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What is a Compiler? (1)
A software system that automatically translates/transforms
input/source programs (written in one language) to
output/target programs (written in another language).
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Language
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Language

passed to generates
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encoded 
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encoded 
into

○ Semantic Domain : context with its own vocabulary and meanings
e.g., OO, database, predicates○ Source and target may be in different semantic domains.
e.g., Java programs to SQL relational database schemas/queries
e.g., C procedural programs to MISP assembly instructions
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What is a Compiler? (2)

● The idea about a compiler is extremely powerful:
You can turn anything to anything else,
as long as the following are clear about them:○ SYNTAX [ specifiable as CFGs ]○ SEMANTICS [ programmable as mapping functions ]

● Construction of a compiler should conform to good
software engineering principles .
○ Modularity & Information Hiding [ interacting components ]○ Single Choice Principle○ Design Patterns (e.g., composite, visitor)○ Regression Testing at different levels: e.g., Unit & Acceptance
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Compiler: Typical Infrastructure (1)

6 CHAPTER 1 Overview of Compilation

A traditional compiler improves the input program by making it directly
executable on some target machine. Other “compilers” improve their input
in different ways. For example, tpic is a program that takes the specifica-
tion for a drawing written in the graphics language pic and converts it into
LATEX; the “improvement” lies in LATEX’s greater availability and generality.
A source-to-source translator for c must produce code that is, in some mea-
sure, better than the input program; if it is not, why would anyone invoke it?

1.2 COMPILER STRUCTURE
A compiler is a large, complex software system. The community has been
building compilers since 1955, and over the years, we have learned many
lessons about how to structure a compiler. Earlier, we depicted a compiler as
a simple box that translates a source program into a target program. Reality,
of course, is more complex than that simple picture.

As the single-box model suggests, a compiler must both understand the
source program that it takes as input and map its functionality to the target
machine. The distinct nature of these two tasks suggests a division of labor
and leads to a design that decomposes compilation into two major pieces: a
front end and a back end.

Front End
IR

Back End

Compiler

TargetSource

Program Program

The front end focuses on understanding the source-language program. The
back end focuses on mapping programs to the target machine. This sep-
aration of concerns has several important implications for the design and
implementation of compilers.

The front end must encode its knowledge of the source program in some
structure for later use by the back end. This intermediate representation (ir)IR

A compiler uses some set of data structures to

represent the code that it processes. That form is

called an intermediate representation, or IR.

becomes the compiler’s definitive representation for the code it is translating.
At each point in compilation, the compiler will have a definitive represen-
tation. It may, in fact, use several different irs as compilation progresses,
but at each point, one representation will be the definitive ir. We think of
the definitive ir as the version of the program passed between independent
phases of the compiler, like the ir passed from the front end to the back end
in the preceding drawing.

In a two-phase compiler, the front end must ensure that the source program
is well formed, and it must map that code into the ir. The back end must map

○ FRON END:● Encodes: knowledge of the source language● Transforms: from the source to some IR (intermediate representation)
● Principle: meaning of the source must be preserved in the IR.○ BACK END:● Encodes knowledge of the target language● Transforms: from the IR to the target

Q. How many IRs needed for building a number of compilers:
JAVA-TO-C, EIFFEL-TO-C, JAVA-TO-PYTHON, EIFFEL-TO-PYTHON?
A. Two IRs suffice: One for OO; one for procedural.⇒ IR should be as language-independent as possible.
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Compiler: Typical Infrastructure (2)

8 CHAPTER 1 Overview of Compilation

languages producing the same ir and using a common back end. Both
scenarios assume that one ir can serve for several combinations of source
and target; in practice, both language-specific and machine-specific details
usually find their way into the ir.

Introducing an ir makes it possible to add more phases to compilation. The
compiler writer can insert a third phase between the front end and the back
end. This middle section, or optimizer, takes an ir program as its input andOptimizer

The middle section of a compiler, called an

optimizer, analyzes and transforms the IR to

improve it.

produces a semantically equivalent ir program as its output. By using the ir

as an interface, the compiler writer can insert this third phase with minimal
disruption to the front end and back end. This leads to the following compiler
structure, termed a three-phase compiler.

Front End
IR

Optimizer
IR

Back End

Compiler

TargetSource

Program Program

The optimizer is an ir-to-ir transformer that tries to improve the ir program
in some way. (Notice that these transformers are, themselves, compilers
according to our definition in Section 1.1.) The optimizer can make one or
more passes over the ir, analyze the ir, and rewrite the ir. The optimizer
may rewrite the ir in a way that is likely to produce a faster target program
from the back end or a smaller target program from the back end. It may
have other objectives, such as a program that produces fewer page faults or
uses less energy.

Conceptually, the three-phase structure represents the classic optimizing
compiler. In practice, each phase is divided internally into a series of passes.
The front end consists of two or three passes that handle the details of
recognizing valid source-language programs and producing the initial ir

form of the program. The middle section contains passes that perform dif-
ferent optimizations. The number and purpose of these passes vary from
compiler to compiler. The back end consists of a series of passes, each of
which takes the ir program one step closer to the target machine’s instruc-
tion set. The three phases and their individual passes share a common
infrastructure. This structure is shown in Figure 1.1.

In practice, the conceptual division of a compiler into three phases, a front
end, a middle section or optimizer, and a back end, is useful. The problems
addressed by these phases are different. The front end is concerned with
understanding the source program and recording the results of its analy-
sis into ir form. The optimizer section focuses on improving the ir form.

OPTIMIZER:○ An IR-to-IR transformer that aims at “improving” the output of
front end, before passing it as input of the back end.○ Think of this transformer as attempting to discover an “optimal”
solution to some computational problem.
e.g., runtime performance, static design

Q. Behaviour of the target program predicated upon?
1. Meaning of the source preserved in IR?
2. IR-to-IR transformation of the optimizer semantics-preserving?
3. Meaning of IR preserved in the generated target?

(1) – (3) necessary & sufficient for the soundness of a compiler.
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Example Compiler One
● Consider a conventional compiler which turns

a C-like program into executable machine instructions.● The source (C-like program) and target (machine instructions)
are at different levels of abstraction :○ C-like program is like “high-level” specification.○ Macine instructions are the low-level, efficient implementation.

1.3 Overview of Translation 9
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n FIGURE 1.1 Structure of a Typical Compiler.

The back end must map the transformed ir program onto the bounded
resources of the target machine in a way that leads to efficient use of those
resources.

Of these three phases, the optimizer has the murkiest description. The term
optimization implies that the compiler discovers an optimal solution to some
problem. The issues and problems that arise in optimization are so com-
plex and so interrelated that they cannot, in practice, be solved optimally.
Furthermore, the actual behavior of the compiled code depends on interac-
tions among all of the techniques applied in the optimizer and the back end.
Thus, even if a single technique can be proved optimal, its interactions with
other techniques may produce less than optimal results. As a result, a good
optimizing compiler can improve the quality of the code, relative to an unop-
timized version. However, an optimizing compiler will almost always fail to
produce optimal code.

The middle section can be a single monolithic pass that applies one or more
optimizations to improve the code, or it can be structured as a series of
smaller passes with each pass reading and writing ir. The monolithic struc-
ture may be more efficient. The multipass structure may lend itself to a less
complex implementation and a simpler approach to debugging the compiler.
It also creates the flexibility to employ different sets of optimization in dif-
ferent situations. The choice between these two approaches depends on the
constraints under which the compiler is built and operates.

1.3 OVERVIEW OF TRANSLATION
To translate code written in a programming language into code suitable for
execution on some target machine, a compiler runs through many steps.
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Example Compiler One:
Scanner vs. Parser vs. Optimizer

Scanner
Source Program

(seq. of characters) seq. of tokens Parser AST1

Lexical Analysis Syntactic Analysis

ASTn… Target Program

Semantic Analysis

pretty printed

● The same input program may be treated differently:
1. As a character sequence [ subject to lexical analysis ]
2. As a token sequence [ subject to syntactic analysis ]
3. As a abstract syntax tree (AST) [ subject to semantic analysis ]
● (1) & (2) are routine tasks of lexical/grammar rule specification.
● (3) is where the most fun is about writing a compiler:

A series of semantics-preserving AST-to-AST transformations.
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Example Compiler One: Scanner
● The source program is treated as a sequence of characters.● A scanner performs lexical analysis on the input character

sequence and produces a sequence of tokens.● ANALOGY: Tokens are like individual words in an essay.⇒ Invalid tokens ≈ Misspelt words
e.g., a token for a useless delimiter: e.g., space, tab, new line
e.g., a token for a useful delimiter: e.g., (, ), {, }, ,
e.g., a token for an identifier (for e.g., a variable, a function)
e.g., a token for a keyword (e.g,. int, char, if, for, while)
e.g., a token for a number (for e.g., 1.23, 2.46)
Q. How to specify such pattern pattern of characters?
A. Regular Expressions (REs)
e.g., RE for keyword while [ while ]
e.g., RE for an identifier [ [a-zA-Z][a-zA-Z0-9_]* ]
e.g., RE for a white space [ [ \t\r]+ ]
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Example Compiler One: Parser
● A parser’s input is a sequence of tokens (by some scanner).
● A parser performs syntactic analysis on the input token

sequence and produces an abstract syntax tree (AST).● ANALOGY: ASTs are like individual sentences in an essay.⇒ Tokens not parseable into a valid AST ≈ Grammatical errors
Q. An essay with no speling and grammatical errors good enough?
A. No, it may talk about non-sense (sentences in wrong contexts).⇒ An input program with no lexical/syntactic errors should still be

subject to semantic analysis (e.g., type checking, code optimization).

Q.: How to specify such pattern pattern of tokens?
A.: Context-Free Grammars (CFGs)

e.g., CFG (with terminals and non-terminals) for a while-loop:
WhileLoop ∶∶= WHILE LPAREN BoolExpr RPAREN LCBRAC Impl RCBRAC
Impl ∶∶=� Instruction SEMICOL Impl
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Example Compiler One: Optimizer
● Consider an input AST which has the pretty printing:

b := . . . ; c := . . . ; a := . . .
across i |..| n is i

loop
read d

a := a * 2 * b * c * d

end

Q. AST of above program optimized for performance?
A. No ∵ values of 2, b, c stay invariant within the loop.● An optimizer may transform AST like above into:

b := . . . ; c := . . . ; a := . . .
temp := 2 * b * c

across i |..| n is i

loop
read d

a := a * d

end
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Example Compiler Two
● Consider a compiler which turns a Domain-Specific Language

(DSL) of classes & predicates into a SQL database.● The input/source contains 2 parts:○ DATA MODEL: classes and associations (client-supplier relations)
e.g., data model of a Hotel Reservation System:

Room

AllocationHotel
allocations

* 
host

1 

Reservation
reservations

*seq 
host

1 host
1 

rooms
*seq 

room
0..1 

allocations
* 

room
0..1 

reservations
*seq 

Staff employees
*seq 

consultants
*seq employers

*seq

clients
* 

mentor
0..1

mentee
0..1 

Account Travellerowner
1 

account
0..1 

registered
* 

reglist
* 

License

permit
1 

licensee
1 

○ BEHAVIOURAL MODEL: update methods specified as predicates
11 of 18



Example Compiler Two: Mapping Data
class A {
attributes
s: string
as: set(A . b) [*] }

class B {
attributes
is: set (int)
b: B . as }

● Each class is turned into a class table:○ Column oid stores the object reference. [ PRIMARY KEY ]○ Implementation strategy for attributes:
SINGLE-VALUED MULTI-VALUED

PRIMITIVE-TYPED column in class table collection table
REFERENCE-TYPED association table

● Each collection table:○ Column oid stores the context object.○ 1 column stores the corresponding primitive value or oid.● Each association table:○ Column oid stores the association reference.○ 2 columns store oid’s of both association ends. [ FOREIGN KEY ]
12 of 18



Example Compiler Two: Input/Source
● Consider a valid input/source program:

class Account {
attributes
owner: Traveller . account

balance: int
}

class Traveller {
attributes
name: string
reglist: set(Hotel . registered)[*]

}

class Hotel {
attributes
name: string
registered: set(Traveller . reglist)[*]

methods
register {

t? : extent(Traveller)
& t? /: registered

==>
registered := registered \/ {t?}

|| t?.reglist := t?.reglist \/ {this}
}

}

● How do you specify the scanner and parser accordingly?
13 of 18



Example Compiler Two: Output/Target

● Class associations are compiled into database schemas.
CREATE TABLE ‘Account‘(

‘oid‘ INTEGER AUTO_INCREMENT,‘balance‘ INTEGER,
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Traveller‘(
‘oid‘ INTEGER AUTO_INCREMENT,‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Hotel‘(
‘oid‘ INTEGER AUTO_INCREMENT,‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Account_owner_Traveller_account‘(
‘oid‘ INTEGER AUTO_INCREMENT, ‘owner‘ INTEGER, ‘account‘ INTEGER,
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Traveller_reglist_Hotel_registered‘(
‘oid‘ INTEGER AUTO_INCREMENT, ‘reglist‘ INTEGER, ‘registered‘ INTEGER,
PRIMARY KEY (‘oid‘));

● Predicate methods are compiled into stored procedures.
CREATE PROCEDURE ‘Hotel_register‘(IN ‘this?‘ INTEGER, IN ‘t?‘ INTEGER)

BEGIN
...

END

14 of 18



Example Compiler Two: Mapping Behaviour
● Challenge: Transform the OO dot notation into table queries.

e.g., The AST corresponding to the following dot notation
(in context of class Account, retrieving the owner’s list of registrations)

this.owner.reglist

may be transformed into the following (nested) table lookups:
SELECT (VAR ‘reglist‘)

(TABLE ‘Hotel_registered_Traveller_reglist‘)
(VAR ‘registered‘ = (SELECT (VAR ‘owner‘)

(TABLE ‘Account_owner_Traveller_account‘)
(VAR ‘owner‘ = VAR ‘this‘)))

● At the database level:○ Maintaining a large amount of data is efficient○ Specifying data and updates is tedious & error-prone.○ RESOLUTIONS:
● Define a DSL supporting the right level of abstraction for specification● Implement a DSL-TO-SQL compiler.
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Beyond this lecture . . .

