object, but not certain about its
dynamic type (e.g., Date, String, etc.).
∴ a record retrieved from the book, e.g., b.get("Yuna"), may
only be called upon methods in its static type (i.e,. Object).

● In the tester code of the Book class:
○ In Line 1, the static types of variables birthday (i.e., Date) and
phoneNumber (i.e., String) are descendant classes of
Object.

○ So, Line 5 and Line 7 compile.
4 of 19

Motivating Example: Observations (2)
In a polymorphic collection, dynamic types of stored objects
(e.g., phoneNumber and birthday) need not be the same.
○ Methods expected on the dynamic types (e.g., method getDay

of class Date) may be new methods not inherited from Object.
○ This is why Line 8 would fail to compile, and may be fixed using an

explicit cast :

isWednesday = ((Date) b.get("Yuna")).getDay() == 4;

○ But what if the dynamic type of the returned object is not a Date?

isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

○ To avoid such a ClassCastException at runtime, we need to
check its dynamic type before performing a cast:

if (b.get("Suyeon") instanceof Date) {
isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;

}

5 of 19

Motivating Example: Observations (2.1)

● It seems: Combining instanceof checks & type casts works.
● Can you see any potential problem(s) w.r.t. the

Single-Choice design principle?
● Hints: What happens when you have a large number of

records of distinct dynamic types stored in the book
(e.g., Date, String, Person, Account, etc.)?

6 of 19

Motivating Example: Observations (2.2)
Imagine that the tester code (or an application) stores 100
different record objects into the book.
○ All of these records are of static type Object, but of distinct

dynamic types.

Object rec1 = new C1(); b.add(. . ., rec1);
Object rec2 = new C2(); b.add(. . ., rec2);
. . .
Object rec100 = new C100(); b.add(. . ., rec100);

where classes C1 to C100 are descendant classes of Object.
○ Every time you retrieve a record from the book, you need to check

“exhaustively” on its dynamic type before calling some method(s).

Object rec = b.get("Jim");
if (rec instanceof C1) { ((C1) rec).m1; }
. . .
else if (rec instanceof C100) { ((C100) rec).m100; }

○ Writing out this list multiple times is tedious and error-prone!
7 of 19

Motivating Example: Observations (3)
We need a solution that:
● Saves us from explicit instanceof checks and type casts
● Eliminates the occurrences of ClassCastException
As a sketch, this is how the solution looks like:
● When the user declares a Book object b, they must

commit to the kind of record that b stores at runtime .
e.g., b stores either Date objects only or String objects only,
but not a mix .

● When attempting to store a new record object rec into b, what
if rec’s static type is not a descendant class of the type of
book that the user previously commits to?
⇒ A compilation error

● When attempting to retrieve a record object from b, there is
no longer a need to check and cast .
∵ Static types of all records in b are guaranteed to be the same.

8 of 19

Parameters
● In mathematics:

○ The same function is applied with different argument values.
e.g., 2 + 3, 1 + 1, 10 + 101, etc.

○ We generalize these instance applications into a definition.
e.g., + ∶ (Z ×Z)→Z is a function that takes two integer
parameters and returns an integer.

● In Java programming:
○ We want to call a method , with different argument values, to

achieve a similar goal.
e.g., acc.deposit(100), acc.deposit(23), etc.

○ We generalize these possible method calls into a definition.
e.g., In class Account, a method void deposit(int amount)
takes one integer parameter .

● When you design a mathematical function or a Java method,
always consider the list of parameters , each of which
representing a set of possible argument values.

9 of 19

Java Generics: Design of a Generic Book

class Book <E> {
private String[] names;
private E [] records;
/* add a name-record pair to the book */
public void add (String name, E record) { . . . }
/* return the record associated with a given name */
public E get (String name) { . . . } }

Question: Which line has a type error?

1 Date birthday; String phoneNumber;

2 Book<Date> b ; boolean isWednesday;

3 b = new Book<Date>() ;

4 phoneNumber = "416-67-1010";
5 b.add ("Suyeon", phoneNumber);
6 birthday = new Date(1975, 4, 10);
7 b.add ("Yuna", birthday);
8 isWednesday = b.get("Yuna").getDay() == 4;

10 of 19

Java Generics: Observations
● In class Book:

○ At the class level, we parameterize the type of records that an

instance of book may store: class Book< E >

where E is the name of a type parameter, which should be
instantiated when the user declares an instance of Book.

○ Every occurrence of Object (the most general type of records) is
replaced by E .

○ As soon as E at the class level is committed to some known type
(e.g., Date, String, etc.), every occurrence of E will be
replaced by that type.

● In the tester code of Book:
○ In Line 2, we commit that the book b will store Date objects only.
○ Line 5 now fails to compile. [String is not Date’s descendant]
○ Line 7 still compiles.
○ Line 8 does not need any instance check and type cast, and does

not cause any ClassCastException.
∵ Only Date objects were allowed to be stored.11 of 19

Example Generic Classes: ArrayList
An ArrayList acts like a “resizable” array (indices start at 0).
Extra tutorial here.

