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Learning Outcomes

This module is designed to help you learn about:
● Call by Value: Primitive vs. Reference Argument Values
● Aggregation vs. Composition: Terminology and Modelling
● Aggregation: Building Sharing Links & Navigating Objects
● Composition: Implementation via Copy Constructors
● Design Decision : Aggregation or Composition?
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Call by Value (1)

● Consider the general form of a call to some mutator method
m, with context object co and argument value arg:

co.m(arg)

○ Argument variable arg is not passed directly to the method call.
○ Instead, argument variable arg is passed indirectly: a copy of

the value stored in arg is made and passed to the method call.

● What can be the type of variable arg? [ Primitive or Reference ]
○ arg is primitive type (e.g., int, char, boolean, etc.):

Call by Value : Copy of arg’s stored value
(e.g., 2, ‘j’, true) is made and passed.

○ arg is reference type (e.g., String, Point, Person, etc.):
Call by Value : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is made and passed.
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Call by Value (2.1)

For illustration, let’s assume the following variant of the Point
class:

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() { return this.x; }
public int getY() { return this.y; }
public void moveVertically(int y){ this.y += y; }
public void moveHorizontally(int x){ this.x += x; }

}
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Call by Value (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
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Call by Value (2.2.2)

Before reassignInt During reassignInt After reassignInt
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Call by Value (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p == refOfPBefore);
8 assertTrue(p.getX() == 3);
9 assertTrue(p.getY() == 4);

10 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.
⇒ The assignment p = np is only effective on this copy, not the original
variable p itself.

● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore).
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Call by Value (2.3.2)

Before reassignRef During reassignRef After reassignRef
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Call by Value (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p == refOfPBefore);
8 assertTrue(p.getX() == 6);
9 assertTrue(p.getY() == 8);

10 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ q.moveHorizontally impacts the same object referenced by p and q.
● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,

same as refOfPBefore), but its x and y values have been modified via q.
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Call by Value (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef
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Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.

● e.g., Each course has a faculty member as its instructor.
○ Container : Course Containee: Faculty.

● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.

● e.g., In a file system, each directory contains a list of files.
○ Container : Directory Containees: File.

e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.
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Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

public class Course {
private String title;
private Faculty prof;
public Course(String title) {
this.title = title;

}
public void setProf(Faculty prof) {
this.prof = prof;

}
public Faculty getProf() {
return this.prof;

}
}

public class Faculty {
private String name;
public Faculty(String name) {
this.name = name;

}
public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}
}
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Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}
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Aggregation: Independent Containees
Shared by Containers (2.1)

Student
cs
*

Course Faculty

te
* prof

1

public class Student {
private String id; Course[] cs; int noc; /* # of courses */
public Student(String id) { . . . }
public void addCourse(Course c) { . . . }
public Course[] getCS() { . . . }

}

public class Course { private String title; private Faculty prof; }

public class Faculty {
private String name; Course[] te; int not; /* # of teaching */
public Faculty(String name) { . . . }
public void addTeaching(Course c) { . . . }
public Course[] getTE() { . . . }

}
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Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS()[0].getProf());
assertTrue(s.getCS()[0].getProf()

== s.getCS()[1].getProf());
assertTrue(eecs3311 == s.getCS()[1]);
assertTrue(s.getCS()[1] == p.getTE()[1]);

}
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The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
cs
*

Course Faculty

te
* prof

1

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

● Assume: private attributs and public accessors
● Aggregation links between classes constrain how you can

navigate among these classes.
● In the context of class Student:

○ Writing cs denotes the array of registered courses.
○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.
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OOP: The Dot Notation (3.2)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Student {
. . . /* attributes */
/* Get the student’s id */
public String getID() { return this.id; }
/* Get the title of the ith course */
public String getTitle(int i) {
return this.cs[i].getTitle();

}
/* Get the instructor’s name of the ith course */
public String getName(int i) {
return this.cs[i].getProf.getName();

}
}
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OOP: The Dot Notation (3.3)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Course {
. . . /* attributes */
/* Get the course’s title */
public String getTitle() { return this.title; }
/* Get the instructor’s name */
public String getName() {
return this.prof.getName();

}
/* Get title of ith teaching course of the instructor */
public String getTitle(int i) {
return this.prof.getTE()[i].getTitle();

}
}
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OOP: The Dot Notation (3.4)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
public String getName() {
return this.name;

}
/* Get the title of ith teaching course */
public String getTitle(int i) {
return this.te[i].getTitle();

}
}
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Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Requirement: Files are not shared among directories.

Assume: private attributs
and public accessors

class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}
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Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(d1.getFiles()[0].getName().equals("f1.txt"));
8 }

● L4: 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L5: 2nd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.
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Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:
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Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.
A copy constructor is a constructor which initializes attributes
from the argument object other (of the same type
Directory).

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.
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Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [ NO ]
@Test
public void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() == d2.getFiles()); /* violation of composition */
d2.getFiles()[0].changeName("f11.txt");
assertFalse(d1.getFiles()[0].getName().equals("f1.txt"));

}
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Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:
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Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < other.nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf);

}
}
void addFile(File f) { . . . }

}

@Test
public void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() != d2.getFiles()); /* composition preserved */
d2.getFiles()[0].changeName("f11.txt");
assertTrue(d1.getFiles()[0].getName().equals("f1.txt"));

}

26 of 37



Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

27 of 37



Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < other.nof; i ++) {
File src = other.files[i];
this.addFile(src);

}
}
void addFile(File f) { . . . }

}

@Test
public void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() != d2.getFiles()); /* composition preserved */
d2.getFiles()[0].changeName("f11.txt");
assertTrue(d1.getFiles()[0] == d2.getFiles()[0]); /* composition violated! */

}
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Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.
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Aggregation vs. Composition (1)

Terminology:
○ Container object: an object that contains others.
○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).
○ Containees exist independently without their containers.
○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).
○ Containees cannot exist without their containers.
○ Destroying a container destroys its containeees cascadingly .
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Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:
○ Each workstation owns CPU, monitor, keyword. [ compositions ]
○ All workstations share the same network. [ aggregations ]
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Aggregation vs. Composition (3)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book be
implemented as an aggregation or a composition?

author as an aggregation author as a composition

Hyperlinked author page Physical printed copies
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Beyond this lecture. . .

Reproduce the aggregation and composition code examples
in Eclipse.
Tip. Use the debugger to verify whether or not there is sharing.
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