● Read Chapter 1 of EAC2 to find out more about Example
Compiler One

● Read this paper to find out more about Example Compiler Two:
http://dx.doi.org/10.4204/EPTCS.105.8

16 of 18

http://dx.doi.org/10.4204/EPTCS.105.8


Index (1)

What is a Compiler? (1)

What is a Compiler? (2)

Compiler: Typical Infrastructure (1)

Compiler: Typical Infrastructure (2)

Example Compiler One
Example Compiler One:
Scanner vs. Parser vs. Optimizer

Example Compiler One: Scanner

Example Compiler One: Parser

Example Compiler One: Optimizer

Example Compiler Two
17 of 18



Index (2)
Example Compiler Two: Mapping Data

Example Compiler Two: Input/Source

Example Compiler Two: Output/Target

Example Compiler Two: Mapping Behaviour

Beyond this lecture. . .

18 of 18



Scanner: Lexical Analysis
Readings: EAC2 Chapter 2

EECS4302 M:
Compilers and Interpreters

Winter 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Scanner in Context

○ Recall:

Scanner
Source Program

(seq. of characters) seq. of tokens Parser AST1

Lexical Analysis Syntactic Analysis

ASTn… Target Program

Semantic Analysis

pretty printed

○ Treats the input programas as a a sequence of characters○ Applies rules recognizing character sequences as tokens
[ lexical analysis ]○ Upon termination:

● Reports character sequences not recognizable as tokens● Produces a a sequence of tokens○ Only part of compiler touching every character in input program.○ Tokens recognizable by scanner constitute a regular language .
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Scanner: Formulation & Implementation

42 CHAPTER 2 Scanners

Review Questions
1. Recall the RE for a six-character identifier, written using a finite closure.

([A. . . Z] | [a. . . z]) ([A. . . Z] | [a. . . z] | [0. . . 9])5

Rewrite it in terms of the three basic RE operations: alternation,
concatenation, and closure.

2. In PL/I, the programmer can insert a quotation mark into a string by
writing two quotation marks in a row. Thus, the string

The quotation mark, ", should be typeset in italics

would be written in a PL/I program as

"The quotation mark, "", should be typeset in italics."

Design an RE and an FA to recognize PL/I strings. Assume that strings
begin and end with quotation marks and contain only symbols drawn
from an alphabet, designated as 6. Quotation marks are the only
special case.

2.4 FROM REGULAR EXPRESSION TO SCANNER
The goal of our work with finite automata is to automate the derivation
of executable scanners from a collection of res. This section develops the
constructions that transform an re into an fa that is suitable for direct imple-
mentation and an algorithm that derives an re for the language accepted by
an fa. Figure 2.3 shows the relationship between all of these constructions.

To present these constructions, we must distinguish between deterministic

fas, or dfas, and nondeterministic fas, or nfas, in Section 2.4.1. Next,

Kleene’s Construction

DFA

NFA

RE DFA Minimization

Code for
a scanner

Subset
Construction

Thompson’s
Construction

n FIGURE 2.3 The Cycle of Constructions.3 of 68



Alphabets

● An alphabet is a finite, nonempty set of symbols.
○ The convention is to write ⌃ , possibly with a informative

subscript, to denote the alphabet in question.
e.g., ⌃eng = {a,b, . . . ,z,A,B, . . . ,Z} [ the English alphabet ]
e.g., ⌃bin = {0,1} [ the binary alphabet ]
e.g., ⌃dec = {d � 0 ≤ d ≤ 9} [ the decimal alphabet ]
e.g., ⌃key [ the keyboard alphabet ]

● Use either a set enumeration or a set comprehension to define
your own alphabet.
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Strings (1)
● A string or a word is finite sequence of symbols chosen from

some alphabet .
e.g., Oxford is a string from the English alphabet ⌃eng

e.g., 01010 is a string from the binary alphabet ⌃bin

e.g., 01010.01 is not a string from ⌃bin

e.g., 57 is a string from the binary alphabet ⌃dec● It is not correct to say, e.g., 01010 ∈ ⌃bin [Why?]● The length of a string w , denoted as �w �, is the number of
characters it contains.○ e.g., �Oxford � = 6○ ✏ is the empty string (�✏� = 0) that may be from any alphabet.

● Given two strings x and y , their concatenation , denoted as xy ,
is a new string formed by a copy of x followed by a copy of y .○ e.g., Let x = 01101 and y = 110, then xy = 01101110○ The empty string ✏ is the identity for concatenation :

✏w = w = w✏ for any string w
5 of 68



Strings (2)
● Given an alphabet ⌃, we write ⌃k , where k ∈ N, to denote the

set of strings of length k from ⌃

⌃k = {w � w is from ⌃ ∧ �w � = k}
○ e.g., {0,1}2 = {00, 01, 10, 11}
○ ⌃0 is {✏} for any alphabet ⌃

● ⌃+ is the set of nonempty strings from alphabet ⌃

⌃+ = ⌃1 ∪⌃2 ∪⌃3 ∪ . . . = {w � w ∈ ⌃k ∧ k > 0} = �
k>0 ⌃k

● ⌃∗ is the set of strings of all possible lengths from alphabet ⌃

⌃∗ = ⌃+ ∪ {✏}
6 of 68



Review Exercises: Strings

1. What is �{a,b, . . . ,z}5�?
2. Enumerate, in a systematic manner, the set {a,b,c}4.
3. Explain the difference between ⌃ and ⌃1.

⌃ is a set of symbols; ⌃1 is a set of strings of length 1.
4. Prove or disprove: ⌃1 ⊆ ⌃2 ⇒ ⌃∗1 ⊆ ⌃∗2
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Languages
● A language L over ⌃ (where �⌃� is finite) is a set of strings s.t.

L ⊆ ⌃∗● When useful, include an informative subscript to denote the
language L in question.○ e.g., The language of valid Java programs

LJava = {prog � prog ∈ ⌃∗key ∧ prog compiles in Eclipse}
○ e.g., The language of strings with n 0’s followed by n 1’s (n ≥ 0)

{✏,01,0011,000111, . . .} = {0n1n � n ≥ 0}
○ e.g., The language of strings with an equal number of 0’s and 1’s

{✏,01,10,0011,0101,0110,1100,1010,1001, . . .}= {w � # of 0’s in w = # of 1’s in w}
8 of 68



Review Exercises: Languages
1. Use set comprehensions to define the following languages. Be

as formal as possible.○ A language over {0,1} consisting of strings beginning with some
0’s (possibly none) followed by at least as many 1’s.○ A language over {a,b,c} consisting of strings beginning with
some a’s (possibly none), followed by some b’s and then some c’s,
s.t. the # of a’s is at least as many as the sum of #’s of b’s and c’s.

2. Explain the difference between the two languages {✏} and �.
3. Justify that ⌃∗, �, and {✏} are all languages over ⌃.
4. Prove or disprove: If L is a language over ⌃, and ⌃2 ⊇ ⌃, then L

is also a language over ⌃2.
Hint: Prove that ⌃ ⊆ ⌃2 ∧ L ⊆ ⌃∗ ⇒ L ⊆ ⌃∗2

5. Prove or disprove: If L is a language over ⌃, and ⌃2 ⊆ ⌃, then L

is also a language over ⌃2.
Hint: Prove that ⌃2 ⊆ ⌃ ∧ L ⊆ ⌃∗ ⇒ L ⊆ ⌃∗2
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Problems

● Given a language L over some alphabet ⌃, a problem is the
decision on whether or not a given string w is a member of L.

w ∈ L

Is this equivalent to deciding w ∈ ⌃∗? [ No ]
● e.g., The Java compiler solves the problem of deciding if the

string of symbols typed in the Eclipse editor is a member of
LJava (i.e., set of Java programs with no syntax and type errors).
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Regular Expressions (RE): Introduction

● Regular expressions (RegExp’s) are:

○ A type of language-defining notation
● This is similar to the equally-expressive DFA, NFA, and ✏-NFA.

○ Textual and look just like a programming language
● e.g., 01* + 10* denotes L = {0x � x ∈ {1}∗} ∪ {1x � x ∈ {0}∗}● e.g., (0*10*10*)*10* denotes L = {w � w has odd # of 1’s}● This is dissimilar to the diagrammatic DFA, NFA, and ✏-NFA.● RegExp’s can be considered as a “user-friendly” alternative to NFA for

describing software components. [e.g., text search]● Writing a RegExp is like writing an algebraic expression, using the
defined operators, e.g., ((4 + 3) * 5) % 6

● Despite the programming convenience they provide, RegExp’s,
DFA, NFA, and ✏-NFA are all provably equivalent .
○ They are capable of defining all and only regular languages.
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RE: Language Operations (1)

● Given ⌃ of input alphabets, the simplest RegExp is s ∈ ⌃1.○ e.g., Given ⌃ = {a,b,c}, expression a denotes the language
consisting of a single string a.

● Given two languages L,M ∈ ⌃∗, there are 3 operators for
building a larger language out of them:
1. Union

L ∪M = {w � w ∈ L ∨w ∈M}
In the textual form, we write + for union.

2. Concatenation
LM = {xy � x ∈ L ∧ y ∈M}

In the textual form, we write either . or nothing at all for
concatenation.
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RE: Language Operations (2)

3. Kleene Closure (or Kleene Star)

L
∗ =�

i≥0
L

i

where
L

0 = {✏}
L

1 = L

L
2 = {x1x2 � x1 ∈ L ∧ x2 ∈ L}

. . .
L

i = { x1x2 . . .xi���������������������������������������
i repetations

� xj ∈ L ∧ 1 ≤ j ≤ i}
. . .

In the textual form, we write * for closure.
Question: What is �Li � (i ∈ N)? [ �L�i ]
Question: Given that L = {0}∗, what is L

∗? [ L ]
13 of 68



RE: Construction (1)
We may build regular expressions recursively :
● Each (basic or recursive) form of regular expressions denotes a

language (i.e., a set of strings that it accepts).● Base Case:○ Constants ✏ and � are regular expressions.

L( ✏ ) = {✏}
L( � ) = �

○ An input symbol a ∈ ⌃ is a regular expression.

L( a ) = {a}
If we want a regular expression for the language consisting of only
the string w ∈ ⌃∗, we write w as the regular expression.○ Variables such as L, M, etc., might also denote languages.

14 of 68



RE: Construction (2)
● Recursive Case Given that E and F are regular expressions:○ The union E + F is a regular expression.

L( E + F ) = L(E) ∪ L(F)
○ The concatenation EF is a regular expression.

L( EF ) = L(E)L(F)
○ Kleene closure of E is a regular expression.

L( E
∗ ) = (L(E))∗

○ A parenthesized E is a regular expression.

L( (E) ) = L(E)
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RE: Construction (3)

Exercises:
● �L [ �L = � = L� ]
● �∗ �∗ = �0 ∪�1 ∪�2 ∪ . . .= {✏} ∪� ∪� ∪ . . .= {✏}
● �∗L [ �∗L = L = L�∗ ]
● � + L [ �+L = L = �+L ]
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RE: Construction (4)

Write a regular expression for the following language

{ w � w has alternating 0’s and 1’s }
● Would (01)∗ work? [alternating 10’s?]
● Would (01)∗ + (10)∗ work? [starting and ending with 1?]
● 0(10)∗ + (01)∗ + (10)∗ + 1(01)∗
● It seems that:○ 1st and 3rd terms have (10)∗ as the common factor.○ 2nd and 4th terms have (01)∗ as the common factor.
● Can we simplify the above regular expression?
● (✏ + 0)(10)∗ + (✏ + 1)(01)∗
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RE: Review Exercises
Write the regular expressions to describe the following languages:● { w � w ends with 01 }
● { w � w contains 01 as a substring }
● { w � w contains no more than three consecutive 1’s }
● { w � w ends with 01 ∨w has an odd # of 0’s }
● �������������

sx .y

������������������

s ∈ {+,−, ✏}∧ x ∈ ⌃∗
dec∧ y ∈ ⌃∗
dec∧ ¬(x = ✏ ∧ y = ✏)

�������������
● ���������

xy

�������������
x ∈ {0,1}∗ ∧ y ∈ {0,1}∗∧ x has alternating 0’s and 1’s∧ y has an odd # 0’s and an odd # 1’s

���������
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RE: Operator Precedence

● In an order of decreasing precedence:○ Kleene star operator○ Concatenation operator○ Union operator
● When necessary, use parentheses to force the intended order

of evaluation.
● e.g.,○ 10∗ vs. (10)∗ [10∗ is equivalent to 1(0∗)]○ 01∗ + 1 vs. 0(1∗ + 1) [01∗ + 1 is equivalent to (0(1∗)) + (1)]○ 0 + 1∗ vs. (0 + 1)∗ [0 + 1∗ is equivalent to (0) + (1∗)]
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DFA: Deterministic Finite Automata (1.1)
● A deterministic finite automata (DFA) is a finite state machine

(FSM) that accepts (or recognizes) a pattern of behaviour.○ For our purpose of this course, we study patterns of strings (i.e.,
how alphabet symbols are ordered).○ Unless otherwise specified, we consider strings in {0,1}∗○ Each pattern contains the set of satisfying strings.○ We describe the patterns of strings using set comprehensions:
● { w � w has an odd number of 0’s }● { w � w has an even number of 1’s }
● �w � w ≠ ✏∧ w has equal # of alternating 0’s and 1’s

�
● { w � w contains 01 as a substring }
● �w � w has an even number of 0’s∧ w has an odd number of 1’s

�
● Given a pattern description, we design a DFA that accepts it.○ The resulting DFA can be transformed into an executable program.
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DFA: Deterministic Finite Automata (1.2)
The transition diagram below defines a DFA which accepts

exactly the language

{ w � w has an odd number of 0’s }

s0:
even
0’s

1 1

0

s1:
odd 
0’s

0○ Each incoming or outgoing arc (called a transition ) corresponds
to an input alphabet symbol.○ s0 with an unlabelled incoming transition is the start state .

