
Inheritance

EECS2030 B & E: Advanced
Object Oriented Programming

Fall 2021

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

This module is designed to help you learn about:
● Alternative designs to inheritance
● Using inheritance for code reuse
● Static Types, Expectations, Dynamic Types
● Polymorphism

(variable assignments, method arguments & return values)
● Dynamic Binding
● Type Casting

2 of 110

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

3 of 110

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

4 of 110

No Inheritance: ResidentStudent Class
public class ResidentStudent {
private String name;
private Course[] courses; private int noc;

private double premiumRate; /* assume a mutator for this */

public ResidentStudent (String name) {
this.name = name;
this.courses = new Course[10];

}
public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}
public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}

return tuition * this. premiumRate ;

}
}

5 of 110

No Inheritance: NonResidentStudent Class
public class NonResidentStudent {
private String name;
private Course[] courses; private int noc;

private double discountRate; /* assume a mutator for this */

public NonResidentStudent (String name) {
this.name = name;
this.courses = new Course[10];

}
public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}
public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}

return tuition * this. discountRate ;
}

}

6 of 110

No Inheritance: Testing Student Classes
public class Course {
private String title; private double fee;
public Course(String title, double fee) {
this.title = title; this.fee = fee;

}
}

public class StudentTester {
public static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

7 of 110

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work.
But can you see any potential problems with it?
Hint. Maintenance of code

● The code of the two student classes share a lot in common.
○ Duplicates of code make it hard to maintain your software!
○ This means that when there is a change of policy on the common

part, we need modify more than one places.
○ This violates the so-called single-choice design principle.

8 of 110

No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,

public void register(Course c) throws TooManyCoursesException {
if (this.noc >= MAX_ALLOWANCE) {
throw new TooManyCoursesException("Too many courses");

}
else {
this.courses[this.noc] = c;
this.noc ++;

}
}

Changes needed for register method in both student classes!

9 of 110

No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}
/* . . . can be premiumRate or discountRate */
return tuition * inflationRate * . . .;

}

Changes needed for getTuition method in both student classes!

10 of 110

No Inheritance:
A Collection of Various Kinds of Students

How can we define a class StudentManagementSystem that
contains a list of resident and non-resident students?

public class StudentManagementSystem {
private ResidentStudent[] rss;
private NonResidentStudent[] nrss;
private int nors; /* number of resident students */
private int nonrs; /* number of non-resident students */
public void addRS(ResidentStudent rs){ rss[nors]=rs; nors++; }
public void addNRS(NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++; }
public void registerAll(Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; i ++) { nrss[i].register(c); }

}
}

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately !

a polymorphic collection of students
11 of 110

Visibility: Project, Packages, Classes

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

12 of 110

Visibility of Classes

● Only one modifier for declaring visibility of classes: public.
● Use of private is forbidden for declaring a class.

e.g., private class Chair is not allowed!!
● Visibility of a class may be declared using a modifier,

indicating that it is accessible:
1. Across classes within its residing package [no modifier]

e.g., Declare class Chair { . . . }
2. Across packages [public]

e.g., Declare public class Chair { . . . }
● Consider class Chair which resides in:

○ package furniture
○ project CollectionOfStuffs

13 of 110

Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

class Chair

Desk

Circle

Square

14 of 110

Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

public class Chair

Desk

Circle

Square

15 of 110

Visibility of Attributes/Methods:
Using Modifiers to Define Scopes
● Two modifiers for declaring visibility of attributes/methods: public and private
● Visibility of an attribute or a method may be declared using a modifier,

indicating that it is accessible:
1. Within its residing class (most restrictive) [private]

e.g., Declare attribute private int i;

e.g., Declare method private void m(){};
2. Across classes within its residing package [no modifier]

e.g., Declare attribute int i;

e.g., Declare method void m(){};
3. Across packages (least restrictive) [public]

e.g., Declare attribute public int i;

e.g., Declare method public void m(){};
● Consider attributes i and m residing in:

Class Chair; Package furniture; Project CollectionOfStuffs.
16 of 110

Visibility of Attr./Meth.: Across All Methods
Within the Resident Class (private)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

private i, m

17 of 110

Visibility of Attr./Meth.: Across All Classes
Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

i, m

18 of 110

Visibility of Attr./Meth.: Across All Packages
Within the Resident Project (public)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

public i, m

19 of 110

Use of the protected Modifier

● private attributes are not inherited to subclasses.
● package-level attributes (i.e., with no modifier) and

project-level attributes (i.e., public) are inherited.
● What if we want attributes to be:

○ visible to sub-classes outside the current package, but still
○ invisible to other non-sub-classes outside the current package?

Use protected !

20 of 110

Visibility of Attr./Meth.: Across All Methods
Same Package and Sub-Classes (protected)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

