
Aggregation and Composition

EECS2030 B & E: Advanced
Object Oriented Programming

Fall 2021

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Outcomes

This module is designed to help you learn about:
● Call by Value: Primitive vs. Reference Argument Values
● Aggregation vs. Composition: Terminology and Modelling
● Aggregation: Building Sharing Links & Navigating Objects
● Composition: Implementation via Copy Constructors
● Design Decision : Aggregation or Composition?

2 of 37



Call by Value (1)

● Consider the general form of a call to some mutator method
m, with context object co and argument value arg:

co.m(arg)

○ Argument variable arg is not passed directly to the method call.
○ Instead, argument variable arg is passed indirectly: a copy of

the value stored in arg is made and passed to the method call.

● What can be the type of variable arg? [ Primitive or Reference ]
○ arg is primitive type (e.g., int, char, boolean, etc.):

Call by Value : Copy of arg’s stored value
(e.g., 2, ‘j’, true) is made and passed.

○ arg is reference type (e.g., String, Point, Person, etc.):
Call by Value : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is made and passed.

3 of 37



Call by Value (2.1)

For illustration, let’s assume the following variant of the Point
class:

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() { return this.x; }
public int getY() { return this.y; }
public void moveVertically(int y){ this.y += y; }
public void moveHorizontally(int x){ this.x += x; }

}

4 of 37



Call by Value (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
5 of 37



Call by Value (2.2.2)

Before reassignInt During reassignInt After reassignInt

10inti

10inti

10intj

10inti

11intj

6 of 37



Call by Value (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p == refOfPBefore);
8 assertTrue(p.getX() == 3);
9 assertTrue(p.getY() == 4);

10 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.
⇒ The assignment p = np is only effective on this copy, not the original
variable p itself.

● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore).

7 of 37



Call by Value (2.3.2)

Before reassignRef During reassignRef After reassignRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

3

4

x

y

Point

p

q
6

8

x

y

Point

8 of 37



Call by Value (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p == refOfPBefore);
8 assertTrue(p.getX() == 6);
9 assertTrue(p.getY() == 8);

10 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ q.moveHorizontally impacts the same object referenced by p and q.
● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,

same as refOfPBefore), but its x and y values have been modified via q.
9 of 37



Call by Value (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

6

8

x

y

Point

p

q

10 of 37



Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.

● e.g., Each course has a faculty member as its instructor.
○ Container : Course Containee: Faculty.

● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.
○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.

● e.g., In a file system, each directory contains a list of files.
○ Container : Directory Containees: File.

e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.

11 of 37



Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

public class Course {
private String title;
private Faculty prof;
public Course(String title) {
this.title = title;

}
public void setProf(Faculty prof) {
this.prof = prof;

}
public Faculty getProf() {
return this.prof;

}
}

public class Faculty {
private String name;
public Faculty(String name) {
this.name = name;

}
public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}
}

12 of 37



Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}

13 of 37



Aggregation: Independent Containees
Shared by Containers (2.1)

Student
cs
*

Course Faculty

te
* prof

1

public class Student {
private String id; Course[] cs; int noc; /* # of courses */
public Student(String id) { . . . }
public void addCourse(Course c) { . . . }
public Course[] getCS() { . . . }

}

public class Course { private String title; private Faculty prof; }

public class Faculty {
private String name; Course[] te; int not; /* # of teaching */
public Faculty(String name) { . . . }
public void addTeaching(Course c) { . . . }
public Course[] getTE() { . . . }

}

14 of 37



Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS()[0].getProf());
assertTrue(s.getCS()[0].getProf()

== s.getCS()[1].getProf());
assertTrue(eecs3311 == s.getCS()[1]);
assertTrue(s.getCS()[1] == p.getTE()[1]);

}

15 of 37



The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
cs
*

Course Faculty

te
* prof

1

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

● Assume: private attributs and public accessors
● Aggregation links between classes constrain how you can

navigate among these classes.
● In the context of class Student:

○ Writing cs denotes the array of registered courses.
○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.

16 of 37



OOP: The Dot Notation (3.2)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Student {
. . . /* attributes */
/* Get the student’s id */
public String getID() { return this.id; }
/* Get the title of the ith course */
public String getTitle(int i) {
return this.cs[i].getTitle();

}
/* Get the instructor’s name of the ith course */
public String getName(int i) {
return this.cs[i].getProf.getName();

}
}

17 of 37



OOP: The Dot Notation (3.3)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Course {
. . . /* attributes */
/* Get the course’s title */
public String getTitle() { return this.title; }
/* Get the instructor’s name */
public String getName() {
return this.prof.getName();

}
/* Get title of ith teaching course of the instructor */
public String getTitle(int i) {
return this.prof.getTE()[i].getTitle();

}
}

18 of 37



OOP: The Dot Notation (3.4)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
public String getName() {
return this.name;

}
/* Get the title of ith teaching course */
public String getTitle(int i) {
return this.te[i].getTitle();

}
}

19 of 37



Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Requirement: Files are not shared among directories.