○ s3 drawn as a double circle is a final state .○ All states have outgoing transitions covering {0,1}.
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DFA: Deterministic Finite Automata (1.3)
The transition diagram below defines a DFA which accepts

exactly the language

�w � w ≠ ✏∧ w has equal # of alternating 0’s and 1’s
�

s0:
empty 
string

s1:
more 
0’s

s2:
more 
1’s

0

1

1

0

0

1
s4:

equal
(10)+

s5:
not 

alter-
nating

0

1

0, 1

s3:
equal
(01)+

1

0
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Review Exercises: Drawing DFAs

Draw the transition diagrams for DFAs which accept other
example string patterns:
● { w � w has an even number of 1’s }
● { w � w contains 01 as a substring }
● �w � w has an even number of 0’s∧ w has an odd number of 1’s

�
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DFA: Deterministic Finite Automata (2.1)

A deterministic finite automata (DFA) is a 5-tuple

M = (Q, ⌃, �, q0, F)
○ Q is a finite set of states.○ ⌃ is a finite set of input symbols (i.e., the alphabet).○ � ∶ (Q ×⌃)→Q is a transition function

� takes as arguments a state and an input symbol and returns a state.○ q0 ∈ Q is the start state.○ F ⊆ Q is a set of final or accepting states.
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DFA: Deterministic Finite Automata (2.2)

● Given a DFA M = (Q, ⌃, �, q0, F):
○ We write L(M) to denote the language of M : the set of strings

that M accepts.○ A string is accepted if it results in a sequence of transitions:
beginning from the start state and ending in a final state.

L(M) = � a1a2 . . .an �
1 ≤ i ≤ n ∧ ai ∈ ⌃ ∧ �(qi−1,ai) = qi ∧ qn ∈ F

�
○ M rejects any string w �∈ L(M).

● We may also consider L(M) as concatenations of labels from
the set of all valid paths of M ’s transition diagram; each such
path starts with q0 and ends in a state in F .
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DFA: Deterministic Finite Automata (2.3)
● Given a DFA M = (Q, ⌃, �, q0, F), we may simplify the

definition of L(M) by extending � (which takes an input symbol)
to �̂ (which takes an input string).

�̂ ∶ (Q ×⌃∗)→Q

We may define �̂ recursively, using �!
�̂(q, ✏) = q

�̂(q,xa) = �( �̂(q,x),a )
where q ∈ Q, x ∈ ⌃∗, and a ∈ ⌃● A neater definition of L(M) : the set of strings w ∈ ⌃∗ such that
�̂(q0,w) is an accepting state.

L(M) = {w � w ∈ ⌃∗ ∧ �̂(q0,w) ∈ F}
● A language L is said to be a regular language , if there is some

DFA M such that L = L(M).
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DFA: Deterministic Finite Automata (2.4)

s0:
even
0’s

1 1

0

s1:
odd 
0’s

0

We formalize the above DFA as M = (Q, ⌃, �, q0, F), where
● Q = {s0,s1}● ⌃ = {0,1}
● � = {((s0,0),s1), ((s0,1),s0), ((s1,0),s0), ((s1,1),s1)}

state � input 0 1
s0 s1 s0
s1 s0 s1● q0 = s0● F = {s1}
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DFA: Deterministic Finite Automata (2.5.1)

s0:
empty 
string

s1:
more 
0’s

s2:
more 
1’s

0

1

1

0

0

1
s4:

equal
(10)+

s5:
not 

alter-
nating

0

1

0, 1

s3:
equal
(01)+

1

0

We formalize the above DFA as M = (Q, ⌃, �, q0, F), where
● Q = {s0,s1,s2,s3,s4,s5}● ⌃ = {0,1}
● q0 = s0● F = {s3,s4}
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DFA: Deterministic Finite Automata (2.5.2)

s0:
empty 
string

s1:
more 
0’s

s2:
more 
1’s

0

1

1

0

0

1
s4:

equal
(10)+

s5:
not 

alter-
nating

0

1

0, 1

s3:
equal
(01)+

1

0

● � =
state � input 0 1

s0 s1 s2
s1 s5 s3
s2 s4 s5
s3 s1 s5
s4 s5 s2
s5 s5 s5
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Review Exercises: Formalizing DFAs

Formalize DFAs (as 5-tuples) for the other example string patterns
mentioned:
● { w � w has an even number of 0’s }
● { w � w contains 01 as a substring }
● �w � w has an even number of 0’s∧ w has an odd number of 1’s

�
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NFA: Nondeterministic Finite Automata (1.1)
Problem: Design a DFA that accepts the following language:

L = { x01 � x ∈ {0,1}∗ }
That is, L is the set of strings of 0s and 1s ending with 01.

q0

1

0 q2q1 1

0

0
1

Given an input string w , we may simplify the above DFA by:○ nondeterministically treating state q0 as both:
● a state ready to read the last two input symbols from w● a state not yet ready to read the last two input symbols from w○ substantially reducing the outgoing transitions from q1 and q2

Compare the above DFA with the DFA in slide 39.31 of 68



NFA: Nondeterministic Finite Automata (1.2)
● A non-deterministic finite automata (NFA) that accepts the

same language:

q0

0, 1

0 q2q1 1

● How an NFA determines if an input 00101 should be processed:
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NFA: Nondeterministic Finite Automata (2)

● A nondeterministic finite automata (NFA) , like a DFA, is a
FSM that accepts (or recognizes) a pattern of behaviour.

● An NFA being nondeterministic means that from a given state,
the same input label might corresponds to multiple transitions

that lead to distinct states.○ Each such transition offers an alternative path.○ Each alternative path is explored independently and in parallel.○ If there exists an alternative path that succeeds in processing the
input string, then we say the NFA accepts that input string.○ If all alternative paths get stuck at some point and fail to process
the input string, then we say the NFA rejects that input string.

● NFAs are often more succinct (i.e., fewer states) and easier to
design than DFAs.● However, NFAs are just as expressive as are DFAs.○ We can always convert an NFA to a DFA.
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NFA: Nondeterministic Finite Automata (3.1)

● A nondeterministic finite automata (NFA) is a 5-tuple

M = (Q, ⌃, �, q0, F)
○ Q is a finite set of states.○ ⌃ is a finite set of input symbols (i.e., the alphabet).○ � ∶ (Q ×⌃)→ P(Q) is a transition function

� takes as arguments a state and an input symbol and returns a set of
states.○ q0 ∈ Q is the start state.○ F ⊆ Q is a set of final or accepting states.

● What is the difference between a DFA and an NFA ?
○ The transition function � of a DFA returns a single state.○ The transition function � of an NFA returns a set of states.
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NFA: Nondeterministic Finite Automata (3.2)
● Given a NFA M = (Q, ⌃, �, q0, F), we may simplify the

definition of L(M) by extending � (which takes an input symbol)
to �̂ (which takes an input string).

�̂ ∶ (Q ×⌃∗)→ P(Q)
We may define �̂ recursively, using �!

�̂(q, ✏) = {q}
�̂(q,xa) = �{�(q′,a) � q′ ∈ �̂(q,x)}

where q ∈ Q, x ∈ ⌃∗, and a ∈ ⌃● A neater definition of L(M) : the set of strings w ∈ ⌃∗ such that
�̂(q0,w) contains at least one accepting state.

L(M) = {w � w ∈ ⌃∗ ∧ �̂(q0,w) ∩ F ≠ �}
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NFA: Nondeterministic Finite Automata (4)

q0

0, 1

0 q2q1 1

Given an input string 00101:
● Read 0: �( q0 ,0) = { q0 ,q1 }
● Read 0: �( q0 ,0) ∪ �(q1,0) = { q0 ,q1 } ∪� = { q0,q1 }
● Read 1: �( q0 ,1) ∪ �(q1,1) = { q0 } ∪ { q2 } = { q0 ,q2 }
● Read 0: �( q0 ,0) ∪ �(q2,0) = { q0,q1 } ∪� = { q0, q1 }
● Read 1: �(q0,1) ∪ �( q1 ,1) = { q0,q1 } ∪ { q2 } = { q0,q1, q2 }∵{ q0,q1,q2 } ∩ { q2 } ≠ �∴ 00101 is accepted
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DFA ≡ NFA (1)

● For many languages, constructing an accepting NFA is easier
than a DFA.● From each state of an NFA:○ Outgoing transitions need not cover the entire ⌃.○ An input symbol may non-deterministically lead to multiple states.

● In practice:○ An NFA has just as many states as its equivalent DFA does.○ An NFA often has fewer transitions than its equivalent DFA does.● In the worst case:○ While an NFA has n states, its equivalent DFA has 2n states.
● Nonetheless, an NFA is still just as expressive as a DFA.
○ Every language accepted by some NFA can also be accepted by

some DFA.

∀N ∶ NFA ● (∃D ∶ DFA ● L(D) = L(N))
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DFA ≡ NFA (2.2): Lazy Evaluation (1)
Given an NFA:

q0

0, 1

0 q2q1 1

Subset construction (with lazy evaluation) produces a DFA

transition table:
state � input 0 1

{q0} �(q0,0)= {q0,q1}
�(q0,1)= {q0}

{q0,q1}
�(q0,0) ∪ �(q1,0)= {q0,q1} ∪�= {q0,q1}

�(q0,1) ∪ �(q1,1)= {q0} ∪ {q2}= {q0,q2}
{q0,q2}

�(q0,0) ∪ �(q2,0)= {q0,q1} ∪�= {q0,q1}
�(q0,1) ∪ �(q2,1)= {q0} ∪�= {q0}
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DFA ≡ NFA (2.2): Lazy Evaluation (2)
Applying subset construction (with lazy evaluation), we arrive in
a DFA transition table:

state � input 0 1

{q0} {q0,q1} {q0}{q0,q1} {q0,q1} {q0,q2}{q0,q2} {q0,q1} {q0}
We then draw the DFA accordingly:

{q0}

1

0 {q0,q2}{q0,q1} 1

0

0
1

Compare the above DFA with the DFA in slide 31.
39 of 68



DFA ≡ NFA (2.2): Lazy Evaluation (3)
● Given an NFA N = (QN ,⌃N , �N ,q0,FN), often only a small

portion of the �P(QN)� subset states is reachable from {q0}.
ALGORITHM: ReachableSubsetStates

INPUT: q0 ∶ QN ; OUTPUT: Reachable ⊆ P(QN)
PROCEDURE:
Reachable := { {q0} }
ToDiscover := { {q0} }
while(ToDiscover ≠ �) {

choose S ∶ P(QN) such that S ∈ ToDiscover

remove S from ToDiscover

NotYetDiscovered :=( {�N(s,0) � s ∈ S} ∪ {�N(s,1) � s ∈ S} ) � Reachable
Reachable := Reachable ∪ NotYetDiscovered
ToDiscover := ToDiscover ∪ NotYetDiscovered

}

return Reachable

● RT of ReachableSubsetStates? [ O(2�QN �) ]
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✏-NFA: Examples (1)
Draw the NFA for the following two languages:
1.

�������������
xy

������������������

x ∈ {0,1}∗∧ y ∈ {0,1}∗∧ x has alternating 0’s and 1’s∧ y has an odd # 0’s and an odd # 1’s

�������������
2.

� w ∶ {0,1}∗ � w has alternating 0’s and 1’s∨ w has an odd # 0’s and an odd # 1’s �
3. �������������

sx .y

������������������

s ∈ {+,−, ✏}∧ x ∈ ⌃∗
dec∧ y ∈ ⌃∗
dec∧ ¬(x = ✏ ∧ y = ✏)

�������������
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✏-NFA: Examples (2)
�������������

sx .y

������������������

s ∈ {+,−, ✏}∧ x ∈ ⌃∗
dec∧ y ∈ ⌃∗
dec∧ ¬(x = ✏ ∧ y = ✏)

�������������

q0

0,1,…,9

q5q1
.

q2 q3
0,1,…,9

q4

0,1,…,9 .

0,1,…,9

✏✏,+,- ✏✏

From q0 to q1, reading a sign is optional: a plus or a minus, or
nothing at all (i.e., ✏).
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✏-NFA: Formalization (1)

An ✏-NFA is a 5-tuple

M = (Q, ⌃, �, q0, F)
○ Q is a finite set of states.○ ⌃ is a finite set of input symbols (i.e., the alphabet).○ � ∶ (Q × (⌃ ∪ {✏}))→ P(Q) is a transition function

� takes as arguments a state and an input symbol, or an empty string

✏, and returns a set of states.○ q0 ∈ Q is the start state.○ F ⊆ Q is a set of final or accepting states.
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✏-NFA: Formalization (2)

q0

0,1,…,9

q5q1
.

q2 q3
0,1,…,9

q4

0,1,…,9 .