protected i, m

BubbleChair

RockingChair

extends extends

21 of 110

Visibility of Attributes/Methods

```````modifier
scope CLASS PACKAGE SUBCLASS SUBCLASS NON-SUBCLASS

(same pkg) (different pkg) (across Project)

public

protected

no modifier

private

For the rest of this lecture, for simplicity, we assume that:
All relevant parent/child classes are in the same package .
⇒ Attributes with no modifiers (package-level visibility) suffice.
⇒ Methods with no modifiers (package-level visibility) suffice.

22 of 110



Inheritance Architecture

ResidentStudent NonResidentStudent

Student

extends
extends

23 of 110



Inheritance: The Student Parent/Super Class

class Student {
String name;
Course[] courses; int noc;

Student (String name) {
this.name = name;
this.courses = new Course[10];

}
void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}
return tuition; /* base amount only */

}
}

24 of 110



Inheritance:
The ResidentStudent Child/Sub Class

1 class ResidentStudent extends Student {

2 double premiumRate; /* there’s a mutator method for this */

3 ResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * premiumRate ;

8 }
9 }

● L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
25 of 110



Inheritance:
The NonResidentStudent Child/Sub Class

1 class NonResidentStudent extends Student {

2 double discountRate; /* there’s a mutator method for this */

3 NonResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();

7 return base * discountRate ;
8 }
9 }

● L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

● There is no need to repeat the register method
● Use of super in L4 is as if calling Student(name)
● Use of super in L8 returns what getTuition() in Student returns.
● Use super to refer to attributes/methods defined in the super class:

super.name , super.register(c) .
26 of 110



Inheritance Architecture Revisited

ResidentStudent NonResidentStudent

Student

extends
extends

● The class that defines the common attributes and methods is
called the parent or super class.

● Each “extended” class is called a child or sub class.
27 of 110



Using Inheritance for Code Reuse

Inheritance in Java allows you to:
○ Define common attributes and methods in a separate class.

e.g., the Student class
○ Define an “extended” version of the class which:

● inherits definitions of all attributes and methods
e.g., name, courses, noc
e.g., register
e.g., base amount calculation in getTuition

This means code reuse and elimination of code duplicates!
● defines new attributes and methods if necessary

e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent

● redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

28 of 110



Visualizing Parent/Child Objects (1)

● A child class inherits all non-private attributes from its parent
class.
⇒ A child instance has at least as many attributes as an
instance of its parent class.
Consider the following instantiations:

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

● How will these initial objects look like?

29 of 110



Visualizing Parent/Child Objects (2)

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

null

0

null

1

… null

8

null

9

0

Student

name

numberOfCourses

registeredCourses

“Stella”
s

null

0

null

1

… null

8

null

9

0

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

null

0

null

1

… null

8

null

9

discountRate

premiumRate

30 of 110



Testing the Two Student Sub-Classes
public class StudentTester {
public static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

● The software can be used in the exact same way as before
(because we did not modify method headers).

● But now the internal structure of code has been made
maintainable using inheritance .

31 of 110



Inheritance Architecture:
Static Types & Expectations

NonResidentStudent

Student

ResidentStudent

String name
Course[] courses /* registered courses (rcs) */
int noc /* number of courses */

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×

rs. ✓ ✓ ×

nrs. ✓ × ✓

32 of 110



Polymorphism: Intuition (1)

1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● Which one of L4 and L5 is valid? Which one is invalid?
● Hints:

○ L1: What kind of address can s store? [ Student ]
∴ The context object s is expected to be used as:
● s.register(eecs2030) and s.getTuition()

○ L2: What kind of address can rs store? [ ResidentStudent ]
∴ The context object rs is expected to be used as:
● rs.register(eecs2030) and rs.getTuition()
● rs.setPremiumRate(1.50) [increase premium rate]

33 of 110



Polymorphism: Intuition (2)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● rs = s (L5) should be invalid :

“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since rs is declared of type ResidentStudent, a subsequent
call rs.setPremiumRate(1.50) can be expected.

● rs is now pointing to a Student object.
● Then, what would happen to rs.setPremiumRate(1.50)?

CRASH ∵ rs.premiumRate is undefined !!
34 of 110



Polymorphism: Intuition (3)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● s = rs (L4) should be valid :
“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate

● Since s is declared of type Student, a subsequent call
s.setPremiumRate(1.50) is never expected.

● s is now pointing to a ResidentStudent object.
● Then, what would happen to s.getTuition()?

OK ∵ s.premiumRate is never directly used !!
35 of 110



Dynamic Binding: Intuition (1)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition()); /* 125.0 */

8 s = nrs; System.out.println( s .getTuition()); /* 75.0 */

After s = rs (L7), s points to a ResidentStudent object.
⇒ Calling s .getTuition() applies the premiumRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

36 of 110



Dynamic Binding: Intuition (2)
1 Course eecs2030 = new Course("EECS2030", 100.0);

2 Student s;

3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition()); /* 125.0 */

8 s = nrs; System.out.println( s .getTuition()); /* 75.0 */

After s = nrs (L8), s points to a NonResidentStudent object.
⇒ Calling s .getTuition() applies the discountRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

37 of 110



Multi-Level Inheritance Architecture

DomesticResidentStudent DomesticNonResidentStudent ForeignResidentStudent ForeignNonResidentStudent

