
EECS2030 (B & E) Fall 2021

Guide to Programming Test 1

When: Thursday (Oct 7) & Friday (Oct 8)

Chen-Wei Wang

1 Policies

– This programming test is strictly individual: plagiarism check will be performed on all submissions,
and suspicious submissions will be reported to Lassonde for a breach of academic honesty.

– This programming test will account for 7% of your course grade.

– This programming test is purely a programming test, assessing if you can write valid Java programs
free of syntax, type, and logical errors.

– Timing Constraints:

• Programming Test 1 will be opened at 02:00pm EST on Thursday, October 7.

• Programming Test 1 will be closed at 02:00pm EST, on Friday, October 8.

• During the 24-hours submission period, there is a single attempt of 90 minutes for you to
complete the test.

∗ Once you click on the test link and choose to start it, a timer of 90 minutes (including
the time for you to download and import the starter project, as well as for you to export the
upload the completed project to eClass for grading) will start.

∗ The time limit is strict: as soon as the timer expires, eClass will disable the submission.

Therefore, you are solely responsible for leaving enough time (≈ 10 minutes) to export the
completed Java project and upload/submit the archive (.zip) file to eClass.

– Submission for Grading:

• Unlike your labs, submission (of an Eclipse Java archive .zip file) for this programming test must
be through the B & E eClass site .

• It is your sole responsibility for making sure that the correct version of project archive file is
submitted. Before you click on the submit button on eClass, you should re-download the
archive file and make sure it is the right version to be graded. No excuses or submissions will be
accepted after your attempt times out.

• Email attachments may only be accepted:

∗ if it is with a reason judged as valid by your instructor (e.g., running out of time is not
a valid reason as you should have allocated enough time out of the given 90 minutes to
complete the submission); and

∗ if it is sent within 5 minutes after your attempt end time (as logged by eClass).

• When accepted, there will be a 15% penalty.

1

– Programming Requirements

1. You are only allowed to use primitive arrays (e.g., int[], String[], Facility[]) for imple-
menting classes and methods to solve problems related lists/collections.

Any use of a Java library class or method is forbidden (that is, use selections and loops to build
your solution from scratch instead):

• Some examples of forbidden classes/methods: Arrays class (e.g., Arrays.copyOf), System
class (e.g., System.arrayCopy), ArrayList class, String class (e.g., substring), Math class.

• The use of some library classes does not require an import statement, but these classes are
also forbidden to be used.

• Here are the exceptions (library methods which you are allowed to use if needed):

∗ String class (equals, format)

You will receive a 30% penalty if this requirement is violated.

2. If your submitted project contains any compilation errors (i.e., syntax errors or type errors), TAs
will attempt to fix them (if they are quick to fix); once the revised submission is graded, your
submission will receive a 30% penalty on the resulting marks (e.g., if the revised submission
received 50 marks, then the final marks for your test would be 30 marks).

2 Format

The format of this programming test will be identical to that of your Lab1: given a JUnit test class
containing compilation errors begin with, derive, declare, and implement classes and methods in the model
package. You will not be asked to build console applications for grading.

– The model package is empty (to be added classes derived from the given JUnit tests).

– The junit tests package contains a collection of JUnit tests suggesting the required classes and
methods.

3 Grading

For this programming test, you will also be graded by an additional list of Junit tests (e.g., you are
given 5 tests, and there are another additional five tests not given, and your submission will be graded
by all 10 tests).

Therefore, it is up to you to test your program with extra inputs by writing more JUnit tests. You
can always add a new test by copying, pasting, and modifying a test give to you.

4 How the Test Should be Tackled

– Your expected workflow should be:

1. Step 1: Eliminate compilation errors. Declare all the required classes and methods (returning
default values if necessary), so that the project contains no compilation errors (i.e., no red crosses
shown on the Eclipse editor). See Steps 1.1 to 1.3 of Section 2.2 in the written notes Inferring
Classes from JUnit Tests.

2. Step 2: Pass all unit tests. Add private attributes and complete the method implementations
accordingly, so that executing all tests result in a green bar.

If necessary, you are free to declare (private or public) helper methods.

– It is critical that you complete Step 1 first, so that you will not receive a penalty for
submitting a project containing compilation errors.

2

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Inferring_Classes_from_JUnit.pdf

5 Rationales: Grading Standard & Time Constraint

The two most important learning outcome of this course are:

1. Computational thinking (for which you build through labs and assessed by written tests and the exam)

2. Being able to write runnable programs (for which you are assessed through computer tests)

When you write an essay, if there are grammatical mistakes, it can still be interpreted by a human.
Computer programs are unlike essays: when your program contains compile-time syntax or type errors, it
just cannot be run, end of story. When a computer program cannot be run, its runtime behaviour is simply
unknown; and this is particularly the case when your program contains if-statements and loops.

When you land a job upon graduation, you would not expect your supervisor or colleagues to read your
code that does not run, because it does not even compile, would you? True, you’re still learning. But it is
exactly this mind set that restricts your potential of becoming a competent programmer. This is already
your third programming course. If we want to train you to be a competent programmer, NOW is the time
to enforce the strict (but justifiable) standard.

Why is the time constraint? Working under stress is unavoidable. Your future programming interviews
for jobs will expect you to do the same: given problems, program your solutions in front of a work station or
a whiteboard within some (short) set time limit. More critically, after landing a job, whenever being called
upon by your perspective workplace supervisor for some customer-reported bugs, most likely they need to be
fixed within a short time interval. Arguably, not being able to perform well under stress can be a indication
of a lack of enough practice, which is surely unpleasant at first but also suggests how you can improve your
skills fundamentally.

6 Coverage for the Test

– Object Oriented Programming

Note. There will not be any written questions, but you may review your instructor’s lecture materials
to clarify the concepts.

– Review Tutorial Series: Part 1 and Part 2

– Exceptions will not be covered.

– Required Written Notes:

• Inferring Classes from JUnit Tests [Pdf]

• Manipulating Multi-Valued, Reference-Typed Attributes [Pdf]

– The concepts about Github, remote labs, and terminal commands are not covered in the test.

7 Study Tips for the Test

– The actual test will require methods to be implemented with object creations, method calls, and loops
(possibly embedded with selections).

– Finish the given example test (for as many times as needed) to familiarize yourself with the
workflow of the test.

– Review examples covered in the tutorial videos, lectures, and written notes. Make modifications to
the example test accordingly by adding more methods and tests. For example, some methods in the
actual test will be at the similar difficulty level as the getPointsInQuadrantI method as explained in
the required written notes.

3

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Tracing_PointCollectorTester.pdf

8 Example Test

– An example test is made available under the Programming Tests section on the B & E eClass
site . You can attempt this test for as many times as you wish.

This example test will be closed for submissions shortly before the actual test starts (i.e., 14:00 EST
on Thursday, October 7).

– It is important to note that these questions are meant for familiarizing yourself with the format and
workflow of the test, and they represent only as an example: you are expected to study all materials
as listed in Section 6.

– The level of difficulty of the actual test will be somewhere between the example test and Lab1.

4

	Policies
	Format
	Grading
	How the Test Should be Tackled
	Rationales: Grading Standard & Time Constraint
	Coverage for the Test
	Study Tips for the Test
	Example Test