0,1,…,9

✏✏,+,- ✏✏

Draw a transition table for the above NFA’s � function:
✏ +, - . 0 .. 9

q0 {q1} {q1} � �
q1 � � {q2} {q1,q4}
q2 � � � {q3}
q3 {q5} � � {q3}
q4 � � {q3} �
q5 � � � �
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✏-NFA: Epsilon-Closures (1)

● Given ✏-NFA N

N = (Q, ⌃, �, q0, F)
we define the epsilon closure (or ✏-closure ) as a function

ECLOSE ∶ Q→ P(Q)

● For any state q ∈ Q

ECLOSE(q) = {q} ∪ �
p∈�(q,✏)ECLOSE(p)
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✏-NFA: Epsilon-Closures (2)

q0 q6

q1

q3 q5

q4

✏✏

0,1

q2

✏✏

✏✏

1

✏✏

0
✏✏

1

ECLOSE(q0)= {�(q0, ✏) = {q1,q2}}{q0} ∪ ECLOSE(q1) ∪ ECLOSE(q2)= {ECLOSE(q1), �(q1, ✏) = {q3}, ECLOSE(q2), �(q2, ✏) = �}{q0} ∪ ( {q1} ∪ ECLOSE(q3) ) ∪ ( {q2} ∪� )= {ECLOSE(q3), �(q3, ✏) = {q5}}{q0} ∪ ( {q1} ∪ ( {q3} ∪ ECLOSE(q5) ) ) ∪ ( {q2} ∪ � )= {ECLOSE(q5), �(q5, ✏) = �}{q0} ∪ ( {q1} ∪ ( {q3} ∪ ( {q5} ∪� ) ) ) ∪ ( {q2} ∪ � )
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✏-NFA: Formalization (3)
● Given a ✏-NFA M = (Q, ⌃, �, q0, F), we may simplify the

definition of L(M) by extending � (which takes an input symbol)
to �̂ (which takes an input string).

�̂ ∶ (Q ×⌃∗)→ P(Q)
We may define �̂ recursively, using �!

�̂(q, ✏) = ECLOSE(q)
�̂(q,xa) = �{ ECLOSE(q′′) � q′′ ∈ �(q′,a) ∧ q

′ ∈ �̂(q,x) }
where q ∈ Q, x ∈ ⌃∗, and a ∈ ⌃● Then we define L(M) as the set of strings w ∈ ⌃∗ such that
�̂(q0,w) contains at least one accepting state.

L(M) = {w � w ∈ ⌃∗ ∧ �̂(q0,w) ∩ F ≠ �}
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✏-NFA: Formalization (4)

q0

0,1,…,9

q5q1
.

q2 q3
0,1,…,9

q4

0,1,…,9 .

0,1,…,9

✏✏,+,- ✏✏

Given an input string 5.6:
�̂(q0, ✏) = ECLOSE(q0) = {q0,q1}● Read 5: �(q0,5) ∪ �(q1,5) = � ∪ {q1,q4} = { q1,q4 }
�̂(q0,5) = ECLOSE(q1) ∪ ECLOSE(q4) = {q1} ∪ {q4} = {q1,q4}● Read .: �(q1, .) ∪ �(q4, .) = {q2} ∪ {q3} = { q2,q3 }
�̂(q0,5.) = ECLOSE(q2) ∪ ECLOSE(q3) = {q2} ∪ {q3,q5} = {q2,q3,q5}

● Read 6: �(q2,6) ∪ �(q3,6) ∪ �(q5,6) = {q3} ∪ {q3} ∪� = { q3 }
�̂(q0,5.6) = ECLOSE(q3) = {q3,q5} [5.6 is accepted ]
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DFA ≡ ✏-NFA: Subset Construction (1)
Subset construction (with lazy evaluation and epsilon closures )
produces a DFA transition table.

d ∈ 0 .. 9 s ∈ {+,−} .
{q0,q1} {q1,q4} {q1} {q2}{q1,q4} {q1,q4} � {q2,q3,q5}{q1} {q1,q4} � {q2}{q2} {q3,q5} � �{q2,q3,q5} {q3,q5} � �{q3,q5} {q3,q5} � �

For example, �({q0,q1},d) is calculated as follows: [d ∈ 0 .. 9]
�{ECLOSE(q) � q ∈ �(q0,d) ∪ �(q1,d)}= �{ECLOSE(q) � q ∈ �∪ {q1,q4}}= �{ECLOSE(q) � q ∈ {q1,q4}}= ECLOSE(q1) ∪ ECLOSE(q4)= {q1} ∪ {q4}= {q1,q4}
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DFA ≡ ✏-NFA: Subset Construction (2)

● Given an ✏=NFA N = (QN ,⌃N , �N ,q0,FN), by applying the
extended subset construction to it, the resulting DFA

D = (QD,⌃D, �D,qDstart
,FD) is such that:

⌃D = ⌃N

QD = { S � S ⊆ QN ∧ (∃w ∶ ⌃∗ ●S = �̂D(q0,w)) }
qDstart

= ECLOSE(q0)
FD = { S � S ⊆ QN ∧S ∩ FN ≠ � }
�D(S,a) = �{ ECLOSE(s′) � s ∈ S ∧ s

′ ∈ �N(s,a) } [ S ∈ QD ]
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Regular Expression to ✏-NFA

● Just as we construct each complex regular expression

recursively, we define its equivalent ✏-NFA recursively .
● Given a regular expression R, we construct an ✏-NFA E , such

that L(R) = L(E), with○ Exactly one accept state.○ No incoming arc to the start state.○ No outgoing arc from the accept state.
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Regular Expression to ✏-NFA
Base Cases:
● ✏

ε

a

(a)

(b)

(c)

● �

ε

a

(a)

(b)

(c)

● a [a ∈ ⌃]

ε

a

(a)

(b)

(c)
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Regular Expression to ✏-NFA
Recursive Cases: [R and S are RE’s]● R +S

(a)

(b)

(c)

R

S

R S

R

ε ε

εε

ε

ε

ε

ε ε

● RS

(a)

(b)

(c)

R

S

R S

R

ε ε

εε

ε

ε

ε

ε ε

● R
∗

(a)

(b)

(c)

R

S

R S

R

ε ε

εε

ε

ε

ε

ε ε
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Regular Expression to ✏-NFA: Examples (1.1)
● 0 + 1

ε

ε

ε

ε

0

1

ε

ε

ε

ε

0

1

ε

ε1

Start

(a)

(b)

(c)

0

1

ε ε

ε

ε
ε ε

εε

ε

0

1

ε ε

ε

ε
ε ε

ε

● (0 + 1)∗

ε

ε

ε

ε

0

1

ε

ε

ε

ε

0

1

ε

ε1

Start

(a)

(b)

(c)

0

1

ε ε

ε

ε
ε ε

εε

ε

0

1

ε ε

ε

ε
ε ε

ε

54 of 68



Regular Expression to ✏-NFA: Examples (1.2)
● (0 + 1)∗1(0 + 1)
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Minimizing DFA: Motivation

● Recall: Regular Expresion �→ ✏-NFA �→ DFA
● DFA produced by the subset construction (with lazy

evaluation) may not be minimum on its size of state.
● When the required size of memory is sensitive

(e.g., processor’s cache memory),
the fewer number of DFA states, the better.
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Minimizing DFA: Algorithm
ALGORITHM: MinimizeDFAStates

INPUT: DFA M = (Q, ⌃, �, q0, F)
OUTPUT: M

′
s.t. minimum |Q| and equivalent behaviour as M

PROCEDURE:
P := � /* refined partition so far */

T := { F, Q − F } /* last refined partition */

while (P ≠ T):

P := T

T := �
for(p ∈ P s.t. |p| > 1):

find the maximal S ⊆ p s.t. splittable(p, S)

if S ≠ � then
T := T ∪ {S, p − S}

else
T := T ∪ {p}

end

splittable(p,S) holds iff there is c ∈ ⌃ s.t.● Transition c leads all s ∈ S to states in the same partition p1.● Transition c leads some s ∈ p − S to a different partition p2 (p2 ≠ p1).
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Minimizing DFA: Examples

56 CHAPTER 2 Scanners

(a) DFA for “fee | fie”

e

e

e

i

f

s3

s0 s1

s2

s4 s5

Examines

Step Partition Set Char Action
Current

0 {{s3, s5}, {s0, s1, s2, s4} } — — —
1 {{s3, s5}, {s0, s1, s2, s4} } {s3, s5} all none

2 {{s3, s5}, {s0, s1, s2, s4} } {s0, s1, s2, s4} e split {s2, s4}
3 { {s3, s5}, {s0, s1}, {s2, s4} } {s0, s1} f split {s1}
4 { {s3, s5}, {s0}, {s1}, {s2, s4} } all all none

(b) Critical Steps in Minimizing the DFA

(c) The Minimal DFA (States Renumbered)

n FIGURE 2.11 Applying the DFA Minimization Algorithm.

are accepting states entered only by a transition on the letter e. Neither has
a transition that leaves the state. We would expect the dfa minimization
algorithm to discover this fact and replace them with a single state.

Figure 2.11b shows the significant steps that occur in minimizing this
dfa. The initial partition, shown as step 0, separates accepting states from
nonaccepting states. Assuming that the while loop in the algorithm iterates
over the sets of P in order, and over the characters in 6 = {e,f,i} in order,
then it first examines the set {s3,s5}. Since neither state has an exiting transi-
tion, the state does not split on any character. In the second step, it examines
{s0,s1,s2,s4}; on the character e, it splits {s2,s4} out of the set. In the third
step, it examines {s0,s1} and splits it around the character f. At that point,
the partition is { {s3,s5}, {s0}, {s1}, {s2,s4}}. The algorithm makes one final
pass over the sets in the partition, splits none of them, and terminates.

To construct the new dfa, we must build a state to represent each set in
the final partition, add the appropriate transitions from the original dfa, and
designate initial and accepting state(s). Figure 2.11c shows the result for this
example.
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(a) Original DFA

b

c

c b
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c

d0 d1

d2

d3

n FIGURE 2.12 DFA for a(b|c⇤) .

As a second example, consider the dfa for a (b | c)⇤ produced by Thomp-
son’s construction and the subset construction, shown in Figure 2.12a.
The first step of the minimization algorithm constructs an initial partition
{{d0}, {d1,d2,d3}}, as shown on the right. Since p1 has only one state, it
cannot be split. When the algorithm examines p2, it finds no transitions on a
from any state in p2. For both b and c, each state has a transition back into p2.
Thus, no symbol in 6 splits p2, and the final partition is { {d0}, {d1, d2, d3} }.

The resulting minimal dfa is shown in Figure 2.12b. Recall that this is
the dfa that we suggested a human would derive. After minimization, the
automatic techniques produce the same result.

This algorithm is another example of a fixed-point computation. P is finite;
at most, it can contain |D| elements. The while loop splits sets in P , but
never combines them. Thus, |P| grows monotonically. The loop halts when
some iteration splits no sets in P . The worst-case behavior occurs when
each state in the dfa has different behavior; in that case, the while loop halts
when P has a distinct set for each di 2 D. This occurs when the algorithm is
applied to a minimal dfa.

2.4.5 Using a DFA as a Recognizer
Thus far, we have developed the mechanisms to construct a dfa implemen-
tation from a single re. To be useful, a compiler’s scanner must recognize
all the syntactic categories that appear in the grammar for the source lan-
guage. What we need, then, is a recognizer that can handle all the res for the
language’s microsyntax. Given the res for the various syntactic categories,
r1, r2, r3, . . . , rk , we can construct a single re for the entire collection by
forming (r1 | r2 | r3 | . . . | rk).

If we run this re through the entire process, building an nfa, constructing
a dfa to simulate the nfa, minimizing it, and turning that minimal dfa into
executable code, the resulting scanner recognizes the next word that matches
one of the ri’s. That is, when the compiler invokes it on some input, the

q3 q4 q5

q0 q1 q2

0 0

1

1

1

0

0

1

0, 1

0

1

q2q1

q4

Exercises: Minimize the DFA from here; Q1 & Q2, p59, EAC2.
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Exercise:
Regular Expression to Minimized DFA

Given regular expression r[0..9]+ which specifies the pattern of
a register name, derive the equivalent DFA with the minimum
number of states. Show all steps.
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Implementing DFA as Scanner
○ The source language has a list of syntactic categories:

e.g., keyword while [ while ]
e.g., identifiers [ [a-zA-Z][a-zA-Z0-9_]* ]
e.g., white spaces [ [ \t\r]+ ]○ A compiler’s scanner must recognize words from all syntactic

categories of the source language.
● Each syntactic category is specified via a regular expression.

r1���
syn. cat. 1

+ r1���
syn. cat. 2

+ . . . + rn���
syn. cat. n

● Overall, a scanner should be implemented based on the minimized

DFA accommodating all syntactic categories.○ Principles of a scanner:
● Returns one word at a time● Each returned word is the longest possible that matches a pattern● A priority may be specified among patterns

(e.g., new is a keyword, not identifier)
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Implementing DFA: Table-Driven Scanner (1)

● Consider the syntactic category of register names.
● Specified as a regular expression : r[0..9]+
● Afer conversion to ✏-NFA, then to DFA, then to minimized DFA:

2.5 Implementing Scanners 61

NextWord()
state  s0 ;
lexeme  ‘‘’’;
clear stack;
push(bad);

while (state 6=se) do
NextChar(char);
lexeme  lexeme + char;

if state 2 SA

then clear stack;

push(state);

cat  CharCat[char];
state  �[state,cat];

end;

while(state /2 SA and
state 6= bad) do

state  pop();
truncate lexeme;
RollBack();

end;

if state 2 SA

then return Type[state];
else return invalid;

r 0,1,2, . . .,9 EOF Other

Register Digit Other Other

The Classifier Table, CharCat

Register Digit Other

s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

The Transition Table, �

s0 s1 s2 se

invalid invalid register invalid

The Token Type Table, Type

The Underlying DFA

s2

0…9

s0 s1
r 0…9

n FIGURE 2.14 A Table-Driven Scanner for Register Names.

as regular expressions. The scanner generator then produces tables that drive
the skeleton scanner.

Figure 2.14 shows a table-driven scanner for the re r [0. . . 9]+, which was
our first attempt at an re for iloc register names. The left side of the
figure shows the skeleton scanner, while the right side shows the tables for
r [0. . . 9]+ and the underlying dfa. Notice the similarity between the code
here and the recognizer shown in Figure 2.2 on page 32.