DomesticStudent ForeignStudent

Student

38 of 110



Multi-Level Inheritance Hierarchy:
Smart Phones

IPhoneSE IPhone13Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP50Pro HuaweiMate40Pro GalaxyS21 GalaxyS21Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ 
/* cinematic mode */
quickTake 

/* dual-matrix camera */
zoomage

39 of 110



Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.

○ Every class can be used as a type: the set of runtime objects.
● Use of inheritance creates a hierarchy of classes:

○ (Implicit) Root of the hierarchy is Object.
○ Each extends declaration corresponds to an upward arrow.
○ The extends relationship is transitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.

● Ancestor vs. Descendant classes:
○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.
● A inherits all code (attributes and methods) from its ancestor classes.
∴ A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.

○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.
● Code defined in A is inherited to all its descendant classes.

40 of 110



Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it accumulates

from its ancestor classes:
○ A descendant class inherits all code from its ancestor classes.
○ A descendant class may also:

● Declare new attributes
● Define new methods
● Redefine / Override inherited methods

● Consequently:
○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).

○ Given a reference variable, expected to store the address of an object of
a particular class, we may substitute it with ( re-assign it to) an object of
any of its descendant classes.

○ e.g., When expecting a SmartPhone object, we may
substitute it with either a IPhone13Pro or a Samsung object.

○ Justification: A descendant class contains at least as many methods
as defined in its ancestor classes (but not vice versa!).

41 of 110



Static Types Determine Expectations
● A reference variable’s static type is what we declare it to be.

○ Student jim declares jim’s ST as Student.
○ SmartPhone myPhone declares myPhone’s ST as SmartPhone.

○ The static type of a reference variable never changes .

● For a reference variable v , its static type C defines the

expected usages of v as a context object .
● A method call v.m(. . .) is compilable if m is defined in C .

○ e.g., After declaring Student jim , we
● may call register and getTuition on jim
● may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim

○ e.g., After declaring SmartPhone myPhone , we
● may call dial and surfWeb on myPhone
● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on myPhone
42 of 110



Substitutions via Assignments
● By declaring C1 v1, reference variable v1 will store the

address of an object “of class C1” at runtime.
● By declaring C2 v2, reference variable v2 will store the

address of an object “of class C2” at runtime.
● Assignment v1 = v2 copies address stored in v2 into v1.

○ v1 will instead point to wherever v2 is pointing to. [ object alias ]

……

…C1 v1

……

…C2 v2

● In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.

● Substitutions are subject to rules!
43 of 110



Rules of Substitution
When expecting an object of static type A:
○ It is safe to substitute it with an object whose static type is any

of the descendant class of A (including A).
● ∵ Each descendant class of A, being the new substitute, is

guaranteed to contain all (non-private) attributes/methods defined in A.
● e.g., When expecting an IOS phone, you can substitute it with either

an IPhoneSE or IPhone13Pro.
○ It is unsafe to substitute it with an object whose static type is

any of the ancestor classes of A’s parent (excluding A).
● ∵ Class A may have defined new methods that do not exist in any of its

parent’s ancestor classes .
● e.g., When expecting IOS phone, unsafe to substitute it with a
SmartPhone ∵ facetime not supported in Android phone.

○ It is also unsafe to substitute it with an object whose static type
is neither an ancestor nor a descendant of A.
● e.g., When expecting IOS phone, unsafe to substitute it with a
HuaweiP50Pro ∵ facetime not supported in Android phone.

44 of 110



Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that
it is currently pointing to at runtime.
○ The dynamic type of a reference variable may change

whenever we re-assign that variable to a different object.
○ There are two ways to re-assigning a reference variable.

45 of 110



Visualizing Static Type vs. Dynamic Type

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”Student s

premiumRate

...

● Each segmented box denotes a runtime object.
● Arrow denotes a variable (e.g., s) storing the object’s address.

Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

● Title of box indicates type of runtime object, which denotes the
dynamic type of the variable (ResidentStudent).

46 of 110



Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.
○ e.g., Student jim = new ResidentStudent(. . .)

changes the dynamic type of jim to ResidentStudent.

○ e.g., jim = new NonResidentStudent(. . .)
changes the dynamic type of jim to NonResidentStudent.

○ e.g., ResidentStudent jeremy = new Student(. . .)

is illegal because Studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).

47 of 110



Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v = other ):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.
○ e.g., Say we declare

Student jim = new Student(. . .);
ResidentStudent rs = new ResidentStudnet(. . .);
NonResidentStudnet nrs = new NonResidentStudent(. . .);

● jim = rs ✓

changes the dynamic type of jim to the dynamic type of rs
● jim = nrs ✓

changes the dynamic type of jim to the dynamic type of nrs
● rs = jim ×

● nrs = jim ×

48 of 110



Polymorphism and Dynamic Binding (1)

● Polymorphism : An object variable may have “multiple
possible shapes” (i.e., allowable dynamic types).
○ Consequently, there are multiple possible versions of each

method that may be called.
● e.g., A Student variable may have the dynamic type of Student,

ResidentStudent, or NonResidentStudent,
● This means that there are three possible versions of the
getTuition() that may be called.

● Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