12 of 19

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://www.youtube.com/watch?v=SJjZM2DKA3M&list=PL5dxAmCmjv_4rOxjfTfIxNp42vO8SnT8n&index=1

Using Generic Classes: ArrayList

1 import java.util.ArrayList;
2 public class ArrayListTester {
3 public static void main(String[] args) {
4 ArrayList<String> list = new ArrayList<String>();
5 println(list.size());
6 println(list.contains("A"));
7 println(list.indexOf("A"));
8 list.add("A");
9 list.add("B");

10 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
11 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
12 list.add(1, "C");
13 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
14 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
15 list.remove("C");
16 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
17 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
18
19 for(int i = 0; i < list.size(); i ++) {
20 println(list.get(i));
21 }
22 }
23 }

13 of 19

Example Generic Classes: HashTable
A HashTable acts like a two-column table of (searchable) keys
and values. Extra tutorial here.

14 of 19

https://docs.oracle.com/javase/8/docs/api/java/util/Hashtable.html
https://www.youtube.com/watch?v=_PV7dP5aIMg&list=PL5dxAmCmjv_4rOxjfTfIxNp42vO8SnT8n&index=2

Using Generic Classes: HashTable
1 import java.util.Hashtable;
2 public class HashTableTester {
3 public static void main(String[] args) {
4 Hashtable<String, String> grades = new Hashtable<String, String>();
5 System.out.println("Size of table: " + grades.size());
6 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
7 System.out.println("Value B+ exists: " + grades.containsValue("B+"));
8 grades.put("Alan", "A");
9 grades.put("Mark", "B+");

10 grades.put("Tom", "C");
11 System.out.println("Size of table: " + grades.size());
12 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
13 System.out.println("Key Mark exists: " + grades.containsKey("Mark"));
14 System.out.println("Key Tom exists: " + grades.containsKey("Tom"));
15 System.out.println("Key Simon exists: " + grades.containsKey("Simon"));
16 System.out.println("Value A exists: " + grades.containsValue("A"));
17 System.out.println("Value B+ exists: " + grades.containsValue("B+"));
18 System.out.println("Value C exists: " + grades.containsValue("C"));
19 System.out.println("Value A+ exists: " + grades.containsValue("A+"));
20 System.out.println("Value of existing key Alan: " + grades.get("Alan"));
21 System.out.println("Value of existing key Mark: " + grades.get("Mark"));
22 System.out.println("Value of existing key Tom: " + grades.get("Tom"));
23 System.out.println("Value of non-existing key Simon: " + grades.get("Simon"));
24 grades.put("Mark", "F");
25 System.out.println("Value of existing key Mark: " + grades.get("Mark"));
26 grades.remove("Alan");
27 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
28 System.out.println("Value of non-existing key Alan: " + grades.get("Alan"));
29 }
30 }15 of 19

Bad Example of using Generics

Has the following client made an appropriate choice?

Book<Object> book

NO!!!!!!!!!!!!!!!!!!!!!!!
○ It allows all kinds of objects to be stored.
∵ All classes are descendants of Object .

○ We can expect very little from an object retrieved from this book.
∵ The static type of book’s items are Object , root of the class
hierarchy, has the minimum amount of methods available for use.
∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

16 of 19

Beyond this lecture . . .

● Study https://docs.oracle.com/javase/tutorial/
java/generics/index.html for further details on Java
generics.

● Play with the source code ExampleBooks.
● Review the basic ArrayList and HashTable methods:

○ ArrayList:
https://www.youtube.com/watch?v=Gg_RRaGN7o8&list=
PL5dxAmCmjv_4uhxBzBt-CnSGw6kZ9C-xe&index=5

○ Hashtable:
https://www.youtube.com/watch?v=vM_JTnvDn1g&list=
PL5dxAmCmjv_4uhxBzBt-CnSGw6kZ9C-xe&index=7

17 of 19

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://www.youtube.com/watch?v=Gg_RRaGN7o8&list=PL5dxAmCmjv_4uhxBzBt-CnSGw6kZ9C-xe&index=5
https://www.youtube.com/watch?v=Gg_RRaGN7o8&list=PL5dxAmCmjv_4uhxBzBt-CnSGw6kZ9C-xe&index=5
https://www.youtube.com/watch?v=vM_JTnvDn1g&list=PL5dxAmCmjv_4uhxBzBt-CnSGw6kZ9C-xe&index=7
https://www.youtube.com/watch?v=vM_JTnvDn1g&list=PL5dxAmCmjv_4uhxBzBt-CnSGw6kZ9C-xe&index=7

Index (1)

Learning Outcomes

Motivating Example: A Book of Objects

Motivating Example: Observations (1)

Motivating Example: Observations (2)

Motivating Example: Observations (2.1)

Motivating Example: Observations (2.2)

Motivating Example: Observations (3)

Parameters

Java Generics: Design of a Generic Book

Java Generics: Observations

Example Generic Classes: ArrayList
18 of 19

Index (2)
Using Generic Classes: ArrayList

Example Generic Classes: HashTable

Using Generic Classes: HashTable

Bad Example of using Generics

Beyond this lecture . . .

19 of 19

	Learning Outcomes
	Motivating Example: A Book of Objects
	Motivating Example: Observations (1)
	Motivating Example: Observations (2)
	Motivating Example: Observations (2.1)
	Motivating Example: Observations (2.2)
	Motivating Example: Observations (3)
	Parameters
	Java Generics: Design of a Generic Book
	Java Generics: Observations
	Example Generic Classes: ArrayList
	Using Generic Classes: ArrayList
	Example Generic Classes: HashTable
	Using Generic Classes: HashTable
	Bad Example of using Generics
	Beyond this lecture …