The skeleton scanner divides into four sections: initializations, a scanning
loop that models the dfa’s behavior, a roll back loop in case the dfa over-
shoots the end of the token, and a final section that interprets and reports the
results. The scanning loop repeats the two basic actions of a scanner: read
a character and simulate the dfa’s action. It halts when the dfa enters the

● The following tables encode knowledge about the above DFA:

Classifier (CharCat)
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our first attempt at an re for iloc register names. The left side of the
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shoots the end of the token, and a final section that interprets and reports the
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Implementing DFA: Table-Driven Scanner (2)
The scanner then is implemented via a 4-stage skeleton:
NextWord()

-- Stage 1: Initialization

state := s0 ; word := ✏
initialize an empty stack s ; s.push(bad)
-- Stage 2: Scanning Loop

while (state ≠ se)

NextChar(char) ; word := word + char

if state ∈ F then reset stack s end
s.push(state)
cat := CharCat[char]

state := �[state, cat]

-- Stage 3: Rollback Loop

while (state �∈ F ∧ state ≠ bad)

state := s.pop()
truncate word

-- Stage 4: Interpret and Report

if state ∈ F then return Type[state]

else return invalid

end
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Parser in Context
○ Recall:

Scanner
Source Program

(seq. of characters) seq. of tokens Parser AST1

Lexical Analysis Syntactic Analysis

ASTn… Target Program

Semantic Analysis

pretty printed

○ Treats the input programas as a a sequence of classified
tokens/words○ Applies rules parsing token sequences as

abstract syntax trees (ASTs) [ syntactic analysis ]○ Upon termination:● Reports token sequences not derivable as ASTs● Produces an AST○ No longer considers every character in input program.○ Derivable token sequences constitute a
context-free language (CFL) .
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Context-Free Languages: Introduction

● We have seen regular languages :
○ Can be described using finite automata or regular expressions.○ Satisfy the pumping lemma.

● Languages with a recursive structure are provably non-regular .
e.g., {0n1n � n ≥ 0}

● Context-free grammars (CFG’s) are used to describe strings
that can be generated in a recursive fashion.

● Context-free languages (CFL’s) are:
○ Languages that can be described using CFG’s.○ A proper superset of the set of regular languages.
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CFG: Example (1.1)

● The language that we previously proved as non-regular

{0n#1n � n ≥ 0}
can be described using the following grammar :

A → 0A1
A → B

B → #

● A grammar contains a collection of substitution or production

rules, where:○ A terminal is a word w ∈ ⌃∗ (e.g., 0, 1, etc.).○ A variable or non-terminal is a word w �∈ ⌃∗ (e.g., A, B, etc.).○ A start variable occurs on the LHS of the topmost rule (e.g., A).
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CFG: Example (1.2)
● Given a grammar, generate a string by:

1. Write down the start variable.
2. Choose a production rule where the start variable appears on the

LHS of the arrow, and substitute it by the RHS.
3. There are two cases of the re-written string:

3.1 It contains no variables, then you are done.
3.2 It contains some variables, then substitute each variable using the

relevant production rules.
4. Repeat Step 3.● e.g., We can generate an infinite number of strings from

A → 0A1
A → B

B → #○ A⇒ B ⇒#○ A⇒ 0A1⇒ 0B1⇒ 0#1○ A⇒ 0A1⇒ 00A11⇒ 00B11⇒ 00#11○ . . .
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CFG: Example (1.2)

Given a CFG, the derivation of a string can be shown as a
parse tree .

e.g., The derivation of 000#111 has the parse tree
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CFG: Example (2)

Design a CFG for the following language:

{w � w ∈ {0,1}∗ ∧w is a palidrome}

e.g., 00, 11, 0110, 1001, etc.

P → ✏
P → 0
P → 1
P → 0P0
P → 1P1
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CFG: Example (3)

Design a CFG for the following language:

{ww
R � w ∈ {0,1}∗}

e.g., 00, 11, 0110, etc.

P → ✏
P → 0P0
P → 1P1
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CFG: Example (4)

Design a CFG for the set of binary strings, where each block of
0’s followed by at least as many 1’s.
e.g., 000111, 0001111, etc.

● We use S to represent one such string, and A to represent
each such block in S.

S → ✏ {BC of S}
S → AS {RC of S}
A → ✏ {BC of A}
A → 01 {BC of A}
A → 0A1 {RC of A: equal 0’s and 1’s}
A → A1 {RC of A: more 1’s}
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CFG: Example (5.1) Version 1

Design the grammar for the following small expression language,
which supports:
● Arithmetic operations: +, -, *, /
● Relational operations: >, <, >=, <=, ==, /=
● Logical operations: true, false, !, &&, ||, =>

Start with the variable Expression.
● There are two possible versions:

1. All operations are mixed together. [e.g., (1 + true)�false]
2. Relevant operations are grouped together.

Try both!
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CFG: Example (5.2) Version 1

Expression → IntegerConstant� -IntegerConstant� BooleanConstant� BinaryOp� UnaryOp� ( Expression )

IntegerConstant → Digit� Digit IntegerConstant

Digit → 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9
BooleanConstant → TRUE� FALSE
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CFG: Example (5.3) Version 1

BinaryOp → Expression + Expression� Expression - Expression� Expression * Expression� Expression / Expression� Expression && Expression� Expression || Expression� Expression => Expression� Expression == Expression� Expression /= Expression� Expression > Expression� Expression < Expression

UnaryOp → ! Expression
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CFG: Example (5.4) Version 1

However, Version 1 of CFG:○ Parses string that requires further semantic analysis (e.g., type
checking):
e.g., 3 => 6○ Is ambiguous , meaning that a string may have more than one
ways to interpret it.
e.g., Draw the parse tree(s) for 3 * 5 + 4
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CFG: Example (5.5) Version 2

Expression → ArithmeticOp� RelationalOp� LogicalOp� ( Expression )

IntegerConstant → Digit� Digit IntegerConstant

Digit → 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9
BooleanConstant → TRUE� FALSE
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CFG: Example (5.6) Version 2
ArithmeticOp → ArithmeticOp + ArithmeticOp� ArithmeticOp - ArithmeticOp� ArithmeticOp * ArithmeticOp� ArithmeticOp / ArithmeticOp� (ArithmeticOp)� IntegerConstant� -IntegerConstant

RelationalOp → ArithmeticOp == ArithmeticOp� ArithmeticOp /= ArithmeticOp� ArithmeticOp > ArithmeticOp� ArithmeticOp < ArithmeticOp

LogicalOp → LogicalOp && LogicalOp� LogicalOp || LogicalOp� LogicalOp => LogicalOp� ! LogicalOp� (LogicalOp)� RelationalOp� BooleanConstant
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CFG: Example (5.7) Version 2

However, Version 2 of CFG:○ Eliminates some cases for further semantic analysis:
e.g., (1 + 2) => (5 / 4) [ no parse tree ]○ Still Parses string that might require further semantic analysis :
e.g., (1 + 2) / (5 - (2 + 3))○ Is ambiguous , meaning that a string may have more than one
ways to interpret it.
e.g., Draw the parse tree(s) for 3 * 5 + 4
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CFG: Formal Definition (1)
● A context-free grammar (CFG) is a 4-tuple (V , ⌃, R, S):○ V is a finite set of variables.○ ⌃ is a finite set of terminals. [V ∩⌃ = �]○ R is a finite set of rules s.t.

R ⊆ {v → s � v ∈ V ∧ s ∈ (V ∪⌃)∗}
○ S ∈ V is is the start variable.● Given strings u,v ,w ∈ (V ∪⌃)∗, variable A ∈ V , and a rule
A→ w :○ uAv ⇒ uwv menas that uAv yields uwv .

○ u
∗⇒ v means that u derives v , if:● u = v ; or● u⇒ u1 ⇒ u2 ⇒ ⋅ ⋅ ⋅⇒ uk ⇒ v [a yield sequence]● Given a CFG G = (V , ⌃, R, S), the language of G

L(G) = {w ∈ ⌃∗ � S ∗⇒ w}
17 of 96



CFG: Formal Definition (2): Example

● Design the CFG for strings of properly-nested parentheses.
e.g., (), ()(), ((()()))(), etc.

Present your answer in a formal manner.
● G = ({S}, {(,)}, R, S), where R is

S → ( S ) � SS � ✏
● Draw parse trees for the above three strings that G generates.
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CFG: Formal Definition (3): Example

● Consider the grammar G = (V ,⌃,R,S):○ R is
Expr → Expr + Term� Term

Term → Term * Factor� Factor

Factor → (Expr)� a

○ V = {Expr ,Term,Factor}○ ⌃ = {a,+,*,(,)}○ S = Expr

● Precedence of operators + and * is embedded in the grammar.○ “Plus” is specified at a higher level (Expr ) than is “times” (Term).○ Both operands of a multiplication (Factor) may be parenthesized.
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Regular Expressions to CFG’s
● Recall the semantics of regular expressions (assuming that we

do not consider �):

L( ✏ ) = {✏}
L( a ) = {a}
L( E + F ) = L(E) ∪ L(F)
L( EF ) = L(E)L(F)
L( E

∗ ) = (L(E))∗
L( (E) ) = L(E)

● e.g., Grammar for (00 + 1)∗ + (11 + 0)∗
S → A � B
A → ✏ � AC

C → 00 � 1
B → ✏ � BD

D → 11 � 0
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DFA to CFG’s

● Given a DFA M = (Q, ⌃, �, q0, F):○ Make a variable Ri for each state qi ∈ Q.○ Make R0 the start variable, where q0 is the start state of M.○ Add a rule Ri → aRj to the grammar if �(qi ,a) = qj .○ Add a rule Ri → ✏ if qi ∈ F .
● e.g., Grammar for

s0:
even
0’s

1 1

0

s1:
odd 
0’s

0

R0 → 1R0 � 0R1
R1 → 0R0 � 1R1 � ✏
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CFG: Leftmost Derivations (1)
Expr → Expr + Term � Term

Term → Term * Factor � Factor

Factor → (Expr) � a
○ Unique leftmost derivation for the string a + a * a:

Expr ⇒ Expr + Term⇒ Term + Term⇒ Factor + Term⇒ a + Term⇒ a + Term * Factor⇒ a + Factor * Factor⇒ a + a * Factor⇒ a + a * a

○ This leftmost derivation suggests that a * a is the right operand
of +.
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CFG: Rightmost Derivations (1)
Expr → Expr + Term � Term

Term → Term * Factor � Factor

Factor → (Expr) � a
○ Unique rightmost derivation for the string a + a * a:

Expr ⇒ Expr + Term⇒ Expr + Term * Factor⇒ Expr + Term * a⇒ Expr + Factor * a⇒ Expr + a * a⇒ Term + a * a⇒ Factor + a * a⇒ a + a * a

○ This rightmost derivation suggests that a * a is the right
operand of +.
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CFG: Leftmost Derivations (2)
Expr → Expr + Term � Term

Term → Term * Factor � Factor

Factor → (Expr) � a○ Unique leftmost derivation for the string (a + a) * a:
Expr ⇒ Term⇒ Term * Factor⇒ Factor * Factor⇒ ( Expr ) * Factor⇒ ( Expr + Term ) * Factor⇒ ( Term + Term ) * Factor⇒ ( Factor + Term ) * Factor⇒ ( a + Term ) * Factor⇒ ( a + Factor ) * Factor⇒ ( a + a ) * Factor⇒ ( a + a ) * a

This leftmost derivation suggests that (a + a) is the left
operand of *.24 of 96



CFG: Rightmost Derivations (2)
Expr → Expr + Term � Term

Term → Term * Factor � Factor

Factor → (Expr) � a○ Unique rightmost derivation for the string (a + a) * a:
Expr ⇒ Term⇒ Term * Factor⇒ Term * a⇒ Factor * a⇒ ( Expr ) * a⇒ ( Expr + Term ) * a⇒ ( Expr + Factor ) * a⇒ ( Expr + a ) * a⇒ ( Term + a ) * a⇒ ( Factor + a ) * a⇒ ( a + a ) * a

This rightmost derivation suggests that (a + a) is the left
operand of *.25 of 96



CFG: Parse Trees vs. Derivations (1)
○ Parse trees for (leftmost & rightmost) derivations of expressions:

a + a * a (a + a) * a

○ Orders in which derivations are performed are not reflected on
parse trees.

26 of 96



CFG: Parse Trees vs. Derivations (2)

● A string w ∈ ⌃∗ may have more than one derivations.
Q: distinct derivations for w ∈ ⌃∗ ⇒ distinct parse trees for w?
A: Not in general ∵ Derivations with distinct orders of variable
substitutions may still result in the same parse tree.

● For example:

Expr → Expr + Term � Term

Term → Term * Factor � Factor

Factor → (Expr) � a
For string a + a * a, the leftmost and rightmost derivations
have distinct orders of variable substitutions, but their
corresponding parse trees are the same.
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CFG: Ambiguity: Definition

Given a grammar G = (V ,⌃,R,S):
○ A string w ∈ ⌃∗ is derived ambiguously in G if there exist

two or more distinct parse trees or, equally,
two or more distinct leftmost derivations or, equally,
two or more distinct rightmost derivations.

Here we require that all such derivations have been completed by
following a particular order (leftmost or rightmost) to avoid false alarm.

○ G is ambiguous if it generates some string ambiguously.
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CFG: Ambiguity: Exercise (1)
● Is the following grammar ambiguous ?

Expr → Expr + Expr � Expr * Expr � ( Expr ) � a
● Yes ∵ it generates the string a + a * a ambiguously :

● Distinct ASTs (for the same input) mean distinct semantic
interpretations: e.g.,
when a post-order traversal is used to implement evaluation● Exercise: Show leftmost derivations for the two parse trees.
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CFG: Ambiguity: Exercise (2.1)
● Is the following grammar ambiguous ?