Student jim = new ResidentStudent(. . .);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent(. . .);
jim.getTuition(); /* version in NonResidentStudent */

49 of 110



Polymorphism and Dynamic Binding (2.1)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester1 {
public static void main(String[] args) {
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
jim = rs; /* legal */
rs = jim; /* illegal */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
jim = nrs; /* legal */
nrs = jim; /* illegal */

}
}

50 of 110



Polymorphism and Dynamic Binding (2.2)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
rs.setPremiumRate(1.5);

jim = rs ;

System.out.println( jim.getTuition() ); /* 750.0 */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
nrs.setDiscountRate(0.5);

jim = nrs ;

System.out.println( jim.getTuition() ); /* 250.0 */

}
}

51 of 110



Polymorphism and Dynamic Binding (3.1)

IPhoneSE IPhone13Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP50Pro HuaweiMate40Pro GalaxyS21 GalaxyS21Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ 
/* cinematic mode */
quickTake 

/* dual-matrix camera */
zoomage

52 of 110



Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTest1 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneSE();
Samsung ss = new GalaxyS21Plus();
myPhone = ip; /* legal */
myPhone = ss; /* legal */

IOS presentForHeeyeon;
presentForHeeyeon = ip; /* legal */
presentForHeeyeon = ss; /* illegal */

}
}

53 of 110



Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone13Pro();
myPhone = ip;

myPhone. surfWeb (); /* version of surfWeb in IPhone13Pro */

Samsung ss = new GalaxyS21();
myPhone = ss;

myPhone. surfWeb (); /* version of surfWeb in GalaxyS21 */
}

}

54 of 110



Reference Type Casting: Motivation (1.1)
1 Student jim = new ResidentStudent("J. Davis");
2 ResidentStudent rs = jim;
3 rs.setPremiumRate(1.5);

● L1 is legal: ResidentStudent is a descendant class of the static type of
jim (i.e., Student).

● L2 is illegal: jim’s ST (i.e., Student) is not a descendant class of rs’s ST
(i.e., ResidentStudent).

Java compiler is unable to infer that jim’s dynamic type in L2 is
ResidentStudent!

● Force the Java compiler to believe so via a cast in L2:
ResidentStudent rs = (ResidentStudent) jim;

● The cast (ResidentStudent) jim creates for jim a temporary alias
whose ST corresponds to the cast type (ResidentStudent).

● Alias rs of ST ResidentStudent is then created via an assignment.
Note. jim’s ST always remains Student.

● dynamic binding : After the cast , L3 will execute the correct version of
setPremiumRate (∵ DT of rs is ResidentStudent).

55 of 110



Reference Type Casting: Motivation (1.2)
ST: ResidentStudent

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ResidentStudent rs

valid substitution

³·µ
= (ResidentStudent)

ST: Student

³·µ

jim
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an alias whose ST is ResidentStudent

;

○ Variable rs is declared of static type (ST ) ResidentStudent.
○ Variable jim is declared of ST Student.
○ The cast (ResidentStudent) jim creates for jim a temporary alias,

whose ST corresponds to the cast type (ResidentStudent).
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (ResidentStudent) is a descendant of LHS’s ST
(ResidentStudent).
⇒ The assignment creates an alias rs with ST ResidentStudent.

○ No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.

○ After the assignment, jim’s ST remains Student.
56 of 110



Reference Type Casting: Motivation (2.1)
1 SmartPhone aPhone = new IPhone13Pro();
2 IPhone13Pro forHeeyeon = aPhone;
3 forHeeyeon.facetime(1.5);

● L1 is legal: IPhone13Pro is a descendant class of the static type of
aPhone (i.e., SmartPhone).

● L2 is illegal: aPhone’s ST (i.e., SmartPhone) is not a descendant class of
forHeeyeon’s ST (i.e., IPhone13Pro).

Java compiler is unable to infer that aPhone’s dynamic type in L2 is
IPhone13Pro!

● Force the Java compiler to believe so via a cast in L2:
IPhone13Pro forHeeyeon = (IPhone13Pro) aPhone;

● The cast (IPhone13Pro) aPhone creates for aPhone a temporary alias
whose ST corresponds to the cast type (IPhone13Pro).

● Alias forHeeyeon of ST IPhone13Pro is then created via an assignment.
Note. aPhone’s ST always remains SmartPhone.

● dynamic binding : After the cast , L3 will execute the correct version of
facetime (∵ DT of forHeeyeon is IPhone13Pro).

57 of 110



Reference Type Casting: Motivation (2.2)

ST: IPhone13Pro

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

IPhone13Pro forHeeyeon

valid substitution

³·µ
= (IPhone13Pro)

ST: SmartPhone

³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

aPhone
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an alias whose ST is IPhone13Pro

;

○ Variable forHeeyeon is declared of static type (ST ) IPhone13Pro.
○ Variable aPhone is declared of ST SmartPhone.
○ The cast (IPhone13Pro) aPhone creates for aPhone a temporary alias,

whose ST corresponds to the cast type (IPhone13Pro).
⇒ Such a cast makes the assignment valid.
∵ RHS’s ST (IPhone13Pro) is a descendant of LHS’s ST (IPhone13Pro).
⇒ The assignment creates an alias forHeeyeon with ST IPhone13Pro.

○ No new object is created.
Only an alias forHeeyeon with a different ST (IPhone13Pro) is created.

○ After the assignment, aPhone’s ST remains SmartPhone.

58 of 110



Type Cast: Named or Anonymous
Named Cast: Use intermediate variable to store the cast result.
SmartPhone aPhone = new IPhone13Pro();
IOS forHeeyeon = (IPhone13Pro) aPhone;
forHeeyeon.facetime();

Anonymous Cast: Use the cast result directly.
SmartPhone aPhone = new IPhone13Pro();
((IPhone13Pro) aPhone).facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone13Pro();
2 (IPhone13Pro) aPhone.facetime();

L2 ≡ (IPhone13Pro) (aPhone.facetime()) : Call, then cast.
⇒ This does not compile ∵ facetime() is not declared in the
static type of aPhone (SmartPhone).

59 of 110



Notes on Type Cast (1)
○ Given variable v of static type STv , it is compilable to cast v to

C , as long as C is an ancestor or descendant of STv .
○ Without cast, we can only call methods defined in STv on v .
○ Casting v to C creates for v an alias with ST C .
⇒ All methods that are defined in C can be called.