Assume: private attributs
and public accessors

class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}

20 of 37



Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(d1.getFiles()[0].getName().equals("f1.txt"));
8 }

● L4: 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L5: 2nd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

21 of 37



Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name
“D”

“f1.txt” “f2.txt” “f3.txt”

22 of 37



Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.
A copy constructor is a constructor which initializes attributes
from the argument object other (of the same type
Directory).

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.
23 of 37



Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [ NO ]
@Test
public void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() == d2.getFiles()); /* violation of composition */
d2.getFiles()[0].changeName("f11.txt");
assertFalse(d1.getFiles()[0].getName().equals("f1.txt"));

}

24 of 37



Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f11.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name

d2.filesd2

d2.files[0] d2.files[1] d2.files[2]

d2.name

25 of 37



Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < other.nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf);

}
}
void addFile(File f) { . . . }

}

@Test
public void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() != d2.getFiles()); /* composition preserved */
d2.getFiles()[0].changeName("f11.txt");
assertTrue(d1.getFiles()[0].getName().equals("f1.txt"));

}

26 of 37



Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1

files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

27 of 37



Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < other.nof; i ++) {
File src = other.files[i];
this.addFile(src);

}
}
void addFile(File f) { . . . }

}

@Test
public void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() != d2.getFiles()); /* composition preserved */
d2.getFiles()[0].changeName("f11.txt");
assertTrue(d1.getFiles()[0] == d2.getFiles()[0]); /* composition violated! */

}

28 of 37



Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

29 of 37



Aggregation vs. Composition (1)

Terminology:
○ Container object: an object that contains others.
○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).
○ Containees exist independently without their containers.
○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).
○ Containees cannot exist without their containers.
○ Destroying a container destroys its containeees cascadingly .

30 of 37



Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:
○ Each workstation owns CPU, monitor, keyword. [ compositions ]
○ All workstations share the same network. [ aggregations ]

31 of 37



Aggregation vs. Composition (3)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book be
implemented as an aggregation or a composition?

author as an aggregation author as a composition

Hyperlinked author page Physical printed copies

32 of 37



Beyond this lecture. . .

Reproduce the aggregation and composition code examples
in Eclipse.
Tip. Use the debugger to verify whether or not there is sharing.

33 of 37



Index (1)

Learning Outcomes

Call by Value (1)

Call by Value (2.1)

Call by Value (2.2.1)

Call by Value (2.2.2)

Call by Value (2.3.1)

Call by Value (2.3.2)

Call by Value (2.4.1)

Call by Value (2.4.2)

Aggregation vs. Composition: Terminology

34 of 37



Index (2)

Aggregation: Independent Containees
Shared by Containers (1.1)
Aggregation: Independent Containees
Shared by Containers (1.2)
Aggregation: Independent Containees
Shared by Containers (2.1)
Aggregation: Independent Containees
Shared by Containers (2.2)

The Dot Notation (3.1)

OOP: The Dot Notation (3.2)

OOP: The Dot Notation (3.3)

OOP: The Dot Notation (3.4)

35 of 37



Index (3)

Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
Composition: Dependent Containees
Owned by Containers (1.3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)

36 of 37



Index (4)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)
Composition: Dependent Containees
Owned by Containers (1.5.3)
Composition: Dependent Containees
Owned by Containers (1.6)

Aggregation vs. Composition (1)

Aggregation vs. Composition (2)

Aggregation vs. Composition (3)

Beyond this lecture. . .

37 of 37


	Learning Outcomes
	Call by Value (1)
	Call by Value (2.1)
	Call by Value (2.2.1)
	Call by Value (2.2.2)
	Call by Value (2.3.1)
	Call by Value (2.3.2)
	Call by Value (2.4.1)
	Call by Value (2.4.2)
	Aggregation vs. Composition: Terminology
	Aggregation: Independent Containees Shared by Containers (1.1)
	Aggregation: Independent Containees Shared by Containers (1.2)
	Aggregation: Independent Containees Shared by Containers (2.1)
	Aggregation: Independent Containees Shared by Containers (2.2)
	The Dot Notation (3.1)
	OOP: The Dot Notation (3.2)
	OOP: The Dot Notation (3.3)
	OOP: The Dot Notation (3.4)
	Composition: Dependent Containees Owned by Containers (1.1)
	Composition: Dependent Containees Owned by Containers (1.2.1)
	Composition: Dependent Containees Owned by Containers (1.2.2)
	Composition: Dependent Containees Owned by Containers (1.3)
	Composition: Dependent Containees Owned by Containers (1.4.1)
	Composition: Dependent Containees Owned by Containers (1.4.2)
	Composition: Dependent Containees Owned by Containers (1.5.1)
	Composition: Dependent Containees Owned by Containers (1.5.2)
	Composition: Dependent Containees Owned by Containers (1.5.3)
	Composition: Dependent Containees Owned by Containers (1.6)
	Aggregation vs. Composition (1)
	Aggregation vs. Composition (2)
	Aggregation vs. Composition (3)
	Beyond this lecture…