Statement → if Expr then Statement� if Expr then Statement else Statement� Assignment

. . .● Yes ∵ it generates the following string ambiguously :

if Expr1 then if Expr2 then Assignment1 else Assignment2

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

Clearly, these two derivations produce different behaviors in the compiled
code.

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.● This is called the dangling else problem.● Exercise: Show leftmost derivations for the two parse trees.
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CFG: Ambiguity: Exercise (2.2)
(Meaning 1) Assignment2 may be associated with the inner if:

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

Clearly, these two derivations produce different behaviors in the compiled
code.

(Meaning 2) Assignment2 may be associated with the outer if:

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.
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CFG: Ambiguity: Exercise (2.3)

● We may remove the ambiguity by specifying that the
dangling else is associated with the nearest if:

Statement → if Expr then Statement� if Expr then WithElse else Statement� Assignment

WithElse → if Expr then WithElse else WithElse� Assignment

● When applying if . . . then WithElse else Statement :○ The true branch will be produced via WithElse.○ The false branch will be produced via Statement .

There is no circularity between the two non-terminals.
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Discovering Derivations
● Given a CFG G = (V , ⌃, R, S) and an input program p ∈ ⌃∗:
○ So far we manually come up a valid derivation S

∗⇒ p.○ A parser is supposed to automate this derivation process.
Given an input sequence of (t , c) pairs, where token t (e.g., r241)
belongs to some syntactic category c (e.g., register):
Either output a valid derivation (as an AST ), or signal an error .● In the process of building an AST for the input program:○ Root of AST: start symbol S of G○ Internal nodes: A subset of variables V of G○ Leaves of AST: token sequence input by the scanner⇒ Discovering the grammatical connections (according to R)

between the root, internal nodes, and leaves is the hard part!● Approaches to Parsing: [ w ∈ (V ∪⌃)∗, A ∈ V , A→ w ∈ R ]○ Top-down parsing
For a node representing A, extend it with a subtree representing w.○ Bottom-up parsing
For a substring matching w, build a node representing A accordingly.

33 of 96



TDP: Discovering Leftmost Derivation

ALGORITHM: TDParse

INPUT: CFG G = (V , ⌃, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error

PROCEDURE:
root := a new node for the start symbol S

focus := root

initialize an empty stack trace

trace.push(null)
word := NextWord()
while (true):

if focus ∈ V then
if ∃ unvisited rule focus → �1�2 . . .�n ∈ R then

create �1,�2 . . .�n as children of focus

trace.push(�n�n−1 . . .�2)
focus := �1

else
if focus = S then report syntax error
else backtrack

elseif word matches focus then
word := NextWord()
focus := trace.pop()

elseif word = EOF ∧ focus = null then return root
else backtrack

backtrack � pop focus.siblings; focus := focus.parent; focus.resetChildren
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TDP: Exercise (1)

● Given the following CFG G:

Expr → Expr + Term� Term

Term → Term * Factor� Factor

Factor → (Expr)� a

Trace TDParse on how to build an AST for input a + a * a.
● Running TDParse with G results an infinite loop !!!
○ TDParse focuses on the leftmost non-terminal.○ The grammar G contains left-recursions.

● We must first convert left-recursions in G to right-recursions.
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TDP: Exercise (2)
● Given the following CFG G:

Expr → Term Expr
′

Expr
′ → + Term Expr

′
� ✏

Term → Factor Term
′

Term
′ → * Factor Term

′
� ✏

Factor → (Expr)� a

Exercise. Trace TDParse on building AST for a + a * a.
Exercise. Trace TDParse on building AST for (a + a) * a.
Q: How to handle ✏-productions (e.g., Expr → ✏)?
A: Execute focus := trace.pop() to advance to next node.● Running TDParse will terminate ∵ G is right-recursive.● We will learn about a systematic approach to converting
left-recursions in a given grammar to right-recursions.
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Left-Recursions (LR): Direct vs. Indirect
Given CFG G = (V , ⌃, R, S), ↵,�,� ∈ (V ∪⌃)∗, G contains:
○ A cycle if ∃A ∈ V ● A

∗⇒ A○ A direct LR if A→ A↵ ∈ R for non-terminal A ∈ V

e.g., e.g.,
Expr → Expr + Term� Term

Term → Term * Factor� Factor

Factor → (Expr)� a

Expr → Expr + Term� Expr - Term� Term

Term → Term * Factor� Term / Factor� Factor

○ An indirect LR if A→ B� ∈ R for non-terminals A,B ∈ V , B
∗⇒ A�

A → Br

B → Cd

C → At

A → Ba � b

B → Cd � e

C → Df � g

D → f � Aa � Cg

A→ Br ,B
∗⇒ Atd A→ Ba,B

∗⇒ Aafd
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TDP: (Preventively) Eliminating LRs
1 ALGORITHM: RemoveLR

2 INPUT: CFG G = (V , ⌃, R, S)
3 ASSUME: G acyclic ∧ with no ✏-productions
4 OUTPUT: G

′
s.t. G

′ ≡ G, G
′
has no

5 indirect & direct left-recursions
6 PROCEDURE:
7 impose an order on V: ��A1,A2, . . . ,An��
8 for i: 1 .. n:
9 for j: 1 .. i − 1:

10 if ∃ Ai → Aj� ∈ R ∧ Aj → �1 � �2 � . . . � �m ∈ R then
11 replace Ai → Aj� with Ai → �1� � �2� � . . . � �m�
12 end
13 for Ai → Ai↵ � � ∈ R:
14 replace it with: Ai → �A

′, A
′ → ↵A

′ � ✏
L9 to L11: Remove indirect left-recursions from A1 to Ai−1.
L12 to L13: Remove direct left-recursions from A1 to Ai−1.
Loop Invariant (outer for-loop)? At the start of i

th iteration:○ No direct or indirect left-recursions for A1,A2, . . . ,Ai−1.○ More precisely: ∀k ∶ k < i ● ¬(∃l ● l ≤ k ∧Ak → Al ⋅ ⋅ ⋅ ∈ R)
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CFG: Eliminating ✏-Productions (1)
● Motivations:○ TDParse requires CFG with no ✏-productions.○ RemoveLR produces CFG which may contain ✏-productions.● ✏ �∈ L⇒ ∃ CFG G = (V , ⌃, R, S) s.t. G has no ✏-productions.

An ✏-production has the form A→ ✏.

● A variable A is nullable if A
∗⇒ ✏.○ Each terminal symbol is not nullable.○ Variable A is nullable if either:● A→ ✏ ∈ R; or● A→ B1B2 . . .Bk ∈ R, where each variable Bi (1 ≤ i ≤ k ) is a nullable.● Given a production B → CAD, if only variable A is nullable, then

there are 2 versions of B: B → CAD � CD● In general, given a production A→ X1X2 . . .Xk with k symbols, if
m of the k symbols are nullable:○ m < k : There are 2m versions of A.○ m = k : There are 2m − 1 versions of A. [excluding A→ ✏]
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CFG: Eliminating ✏-Productions (2)

● Eliminate ✏-productions from the following grammar:

S → AB

A → aAA � ✏
B → bBB � ✏

● Which are the nullable variables? [S, A, B]

S → A � B � AB {S → ✏ not included}
A → aAA � aA � a {A→ aA duplicated}
B → bBB � bB � b {B → bB duplicated}
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Backtrack-Free Parsing (1)
○ TDParse automates the top-down, leftmost derivation process

by consistently choosing production rules (e.g., in order of their
appearance in CFG).● This inflexibility may lead to inefficient runtime performance due to

the need to backtrack .● e.g., It may take the construction of a giant subtree to find out a
mismatch with the input tokens, which end up requiring it to
backtrack all the way back to the root (start symbol).○ We may avoid backtracking with a modification to the parser:● When deciding which production rule to choose, consider:

(1) the current input symbol
(2) the consequential first symbol if a rule was applied for focus

[ lookahead symbol ]● Using a one symbol lookhead , w.r.t. a right-recursive CFG, each
alternative for the leftmost nonterminal leads to a unique terminal ,
allowing the parser to decide on a choice that prevents backtracking .

● Such CFG is backtrack free with a lookhead of one symbol.● We also call such backtrack-free CFG a predictive grammar .
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The FIRST Set: Definition

● Say we write T ⊂ P(⌃∗) to denote the set of valid tokens
recognizable by the scanner.

● FIRST (↵) � set of symbols that can appear as the first word
in some string derived from ↵.

● More precisely:

FIRST(↵) = �������
{↵} if ↵ ∈ T

{w � w ∈ ⌃∗ ∧ ↵ ∗⇒ w� ∧ � ∈ (V ∪⌃)∗} if ↵ ∈ V
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The FIRST Set: Examples
● Consider this right-recursive CFG:

3.3 Top-Down Parsing 101

focus pop(), which advances its attention to the next node, terminal
or nonterminal, on the fringe.

In the classic expression grammar, direct left recursion appears in the
productions for both Expr and Term.

Original Transformed

Expr ! Expr + Term

| Expr - Term

| Term

Term ! Term x Factor

| Term ÷ Factor

| Factor

Expr ! Term Expr
0

Expr
0 ! + Term Expr 0

| - Term Expr
0

| ✏

Term ! Factor Term
0

Term
0 ! x Factor Term

0

| ÷ Factor Term
0

| ✏

Plugging these replacements back into the classic expression grammar yields
a right-recursive variant of the grammar, shown in Figure 3.4. It specifies the
same set of expressions as the classic expression grammar.

The grammar in Figure 3.4 eliminates the problem with nontermination. It
does not avoid the need for backtracking. Figure 3.5 shows the behavior of
the top-down parser with this grammar on the input a + b x c. The example
still assumes oracular choice; we will address that issue in the next subsec-
tion. It matches all 5 terminals and applies 11 productions—3 more than it
did with the left-recursive grammar. All of the additional rule applications
involve productions that derive ✏.

This simple transformation eliminates direct left recursion. We must also
eliminate indirect left recursion, which occurs when a chain of rules such as
↵!�, �!� , and �!↵� creates the situation that ↵!+↵�. Such indirect
left recursion is not always obvious; it can be obscured by a long chain of
productions.

0 Goal ! Expr

1 Expr ! Term Expr
0

2 Expr
0 ! + Term Expr

0

3 | - Term Expr
0

4 | ✏

5 Term ! Factor Term
0

6 Term
0 ! x Factor Term

0

7 | ÷ Factor Term
0

8 | ✏

9 Factor ! ( Expr )

10 | num

11 | name

n FIGURE 3.4 Right-Recursive Variant of the Classic Expression Grammar.● Compute FIRST for each terminal (e.g., num, +, ():

3.3 Top-Down Parsing 105

simple cases, terminals, ✏, and eof. For the right-recursive expression gram-
mar shown in Figure 3.4 on page 101, that initial step produces the following
first sets:

num name + - × ÷ ( ) eof ✏

FIRST num name + - x ÷ ( ) eof ✏

Next, the algorithm iterates over the productions, using the first sets for the
right-hand side of a production to derive the first set for the nonterminal on
its left-hand side. This process halts when it reaches a fixed point. For the
right-recursive expression grammar, the first sets of the nonterminals are:

Expr Expr’ Term Term’ Factor

FIRST (,name,num +,-, ✏ (,name,num x,÷ , ✏ (,name,num

We defined first sets over single grammar symbols. It is convenient to
extend that definition to strings of symbols. For a string of symbols,
s = �1 �2 �3 . . .�k, we define first(s) as the union of the first sets for
�1,�2, . . . ,�n, where �n is the first symbol whose first set does not contain
✏, and ✏ 2 first(s) if and only if it is in the set for each of the �i, 1  i  k.
The algorithm in Figure 3.7 computes this quantity into the variable rhs.

Conceptually, first sets simplify implementation of a top-down parser. Con-
sider, for example, the rules for Expr

0 in the right-recursive expression
grammar:

2 Expr
0 ! + Term Expr

0

3 | - Term Expr
0

4 | ✏

When the parser tries to expand an Expr
0, it uses the lookahead symbol and

the first sets to choose between rules 2, 3, and 4. With a lookahead of +,
the parser expands by rule 2 because + is in first(+ Term Expr

0) and not in
first(- Term Expr

0) or first(✏). Similarly, a lookahead of - dictates a choice
of rule 3.

Rule 4, the ✏-production, poses a slightly harder problem. first(✏) is just
{✏}, which matches no word returned by the scanner. Intuitively, the parser
should apply the ✏ production when the lookahead symbol is not a member
of the first set of any other alternative. To differentiate between legal inputs

● Compute FIRST for each non-terminal (e.g., Expr , Term
′):

3.3 Top-Down Parsing 105

simple cases, terminals, ✏, and eof. For the right-recursive expression gram-
mar shown in Figure 3.4 on page 101, that initial step produces the following
first sets:

num name + - × ÷ ( ) eof ✏

FIRST num name + - x ÷ ( ) eof ✏

Next, the algorithm iterates over the productions, using the first sets for the
right-hand side of a production to derive the first set for the nonterminal on
its left-hand side. This process halts when it reaches a fixed point. For the
right-recursive expression grammar, the first sets of the nonterminals are:

Expr Expr’ Term Term’ Factor

FIRST (,name,num +,-, ✏ (,name,num x,÷ , ✏ (,name,num

We defined first sets over single grammar symbols. It is convenient to
extend that definition to strings of symbols. For a string of symbols,
s = �1 �2 �3 . . .�k, we define first(s) as the union of the first sets for
�1,�2, . . . ,�n, where �n is the first symbol whose first set does not contain
✏, and ✏ 2 first(s) if and only if it is in the set for each of the �i, 1  i  k.
The algorithm in Figure 3.7 computes this quantity into the variable rhs.