Android myPhone = new GalaxyS21Plus();
/* can call methods declared in Android on myPhone

* dial, surfweb, skype ✓ sideSync × */
SmartPhone sp = (SmartPhone) myPhone;
/* Compiles OK ∵ SmartPhone is an ancestor class of Android
* expectations on sp narrowed to methods in SmartPhone
* sp.dial, sp.surfweb ✓ sp.skype, sp.sideSync × */
GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;
/* Compiles OK ∵ GalaxyS21Plus is a descendant class of Android
* expectations on ga widened to methods in GalaxyS21Plus
* ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

60 of 110



Reference Type Casting: Danger (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 ResidentStudent rs = (ResidentStudent) jim;

3 rs.setPremiumRate(1.5);

● L1 is legal : NonResidentStudent is a descendant of the
static type of jim (Student).

● L2 is legal (where the cast type is ResidentStudent):
○ cast type is descendant of jim’s ST (Student).
○ cast type is descendant of rs’s ST (ResidentStudent).

● L3 is legal ∵ setPremiumRate is in rs’ ST
ResidentStudent.

● Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

● Executing L2 will result in a ClassCastException .
∵ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

61 of 110



Reference Type Casting: Danger (2)
1 SmartPhone aPhone = new GalaxyS21Plus();
2 IPhone13Pro forHeeyeon = (IPhone13Pro) aPhone;

3 forHeeyeon.quickTake();

● L1 is legal : GalaxyS21Plus is a descendant of the static
type of aPhone (SmartPhone).

● L2 is legal (where the cast type is Iphone6sPlus):
○ cast type is descendant of aPhone’s ST (SmartPhone).
○ cast type is descendant of forHeeyeon’s ST (IPhone13Pro).

● L3 is legal ∵ quickTake is in forHeeyeon’ ST
IPhone13Pro.

● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually GalaxyS21Plus.

● Executing L2 will result in a ClassCastException .
∵ Methods facetime, quickTake (expected from an
IPhone13Pro) is undefined on the GalaxyS21Plus object
being cast.62 of 110



Notes on Type Cast (2.1)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;
4 /* Compiles OK ∵ GalaxyS21Plus is a descendant class of SmartPhone
5 * can now call methods declared in GalaxyS21Plus on ga

6 * ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS21Plus (e.g., sideSync).

63 of 110



Notes on Type Cast (2.2)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 IPhone13Pro ip = (IPhone13Pro) myPhone;
4 /* Compiles OK ∵ IPhone13Pro is a descendant class of SmartPhone
5 * can now call methods declared in IPhone13Pro on ip

6 * ip.dial, ip.surfweb, ip.facetime, ip.quickTake ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhone13Pro (e.g., quickTake).

64 of 110



Notes on Type Cast (2.3)

A cast (C) v is compilable and runtime-error-free if C is
located along the ancestor path of DTv .

e.g., Given Android myPhone = new Samsung();
○ Cast myPhone to a class along the ancestor path of its DT

Samsung.
○ Casting myPhone to a class with more expectations than its DT

Samsung (e.g., GalaxyS21Plus) will cause
ClassCastException.

○ Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate40Pro) will cause ClassCastException.

65 of 110



Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2021/F/EECS2030/notes/EECS2030_F21_
Notes_Static_Types_Cast.pdf

66 of 110

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Static_Types_Cast.pdf


Compilable Cast vs. Exception-Free Cast

class A { }
class B extends A { }
class C extends B { }
class D extends A { }

1 B b = new C();
2 D d = (D) b;

● After L1:
○ ST of b is B
○ DT of b is C

● Does L2 compile? [ NO ]
∵ cast type D is neither an ancestor nor a descendant of b’s ST B

● Would D d = (D) ((A) b) fix L2? [ YES ]
∵ cast type D is an ancestor of b’s cast, temporary ST A

● ClassCastException when executing this fixed L2? [ YES ]
∵ cast type D is not an ancestor of b’s DT C

67 of 110



Reference Type Casting: Runtime Check (1)

1 Student jim = new NonResidentStudent("J. Davis");

2 if (jim instanceof ResidentStudent ) {

3 ResidentStudent rs = ( ResidentStudent ) jim;
4 rs.setPremiumRate(1.5);
5 }

● L1 is legal : NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

● L2 checks if jim’s DT is a descendant of ResidentStudent.
FALSE ∵ jim’s dynamic type is NonResidentStudent!

● L3 is legal : jim’s cast type (i.e., ResidentStudent) is a
descendant class of rs’s ST (i.e., ResidentStudent).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

68 of 110



Reference Type Casting: Runtime Check (2)

1 SmartPhone aPhone = new GalaxyS21Plus();
2 if (aPhone instanceof IPhone13Pro ) {

3 IOS forHeeyeon = ( IPhone13Pro ) aPhone;
4 forHeeyeon.facetime();
5 }

● L1 is legal : GalaxyS21Plus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 checks if aPhone’s DT is a descendant of IPhone13Pro.
FALSE ∵ aPhone’s dynamic type is GalaxyS21Plus!

● L3 is legal : aPhone’s cast type (i.e., IPhone13Pro) is a
descendant class of forHeeyeon’s static type (i.e., IOS).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

69 of 110



Notes on the instanceof Operator (1)
Given a reference variable v and a class C, you write

v instanceof C

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that (C) v is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Android);
/* true ∵ Samsung is a descendant of Android */
println(myPhone instanceof Samsung);
/* true ∵ Samsung is a descendant of Samsung */
println(myPhone instanceof GalaxyS21);
/* false ∵ Samsung is not a descendant of GalaxyS21 */
println(myPhone instanceof IOS);
/* false ∵ Samsung is not a descendant of IOS */
println(myPhone instanceof IPhone13Pro);
/* false ∵ Samsung is not a descendant of IPhone13Pro */

⇒ Samsung is the most specific type which myPhone can be
safely cast to.
70 of 110



Notes on the instanceof Operator (2)
Given a reference variable v and a class C,
v instanceof C checks if the dynamic type of v, at the

moment of being checked, is a descendant class of C.
1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 if(myPhone instanceof Samsung) {
4 Samsung samsung = (Samsung) myPhone;
5 }
6 if(myPhone instanceof GalaxyS21Plus) {
7 GalaxyS21Plus galaxy = (GalaxyS21Plus) myPhone;
8 }
9 if(myphone instanceof HuaweiMate40Pro) {

10 Huawei hw = (HuaweiMate40Pro) myPhone;
11 }

● L3 evaluates to true. [safe to cast]
● L6 and L9 evaluate to false. [unsafe to cast]

This prevents L7 and L10, causing ClassCastException if
executed, from being executed.

71 of 110



Static Types, Casts, Polymorphism (1.1)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone13Pro(); ✓
2 sp.dial(); ✓
3 sp.facetime(); ×
4 sp.quickTake(); ×

Static type of sp is SmartPhone
⇒ can only call methods defined in SmartPhone on sp

72 of 110



Static Types, Casts, Polymorphism (1.2)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 IOS ip = new IPhone13Pro(); ✓
2 ip.dial(); ✓
3 ip.facetime(); ✓
4 ip.quickTake(); ×

Static type of ip is IOS
⇒ can only call methods defined in IOS on ip

73 of 110



Static Types, Casts, Polymorphism (1.3)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 IPhone13Pro ip6sp = new IPhone13Pro(); ✓
2 ip6sp.dial(); ✓
3 ip6sp.facetime(); ✓
4 ip6sp.quickTake(); ✓

Static type of ip6sp is IPhone13Pro
⇒ can call all methods defined in IPhone13Pro on ip6sp

74 of 110



Static Types, Casts, Polymorphism (1.4)
class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone13Pro(); ✓
2 ( (IPhone13Pro) sp).dial(); ✓
3 ( (IPhone13Pro) sp).facetime(); ✓
4 ( (IPhone13Pro) sp).quickTake(); ✓

L4 is equivalent to the following two lines:

IPhone13Pro ip6sp = (IPhone13Pro) sp;

ip6sp.quickTake();

75 of 110



Static Types, Casts, Polymorphism (2)
Given a reference variable declaration
C v;

○ Static type of reference variable v is class C
○ A method call v.m is valid if m is a method defined in class C.
○ Despite the dynamic type of v , you are only allowed to call

methods that are defined in the static type C on v .
○ If you are certain that v ’s dynamic type can be expected more than

its static type, then you may use an insanceof check and a cast.

Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent("Jim");
s.register(eecs2030);
if(s instanceof ResidentStudent) {

( (ResidentStudent) s).setPremiumRate(1.75);

System.out.println(( (ResidentStudent) s).getTuition());

}

76 of 110



Polymorphism: Method Parameters (1)
1 class StudentManagementSystem {

2 Student [] ss; /* ss[i] has static type Student */ int c;
3 void addRS(ResidentStudent rs) { ss[c] = rs; c ++; }
4 void addNRS(NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent(Student s) { ss[c] = s; c++; } }

● L3: ss[c] = rs is valid. ∵ RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.

● Say we have a StudentManagementSystem object sms:
○ sms.addRS(o) attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:

rs = o;

○ Whether this argument passing is valid depends on o’s static type.
● In the signature of a method m, if the type of a parameter is

class C, then we may call method m by passing objects whose
static types are C’s descendants.

77 of 110



Polymorphism: Method Parameters (2.1)

In the StudentManagementSystemTester:

Student s1 = new Student();
Student s2 = new ResidentStudent();
Student s3 = new NonResidentStudent();
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(s1); ×
sms.addRS(s2); ×
sms.addRS(s3); ×
sms.addRS(rs); ✓
sms.addRS(nrs); ×
sms.addStudent(s1); ✓
sms.addStudent(s2); ✓
sms.addStudent(s3); ✓
sms.addStudent(rs); ✓
sms.addStudent(nrs); ✓

78 of 110



Polymorphism: Method Parameters (2.2)
In the StudentManagementSystemTester:

1 Student s = new Student("Stella");
2 /* s’ ST: Student; s’ DT: Student */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (Student) is not a descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

79 of 110



Polymorphism: Method Parameters (2.3)
In the StudentManagementSystemTester:

1 Student s = new NonResidentStudent("Nancy");
2 /* s’ ST: Student; s’ DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ But, there will be a ClassCastException at runtime!
∵ s’ DT (NonResidentStudent) not descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

80 of 110



Polymorphism: Method Parameters (2.4)
In the StudentManagementSystemTester:

1 Student s = new ResidentStudent("Rachael");
2 /* s’ ST: Student; s’ DT: ResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×

○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .
● Valid call ∵ s’ temporary ST (ResidentStudent) is now a

descendant class of addRS’s parameter rs’ ST (ResidentStudent).
○ And, there will be no ClassCastException at runtime!
∵ s’ DT (ResidentStudent) is descendant of ResidentStudent.

○ We should have written:
if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to true, meaning it is
safe to cast.

81 of 110



Polymorphism: Method Parameters (2.5)

In the StudentManagementSystemTester:

1 NonResidentStudent nrs = new NonResidentStudent();
2 /* ST: NonResidentStudent; DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(nrs); ×

Will L4 with a cast compile?

sms.addRS( (ResidentStudent) nrs)

NO ∵ (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

82 of 110



Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent(Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i < numberOfStudents; i ++) {
students[i].register(c)

}
}

}

a collection of students without inheritance83 of 110



Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

1 ResidentStudent rs = new ResidentStudent("Rachael");
2 rs.setPremiumRate(1.5);
3 NonResidentStudent nrs = new NonResidentStudent("Nancy");
4 nrs.setDiscountRate(0.5);
5 StudentManagementSystem sms = new StudentManagementSystem();
6 sms.addStudent( rs ); /* polymorphism */
7 sms.addStudent( nrs ); /* polymorphism */
8 Course eecs2030 = new Course("EECS2030", 500.0);
9 sms.registerAll(eecs2030);

10 for(int i = 0; i < sms.numberOfStudents; i ++) {
11 /* Dynamic Binding:
12 * Right version of getTuition will be called */

13 System.out.println(sms.students[i]. getTuition() );

14 }

84 of 110



Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent
StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

85 of 110



Polymorphism: Return Types (1)

1 class StudentManagementSystem {
2 Student[] ss; int c;
3 void addStudent(Student s) { ss[c] = s; c++; }

4 Student getStudent(int i) {
5 Student s = null;
6 if(i < 0 || i >= c) {
7 throw new InvalidStudentIndexException("Invalid index.");
8 }
9 else {

10 s = ss[i];
11 }
12 return s;
13 } }

L4: Student is static type of getStudent’s return value.