Conceptually, first sets simplify implementation of a top-down parser. Con-
sider, for example, the rules for Expr

0 in the right-recursive expression
grammar:

2 Expr
0 ! + Term Expr

0

3 | - Term Expr
0

4 | ✏

When the parser tries to expand an Expr
0, it uses the lookahead symbol and

the first sets to choose between rules 2, 3, and 4. With a lookahead of +,
the parser expands by rule 2 because + is in first(+ Term Expr

0) and not in
first(- Term Expr

0) or first(✏). Similarly, a lookahead of - dictates a choice
of rule 3.

Rule 4, the ✏-production, poses a slightly harder problem. first(✏) is just
{✏}, which matches no word returned by the scanner. Intuitively, the parser
should apply the ✏ production when the lookahead symbol is not a member
of the first set of any other alternative. To differentiate between legal inputs
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Computing the FIRST Set
FIRST(↵) =

���������
{↵} if ↵ ∈ T

{w � w ∈ ⌃∗ ∧↵
∗⇒ w� ∧ � ∈ (V ∪⌃)∗} if ↵ ∈ V

ALGORITHM: GetFirst

INPUT: CFG G = (V , ⌃, R, S)
T ⊂ ⌃∗ denotes valid terminals

OUTPUT: FIRST ∶ V ∪ T ∪ {✏,eof}�→ P(T ∪ {✏,eof})
PROCEDURE:

for ↵ ∈ (T ∪ {eof , ✏}): FIRST(↵) := {↵}
for A ∈ V: FIRST(A) := �
lastFirst := �
while(lastFirst ≠ FIRST):

lastFirst := FIRST
for A→ �1�2 . . .�k ∈ R s.t. ∀�j ∶ �j ∈ (T ∪ V):

rhs := FIRST(�1) − {✏}
for(i := 1; ✏ ∈ FIRST(�i) ∧ i < k; i++):

rhs := rhs ∪ (FIRST(�i+1) − {✏})
if i = k ∧ ✏ ∈ FIRST(�k) then

rhs := rhs ∪ {✏}
end
FIRST(A) := FIRST(A) ∪ rhs
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Computing the FIRST Set: Extension

● Recall: FIRST takes as input a token or a variable.

FIRST ∶ V ∪ T ∪ {✏,eof}�→ P(T ∪ {✏,eof})
● The computation of variable rhs in algoritm GetFirst actually

suggests an extended, overloaded version:

FIRST ∶(V ∪ T ∪ {✏,eof})∗�→ P(T ∪ {✏,eof})
FIRST may also take as input a string �1�2 . . .�n (RHS of rules).

● More precisely:
FIRST(�1�2 . . .�n) =���������

FIRST(�1) ∪ FIRST(�2) ∪ . . .�k

�������������
∀i ∶ 1 ≤ i < k ● ✏ ∈ FIRST(�i)∧
✏ �∈ FIRST(�k)

���������
Note. �k is the first symbol whose FIRST set does not contain ✏.
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Extended FIRST Set: Examples

Consider this right-recursive CFG:

3.3 Top-Down Parsing 101

focus pop(), which advances its attention to the next node, terminal
or nonterminal, on the fringe.

In the classic expression grammar, direct left recursion appears in the
productions for both Expr and Term.

Original Transformed

Expr ! Expr + Term

| Expr - Term

| Term

Term ! Term x Factor

| Term ÷ Factor

| Factor

Expr ! Term Expr
0

Expr
0 ! + Term Expr 0

| - Term Expr
0

| ✏

Term ! Factor Term
0

Term
0 ! x Factor Term

0

| ÷ Factor Term
0

| ✏

Plugging these replacements back into the classic expression grammar yields
a right-recursive variant of the grammar, shown in Figure 3.4. It specifies the
same set of expressions as the classic expression grammar.

The grammar in Figure 3.4 eliminates the problem with nontermination. It
does not avoid the need for backtracking. Figure 3.5 shows the behavior of
the top-down parser with this grammar on the input a + b x c. The example
still assumes oracular choice; we will address that issue in the next subsec-
tion. It matches all 5 terminals and applies 11 productions—3 more than it
did with the left-recursive grammar. All of the additional rule applications
involve productions that derive ✏.

This simple transformation eliminates direct left recursion. We must also
eliminate indirect left recursion, which occurs when a chain of rules such as
↵!�, �!� , and �!↵� creates the situation that ↵!+↵�. Such indirect
left recursion is not always obvious; it can be obscured by a long chain of
productions.

0 Goal ! Expr

1 Expr ! Term Expr
0

2 Expr
0 ! + Term Expr

0

3 | - Term Expr
0

4 | ✏

5 Term ! Factor Term
0

6 Term
0 ! x Factor Term

0

7 | ÷ Factor Term
0

8 | ✏

9 Factor ! ( Expr )

10 | num

11 | name

n FIGURE 3.4 Right-Recursive Variant of the Classic Expression Grammar.e.g., FIRST(Term Expr
′) = FIRST(Term) ={(,name, num}

e.g., FIRST(+ Term Expr
′) = FIRST(+) = {+}

e.g., FIRST(- Term Expr
′) = FIRST(-) = {-}

e.g., FIRST(✏) = {✏}
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Is the FIRST Set Sufficient
● Consider the following three productions:

Expr
′ → + Term Term

′ (1)� - Term Term
′ (2)� ✏ (3)

In TDP, when the parser attempts to expand an Expr
′ node, it

looks ahead with one symbol to decide on the choice of rule:
FIRST(+) = {+}, FIRST(-) = {-}, and FIRST(✏) = {✏}.

Q. When to choose rule (3) (causing focus := trace.pop())?
A?. Choose rule (3) when focus ≠ FIRST(+) ∧ focus ≠ FIRST(-)?● Correct but inefficient in case of illegal input string: syntax error is

only reported after possibly a long series of backtrack .● Useful if parser knows which words can appear, after an application of
the ✏-production (rule (3)), as leadling symbols.● FOLLOW (v ∶ V) � set of symbols that can appear to the

immediate right of a string derived from ↵.
FOLLOW(v) = {w � w ,x ,y ∈ ⌃∗ ∧ v

∗⇒ x ∧S
∗⇒ xwy}
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The FOLLOW Set: Examples

● Consider this right-recursive CFG:

3.3 Top-Down Parsing 101

focus pop(), which advances its attention to the next node, terminal
or nonterminal, on the fringe.

In the classic expression grammar, direct left recursion appears in the
productions for both Expr and Term.

Original Transformed

Expr ! Expr + Term

| Expr - Term

| Term

Term ! Term x Factor

| Term ÷ Factor

| Factor

Expr ! Term Expr
0

Expr
0 ! + Term Expr 0

| - Term Expr
0

| ✏

Term ! Factor Term
0

Term
0 ! x Factor Term

0

| ÷ Factor Term
0

| ✏

Plugging these replacements back into the classic expression grammar yields
a right-recursive variant of the grammar, shown in Figure 3.4. It specifies the
same set of expressions as the classic expression grammar.

The grammar in Figure 3.4 eliminates the problem with nontermination. It
does not avoid the need for backtracking. Figure 3.5 shows the behavior of
the top-down parser with this grammar on the input a + b x c. The example
still assumes oracular choice; we will address that issue in the next subsec-
tion. It matches all 5 terminals and applies 11 productions—3 more than it
did with the left-recursive grammar. All of the additional rule applications
involve productions that derive ✏.

This simple transformation eliminates direct left recursion. We must also
eliminate indirect left recursion, which occurs when a chain of rules such as
↵!�, �!� , and �!↵� creates the situation that ↵!+↵�. Such indirect
left recursion is not always obvious; it can be obscured by a long chain of
productions.

0 Goal ! Expr

1 Expr ! Term Expr
0

2 Expr
0 ! + Term Expr

0

3 | - Term Expr
0

4 | ✏

5 Term ! Factor Term
0

6 Term
0 ! x Factor Term

0

7 | ÷ Factor Term
0

8 | ✏

9 Factor ! ( Expr )

10 | num

11 | name

n FIGURE 3.4 Right-Recursive Variant of the Classic Expression Grammar.● Compute FOLLOW for each non-terminal (e.g., Expr , Term
′):

106 CHAPTER 3 Parsers

for each A 2 N T do;
FOLLOW(A)  ;;

end;

FOLLOW(S)  {eof };

while (FOLLOW sets are still changing) do;
for each p 2 P of the form A!�1�2 · · ·�k do;

TRAILER  FOLLOW(A);

for i  k down to 1 do;
if �i 2 N T then begin;

FOLLOW(�i)  FOLLOW(�i) [ TRAILER;

if ✏ 2 FIRST(�i)

then TRAILER  TRAILER [ (FIRST(�i) � ✏);
else TRAILER  FIRST(�i);

end;
else TRAILER  FIRST(�i); // is {�i}

end;
end;

end;

n FIGURE 3.8 Computing FOLLOW Sets for Non-Terminal Symbols.

and syntax errors, the parser needs to know which words can appear as the
leading symbol after a valid application of rule 4—the set of symbols that
can follow an Expr

0.

To capture that knowledge, we define the set follow(Expr
0) to contain allFOLLOW set

For a nonterminal ↵, FOLLOW(↵) contains the
set of words that can occur immediately after ↵
in a sentence.

of the words that can occur to the immediate right of a string derived from
Expr

0. Figure 3.8 presents an algorithm to compute the follow set for each
nonterminal in a grammar; it assumes the existence of first sets. The algo-
rithm initializes each follow set to the empty set and then iterates over
the productions, computing the contribution of the partial suffixes to the
follow set of each symbol in each right-hand side. The algorithm halts
when it reaches a fixed point. For the right-recursive expression grammar,
the algorithm produces:

Expr Expr’ Term Term’ Factor

FOLLOW eof,) eof,) eof,+,-,) eof,+,-,) eof,+,-,x,÷,)

The parser can use follow(Expr
0) when it tries to expand an Expr

0. If the
lookahead symbol is +, it applies rule 2. If the lookahead symbol is -, it
applies rule 3. If the lookahead symbol is in follow(Expr

0), which contains
eof and ), it applies rule 4. Any other symbol causes a syntax error.
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Computing the FOLLOW Set
FOLLOW(v) = {w � w , x , y ∈ ⌃∗ ∧ v

∗⇒ x ∧ S
∗⇒ xwy}

ALGORITHM: GetFollow

INPUT: CFG G = (V , ⌃, R, S)
OUTPUT: FOLLOW ∶ V �→ P(T ∪ {eof})

PROCEDURE:
for A ∈ V: FOLLOW(A) := �
FOLLOW(S) := {eof}
lastFollow := �
while(lastFollow ≠ FOLLOW):

lastFollow := FOLLOW
for A→ �1�2 . . .�k ∈ R:

trailer := FOLLOW(A)
for i: k .. 1:

if �i ∈ V then
FOLLOW(�i) := FOLLOW(�i) ∪ trailer
if ✏ ∈ FIRST(�i)

then trailer := trailer ∪ (FIRST(�i) − ✏)
else trailer := FIRST(�i)

else
trailer := FIRST(�i)
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Backtrack-Free Grammar
● A backtrack-free grammar (for a top-down parser), when

expanding the focus internal node, is always able to choose
a unique rule with the one-symbol lookahead (or report a
syntax error when no rule applies).● To formulate this, we first define:

FIRST+(A→ �) = �FIRST(�) if ✏ �∈ FIRST(�)
FIRST(�) ∪ FOLLOW(A) otherwise

FIRST(�) is the extended version where � may be �1�2 . . .�n● Now, a backtrack-free grammar has each of its productions
A→ �1 � �2 � . . . � �n satisfying:

∀i , j ∶ 1 ≤ i , j ≤ n ∧ i ≠ j ● FIRST+(�i) ∩ FIRST+(�j) = �
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TDP: Lookahead with One Symbol
ALGORITHM: TDParse

INPUT: CFG G = (V , ⌃, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error

PROCEDURE:
root := a new node for the start symbol S

focus := root

initialize an empty stack trace

trace.push(null)
word := NextWord()
while (true):

if focus ∈ V then % use FOLLOW set as well?

if ∃ unvisited rule focus → �1�2 . . .�n ∈ R ∧ word ∈ FIRST+(�) then

create �1,�2 . . .�n as children of focus

trace.push(�n�n−1 . . .�2)
focus := �1

else
if focus = S then report syntax error
else backtrack

elseif word matches focus then
word := NextWord()
focus := trace.pop()

elseif word = EOF ∧ focus = null then return root
else backtrack

backtrack � pop focus.siblings; focus := focus.parent; focus.resetChildren
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Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?

3.3 Top-Down Parsing 107

Using first and follow, we can specify precisely the condition that makes
a grammar backtrack free for a top-down parser. For a production A ! �,
define its augmented first set, first

+, as follows:

first
+(A!�) =

⇢
first(�) if ✏ /2 first(�)

first(�) [ follow(A) otherwise

Now, a backtrack-free grammar has the property that, for any nonterminal A

with multiple right-hand sides, A!�1 | �2 | · · · | �n

first
+(A!�i) \ first

+(A!�j) = ;, 8 1  i, j  n, i 6= j.

Any grammar that has this property is backtrack free.

For the right-recursive expression grammar, only productions 4 and 8 have
first

+ sets that differ from their first sets.

Production FIRST set FIRST+ set

4 Expr
0 ! ✏ { ✏ } { ✏,eof,) }

8 Term
0 ! ✏ { ✏ } { ✏,eof,+,-,) }

Applying the backtrack-free condition pairwise to each set of alternate right-
hand sides proves that the grammar is, indeed, backtrack free.

Left-Factoring to Eliminate Backtracking
Not all grammars are backtrack free. For an example of such a gram-
mar, consider extending the expression grammar to include function calls,
denoted with parentheses, ( and ), and array-element references, denoted
with square brackets, [ and ]. To add these options, we replace produc-
tion 11, Factor ! name, with a set of three rules, plus a set of right-recursive
rules for argument lists.