L10: ss[i]’s ST (Student) is descendant of s’ ST (Student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.

86 of 110



Polymorphism: Return Types (2)
1 Course eecs2030 = new Course("EECS2030", 500);
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.5); rs.register(eecs2030);
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 sms.addStudent(rs); sms.addStudent(nrs);
8 Student s = sms.getStudent(0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static return type: Student

; /* dynamic type of s? */

9 print(s instanceof Student && s instanceof ResidentStudent);/*true*/
10 print(s instanceof NonResidentStudent); /* false */

11 print( s.getTuition() );/*Version in ResidentStudent called:750*/

12 ResidentStudent rs2 = sms.getStudent(0); ×
13 s = sms.getStudent(1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static return type: Student

; /* dynamic type of s? */

14 print(s instanceof Student && s instanceof NonResidentStudent);/*true*/
15 print(s instanceof ResidentStudent); /* false */

16 print( s.getTuition() );/*Version in NonResidentStudent called:250*/

17 NonResidentStudent nrs2 = sms.getStudent(1); ×
87 of 110



Polymorphism: Return Types (3)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student
● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

88 of 110



Static Type vs. Dynamic Type:
When to consider which?

● Whether or not Java code compiles depends only on the
static types of relevant variables.

∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Java code being executed at runtime (e.g.,
which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

89 of 110



Summary: Type Checking Rules

CODE CONDITION TO BE TYPE CORRECT

x = y Is y’s ST a descendant of x’s ST ?

x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?

z = x.m(y)

Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?
Is ST of m’s return value a descendant of z’s ST ?

(C) y Is C an ancestor or a descendant of y’s ST ?

x = (C) y
Is C an ancestor or a descendant of y’s ST ?
Is C a descendant of x’s ST ?

x.m((C) y)

Is C an ancestor or a descendant of y’s ST ?
Is method m defined in x’s ST ?
Is C a descendant of m’s parameter’s ST ?

Even if (C) y compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y’s DT !
90 of 110



Root of the Java Class Hierarchy
● Implicitly:

○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.

● There are two useful accessor methods that every class
inherits from the Object class:
○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.
● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.

● Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and
toString.

91 of 110



Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.
○ Every class inherits the default version of equals
○ Say a reference variable v has dynamic type D:

● Case 1 D overrides equals
⇒ v.equals(. . .) invokes the overridden version in D

● Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
⇒ v.equals(. . .) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
⇒ v.equals(. . .) invokes default version inherited from Object.

○ Same principle applies to the toString method, and all
overridden methods in general.

92 of 110



Overriding and Dynamic Binding (2.1)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
} class A {

/*equals not overridden*/
}
class B extends A {
/*equals not overridden*/

}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ Object ]

93 of 110



Overriding and Dynamic Binding (2.2)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
/*equals not overridden*/

}
class C extends B {
boolean equals(Object obj) {
/* overridden version */

}
}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ C ]

94 of 110



Overriding and Dynamic Binding (2.3)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
boolean equals(Object obj) {
/* overridden version */

}
}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ B ]

95 of 110



Behaviour of Inherited toString Method (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

● Implicitly, the toString method is called inside the println
method.

● By default, the address stored in p1 gets printed.
● We need to redefine / override the toString method,

inherited from the Object class, in the Point class.

96 of 110



Behaviour of Inherited toString Method (2)

class Point {
double x;
double y;
public String toString() {
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:

Point p1 = new Point(2, 4);
System.out.println(p1);

(2, 4)

97 of 110



Behaviour of Inherited toString Method (3)

Exercise: Override the equals and toString methods for
the ResidentStudent and NonResidentStudent classes.

98 of 110



Beyond this lecture. . .

● Implement the inheritance hierarchy of Students and
reproduce all lecture examples.

● Implement the inheritance hierarchy of Smart Phones and
reproduce all lecture examples.
Hints. Pay attention to:
○ Valid? Compiles?
○ ClassCastException?

● Study the ExampleTypeCasts example: draw the
inheritance hierarchy and experiment with the various
substitutions and casts.

99 of 110



Index (1)

Learning Outcomes

Why Inheritance: A Motivating Example

Why Inheritance: A Motivating Example

No Inheritance: ResidentStudent Class

No Inheritance: NonResidentClass

No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

100 of 110



Index (2)

No Inheritance:
A Collection of Various Kinds of Students

Visibility: Project, Packages, Classes

Visibility of Classes
Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)
Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)
Visibility of Attributes/Methods:
Using Modifiers to Define Scopes
Visibility of Attr./Meth.: Across All Methods
Within the Resident Class (private)

101 of 110



Index (3)

Visibility of Attr./Meth.: Across All Classes
Within the Resident Package (no modifier)
Visibility of Attr./Meth.: Across All Packages
Within the Resident Project (public)

Use of the protected Modifier
Visibility of Attr./Meth.: Across All Methods
Within the Resident Package and Sub-Classes (protected)

Visibility of Attr./Meth.

Inheritance Architecture

Inheritance: The Student Parent/Super Class
Inheritance:
The ResidentStudent Child/Sub Class

102 of 110



Index (4)

Inheritance:
The NonResidentStudent Child/Sub Class

Inheritance Architecture Revisited

Using Inheritance for Code Reuse

Visualizing Parent/Child Objects (1)

Visualizing Parent/Child Objects (2)

Testing the Two Student Sub-Classes
Inheritance Architecture:
Static Types & Expectations

Polymorphism: Intuition (1)

Polymorphism: Intuition (2)

103 of 110



Index (5)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2)

Multi-Level Inheritance Architecture
Multi-Level Inheritance Hierarchy:
Smart Phones

Inheritance Forms a Type Hierarchy

Inheritance Accumulates Code for Reuse

Static Types Determine Expectations

Substitutions via Assignments

Rules of Substitution

104 of 110



Index (6)

Reference Variable: Dynamic Type

Visualizing Static Type vs. Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.1)

Polymorphism and Dynamic Binding (2.2)

Polymorphism and Dynamic Binding (3.1)

Polymorphism and Dynamic Binding (3.2)

105 of 110



Index (7)
Polymorphism and Dynamic Binding (3.3)

Reference Type Casting: Motivation (1.1)

Reference Type Casting: Motivation (1.2)

Reference Type Casting: Motivation (2.1)

Reference Type Casting: Motivation (2.2)

Type Cast: Named or Anonymous

Notes on Type Cast (1)

Reference Type Casting: Danger (1)

Reference Type Casting: Danger (2)

Notes on Type Cast (2.1)

Notes on Type Cast (2.2)
106 of 110



Index (8)

Notes on Type Cast (2.3)
Required Reading:
Static Types, Dynamic Types, Casts

Compilable Cast vs. Exception-Free Cast

Reference Type Casting: Runtime Check (1)

Reference Type Casting: Runtime Check (2)

Notes on the instanceof Operator (1)

Notes on the instanceof Operator (2)

Static Types, Casts, Polymorphism (1.1)

Static Types, Casts, Polymorphism (1.2)

Static Types, Casts, Polymorphism (1.3)

107 of 110



Index (9)
Static Types, Casts, Polymorphism (1.4)

Static Types, Casts, Polymorphism (2)

Polymorphism: Method Parameters (1)

Polymorphism: Method Parameters (2.1)

Polymorphism: Method Parameters (2.2)

Polymorphism: Method Parameters (2.3)

Polymorphism: Method Parameters (2.4)

Polymorphism: Method Parameters (2.5)
Why Inheritance:
A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)
108 of 110



Index (10)

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)

Polymorphism: Return Types (1)

Polymorphism: Return Types (2)

Polymorphism: Return Types (3)
Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

Root of the Java Class Hierarchy

Overriding and Dynamic Binding (1)

Overriding and Dynamic Binding (2.1)

109 of 110



Index (11)
Overriding and Dynamic Binding (2.2)

Overriding and Dynamic Binding (2.3)

Behaviour of Inherited toString Method (1)

Behaviour of Inherited toString Method (2)

Behaviour of Inherited toString Method (3)

Beyond this lecture. . .

110 of 110


	Learning Outcomes
	Why Inheritance: A Motivating Example
	Why Inheritance: A Motivating Example
	No Inheritance: ResidentStudent Class
	No Inheritance: NonResidentClass
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Visibility: Project, Packages, Classes
	Visibility of Classes
	Visibility of Classes: Across All Classes Within the Resident Package (no modifier)
	Visibility of Classes: Across All Classes Within the Resident Package (no modifier)
	Visibility of Attributes/Methods: Using Modifiers to Define Scopes
	Visibility of Attr./Meth.: Across All Methods Within the Resident Class (private)
	Visibility of Attr./Meth.: Across All Classes Within the Resident Package (no modifier)
	Visibility of Attr./Meth.: Across All Packages Within the Resident Project (public)
	Use of the protected Modifier
	Visibility of Attr./Meth.: Across All Methods Within the Resident Package and Sub-Classes (protected)
	Visibility of Attr./Meth.
	Inheritance Architecture
	Inheritance: The Student Parent/Super Class
	Inheritance: The ResidentStudent Child/Sub Class
	Inheritance: The NonResidentStudent Child/Sub Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Visualizing Parent/Child Objects (1)
	Visualizing Parent/Child Objects (2)
	Testing the Two Student Sub-Classes
	Inheritance Architecture: Static Types & Expectations
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture
	Multi-Level Inheritance Hierarchy: Smart Phones
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Static Types Determine Expectations
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Dynamic Type
	Visualizing Static Type vs. Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Polymorphism and Dynamic Binding (3.1)
	Polymorphism and Dynamic Binding (3.2)
	Polymorphism and Dynamic Binding (3.3)
	Reference Type Casting: Motivation (1.1)
	Reference Type Casting: Motivation (1.2)
	Reference Type Casting: Motivation (2.1)
	Reference Type Casting: Motivation (2.2)
	Type Cast: Named or Anonymous
	Notes on Type Cast (1)
	Reference Type Casting: Danger (1)
	Reference Type Casting: Danger (2)
	Notes on Type Cast (2.1)
	Notes on Type Cast (2.2)
	Notes on Type Cast (2.3)
	Required Reading: Static Types, Dynamic Types, Casts
	Compilable Cast vs. Exception-Free Cast
	Reference Type Casting: Runtime Check (1)
	Reference Type Casting: Runtime Check (2)
	Notes on the instanceof Operator (1)
	Notes on the instanceof Operator (2)
	Static Types, Casts, Polymorphism (1.1)
	Static Types, Casts, Polymorphism (1.2)
	Static Types, Casts, Polymorphism (1.3)
	Static Types, Casts, Polymorphism (1.4)
	Static Types, Casts, Polymorphism (2)
	Polymorphism: Method Parameters (1)
	Polymorphism: Method Parameters (2.1)
	Polymorphism: Method Parameters (2.2)
	Polymorphism: Method Parameters (2.3)
	Polymorphism: Method Parameters (2.4)
	Polymorphism: Method Parameters (2.5)
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (1)
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (2)
	Polymorphism: Return Types (1)
	Polymorphism: Return Types (2)
	Polymorphism: Return Types (3)
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Root of the Java Class Hierarchy
	Overriding and Dynamic Binding (1)
	Overriding and Dynamic Binding (2.1)
	Overriding and Dynamic Binding (2.2)
	Overriding and Dynamic Binding (2.3)
	Behaviour of Inherited toString Method (1)
	Behaviour of Inherited toString Method (2)
	Behaviour of Inherited toString Method (3)
	Beyond this lecture…