11 Factor ! name

12 | name [ ArgList ]

13 | name ( ArgList )

15 ArgList ! Expr MoreArgs

16 MoreArgs ! , Expr MoreArgs

17 | ✏

A two-word lookahead would handle this case.
However, for any finite lookahead we can devise
a grammar where that lookahead is insufficient.

Because productions 11, 12, and 13 all begin with name, they have identical
first

+ sets. When the parser tries to expand an instance of Factor with a
lookahead of name, it has no basis to choose among 11, 12, and 13. The
compiler writer can implement a parser that chooses one rule and backtracks
when it is wrong. As an alternative, we can transform these productions to
create disjoint first

+ sets.

○ ✏ �∈ FIRST(Factor)⇒ FIRST+(Factor) = FIRST(Factor)○ FIRST(Factor → name) = {name}○ FIRST(Factor → name [ArgList]) = {name}○ FIRST(Factor → name (ArgList)) = {name}
∴ The above grammar is not backtrack free.⇒ To expand an AST node of Factor , with a lookahead of name,
the parser has no basis to choose among rules 11, 12, and 13.
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Backtrack-Free Grammar: Left-Factoring
● A CFG is not backtrack free if there exists a common prefix

(name) among the RHS of multiple production rules.● To make such a CFG backtrack-free, we may transform it
using left factoring : a process of extracting and isolating
common prefixes in a set of production rules.
○ Identify a common prefix ↵:

A→ ↵�1 � ↵�2 � . . . � ↵�n � �1 � �2 � . . . � �j

[ each of �1,�2, . . . ,�j does not begin with ↵ ]

○ Rewrite that production rule as:
A → ↵B � �1 � �2 � . . . � �j

B → �1 � �2 � . . . � �n

○ New rule B → �1 � �2 � . . . � �n may also contain common prefixes.○ Rewriting continues until no common prefixes are identified.
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Left-Factoring: Exercise
● Use left-factoring to remove all common prefixes from the

following grammar.

3.3 Top-Down Parsing 107

Using first and follow, we can specify precisely the condition that makes
a grammar backtrack free for a top-down parser. For a production A ! �,
define its augmented first set, first

+, as follows:

first
+(A!�) =

⇢
first(�) if ✏ /2 first(�)

first(�) [ follow(A) otherwise

Now, a backtrack-free grammar has the property that, for any nonterminal A

with multiple right-hand sides, A!�1 | �2 | · · · | �n

first
+(A!�i) \ first

+(A!�j) = ;, 8 1  i, j  n, i 6= j.

Any grammar that has this property is backtrack free.

For the right-recursive expression grammar, only productions 4 and 8 have
first

+ sets that differ from their first sets.

Production FIRST set FIRST+ set

4 Expr
0 ! ✏ { ✏ } { ✏,eof,) }

8 Term
0 ! ✏ { ✏ } { ✏,eof,+,-,) }

Applying the backtrack-free condition pairwise to each set of alternate right-
hand sides proves that the grammar is, indeed, backtrack free.

Left-Factoring to Eliminate Backtracking
Not all grammars are backtrack free. For an example of such a gram-
mar, consider extending the expression grammar to include function calls,
denoted with parentheses, ( and ), and array-element references, denoted
with square brackets, [ and ]. To add these options, we replace produc-
tion 11, Factor ! name, with a set of three rules, plus a set of right-recursive
rules for argument lists.

11 Factor ! name

12 | name [ ArgList ]

13 | name ( ArgList )

15 ArgList ! Expr MoreArgs

16 MoreArgs ! , Expr MoreArgs

17 | ✏

A two-word lookahead would handle this case.
However, for any finite lookahead we can devise
a grammar where that lookahead is insufficient.

Because productions 11, 12, and 13 all begin with name, they have identical
first

+ sets. When the parser tries to expand an instance of Factor with a
lookahead of name, it has no basis to choose among 11, 12, and 13. The
compiler writer can implement a parser that chooses one rule and backtracks
when it is wrong. As an alternative, we can transform these productions to
create disjoint first

+ sets.

● Identify common prefix name and rewrite rules 11, 12, and 13:
Factor → name Arguments

Arguments → [ ArgList ]� ( ArgList )� ✏

Any more common prefixes? [ No ]
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TDP: Terminating and Backtrack-Free

● Given an arbitrary CFG as input to a top-down parser :○ Q. How do we avoid a non-terminating parsing process?
A. Convert left-recursions to right-recursion.○ Q. How do we minimize the need of backtracking?
A. left-factoring & one-symbol lookahead using FIRST+● Not every context-free language has a corresponding

backtrack -free context-free grammar .
Given a CFL l , the following is undecidable :

∃cfg � L(cfg) = l ∧ isBacktrackFree(cfg)
● Given a CFG g = (V , ⌃, R, S), whether or not g is

backtrack-free is decidable :
For each A→ �1 � �2 � . . . � �n ∈ R:

∀i , j ∶ 1 ≤ i , j ≤ n ∧ i ≠ j ● FIRST+(�i) ∩ FIRST+(�j) = �
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Backtrack-Free Parsing (2.1)
● A recursive-descent parser is:○ A top-down parser○ Structured as a set of mutually recursive procedures

Each procedure corresponds to a non-terminal in the grammar.
See an example.● Given a backtrack-free grammar, a tool (a.k.a.

parser generator ) can automatically generate:
○ FIRST, FOLLOW, and FIRST+ sets○ An efficient recursive-descent parser

This generated parser is called an LL(1) parser , which:
● Processes input from Left to right● Constructs a Leftmost derivation● Uses a lookahead of 1 symbol

● LL(1) grammars are those working in an LL(1) scheme.
LL(1) grammars are backtrack-free by definition.
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Backtrack-Free Parsing (2.2)
● Consider this CFG with FIRST+ sets of the RHSs:

3.3 Top-Down Parsing 109

PREDICTIVE PARSERS VERSUS DFAs

Predictive parsing is the natural extension of DFA-style reasoning to parsers.
A DFA transitions from state to state based solely on the next input
character. A predictive parser chooses an expansion based on the next
word in the input stream. Thus, for each nonterminal in the grammar, there
must be a unique mapping from the first word in any acceptable input
string to a specific production that leads to a derivation for that string. The
real difference in power between a DFA and a predictively parsable gram-
mar derives from the fact that one prediction may lead to a right-hand
side with many symbols, whereas in a regular grammar, it predicts only a
single symbol. This lets predictive grammars include productions such as
p!(p), which are beyond the power of a regular expression to describe.
(Recall that a regular expression can recognize (

+ 6⇤
)
+, but this does

not specify that the numbers of opening and closing parentheses must
match.)

Of course, a hand-coded, recursive-descent parser can use arbitrary tricks
to disambiguate production choices. For example, if a particular left-hand
side cannot be predicted with a single-symbol lookahead, the parser could
use two symbols. Done judiciously, this should not cause problems.

structured as a set of mutually recursive procedures, one for each non-
terminal in the grammar. The procedure corresponding to nonterminal A

recognizes an instance of A in the input stream. To recognize a nonterminal
B on some right-hand side for A, the parser invokes the procedure corre-
sponding to B. Thus, the grammar itself serves as a guide to the parser’s
implementation.

Consider the three rules for Expr
0 in the right-recursive expression grammar:

Production FIRST+

2 Expr
0 ! + Term Expr

0 {+ }
3 | - Term Expr

0 {- }
4 | ✏ { ✏,eof,) }

To recognize instances of Expr
0, we will create a routine EPrime(). It fol-

lows a simple scheme: choose among the three rules (or a syntax error) based
on the first

+ sets of their right-hand sides. For each right-hand side, the
code tests directly for any further symbols.

To test for the presence of a nonterminal, say A, the code invokes the pro-
cedure that corresponds to A. To test for a terminal symbol, such as name, it
performs a direct comparison and, if successful, advances the input stream

● The corresponding recursive-descent parser is structured as:
ExprPrim()

if word = + ∨ word = - then /* Rules 2, 3 */
word := NextWord()
if(Term())

then return ExprPrim()
else return false

elseif word = ) ∨ word = eof then /* Rule 4 */
return true

else
report a syntax error

return false
end

Term()
. . . See: parser generator
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LL(1) Parser: Exercise

Consider the following grammar:

L → R a� Q ba
R → aba� caba� R bc

Q → bbc� bc

Q. Is it suitable for a top-down predictive parser?
○ If so, show that it satisfies the LL(1) condition.○ If not, identify the problem(s) and correct it (them). Also show that

the revised grammar satisfies the LL(1) condition.
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BUP: Discovering Rightmost Derivation

● In TDP, we build the start variable as the root node, and then
work towards the leaves. [ leftmost derivation ]● In Bottom-Up Parsing (BUP):○ Words (terminals) are still returned from left to right by the

scanner.○ As terminals, or a mix of terminals and variables, are identified as
reducible to some variable A (i.e., matching the RHS of some

production rule for A), then a layer is added.○ Eventually:
● accept :

The start variable is reduced and all words have been consumed.● reject :
The next word is not eof, but no further reduction can be identified.

Q. Why can BUP find the rightmost derivation (RMD), if any?
A. BUP discovers steps in a RMD in its reverse order.
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BUP: Discovering Rightmost Derivation (1)

● table-driven LR(1) parser: an implementation for BUP, which
○ Processes input from Left to right○ Constructs a Rightmost derivation○ Uses a lookahead of 1 symbol

● A language has the LR(1) property if it:
○ Can be parsed in a single Left to right scan,○ To build a reversed Rightmost derivation,○ Using a lookahead of 1 symbol to determine parsing actions.

● Critical step in a bottom-up parser is to find the next handle .
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BUP: Discovering Rightmost Derivation (2)

ALGORITHM: BUParse

INPUT: CFG G = (V , ⌃, R, S), Action & Goto Tables

OUTPUT: Report Parse Success or Syntax Error
PROCEDURE:
initialize an empty stack trace

trace.push(S) /* start state */
word := NextWord()
while(true)

state := trace.top()
act := Action[state, word]
if act = ‘‘accept’’ then
succeed()

elseif act = ‘‘reduce A→ �’’ then
trace.pop() 2 × ��� times /* word + state */
state := trace.top()
trace.push(A)
next := Goto[state, A]
trace.push(next)

elseif act = ‘‘shift si’’ then
trace.push(word)
trace.push(si)
word := NextWord()

else
fail()
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BUP: Example Tracing (1)
○ Consider the following grammar for parentheses:

120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

○ Assume: tables Action and Goto constructed accordingly:

120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

In Action table:
● si : shift to state i

● rj : reduce to the LHS of production #j
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BUP: Example Tracing (2.1)

Consider the steps of performing BUP on input () :

3.4 Bottom-Up Parsing 119

push $;
push start state, s0;
word  NextWord();

while (true) do;
state  top of stack;

if Action[state,word] = ‘‘reduce A!�’’ then begin;
pop 2 ⇥ | � | symbols;
state  top of stack;
push A;
push Goto[state, A];

end;

else if Action[state,word] = ‘‘shift si’’ then begin;
push word;
push si ;
word  NextWord();

end;

else if Action[state,word] = ‘‘accept’’
then break;

else Fail();

end;

report success; /* executed break on ‘‘accept’’ case */

n FIGURE 3.15 The Skeleton LR(1) Parser.

To understand the behavior of the skeleton lr(1) parser, consider the
sequence of actions that it takes on the input string “( )”.

Iteration State word Stack Handle Action

initial — ( $ 0 — none — —
1 0 ( $ 0 — none — shift 3

2 3 ) $ 0 ( 3 — none — shift 7

3 7 eof $ 0 ( 3 ) 7 ( ) reduce 5

4 2 eof $ 0 Pair 2 Pair reduce 3

5 1 eof $ 0 List 1 List accept

The first line shows the parser’s initial state. Subsequent lines show its state
at the start of the while loop, along with the action that it takes. At the start
of the first iteration, the stack does not contain a handle, so the parser shifts
the lookahead symbol, (, onto the stack. From the Action table, it knows to
shift and move to state 3. At the start of the second iteration, the stack still
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BUP: Example Tracing (2.2)
Consider the steps of performing BUP on input (())() :

3.4 Bottom-Up Parsing 121

Iteration State word Stack Handle Action

initial — ( $ 0 — none — —
1 0 ( $ 0 — none — shift 3

2 3 ( $ 0 ( 3 — none — shift 6

3 6 ) $ 0 ( 3 ( 6 — none — shift 10

4 10 ) $ 0 ( 3 ( 6 ) 10 ( ) reduce 5

5 5 ) $ 0 ( 3 Pair 5 — none — shift 8

6 8 ( $ 0 ( 3 Pair 5 ) 8 ( Pair ) reduce 4

7 2 ( $ 0 Pair 2 Pair reduce 3

8 1 ( $ 0 List 1 — none — shift 3

9 3 ) $ 0 List 1 ( 3 — none — shift 7

10 7 eof $ 0 List 1 ( 3 ) 7 ( ) reduce 5

11 4 eof $ 0 List 1 Pair 4 List Pair reduce 2

12 1 eof $ 0 List 1 List accept

n FIGURE 3.17 States of the LR(1) Parser on( ( ) ) ( ).

Handle Finding
The parser’s actions shed additional light on the process of finding handles.
Consider the parser’s actions on the string “( )”, as shown in the table on
page 119. The parser finds a handle in each of iterations 3, 4, and 5. In itera-
tion 3, the frontier of ( ) clearly matches the right-hand side of production 5.
From the Action table, we see that a lookahead of either eof or ( implies
a reduce by production 5. Then, in iteration 4, the parser recognizes that
Pair, followed by a lookahead of either eof or ( constitutes a handle for the
reduction by List ! Pair. The final handle of the parse, List with lookahead
of eof in state 1, triggers the accept action.

To understand how the states preserved on the stack change the parser’s
behavior, consider the parser’s actions on our second input string,
“(( ))( ),” as shown in Figure 3.17. Initially, the parser shifts (, (, and )

onto the stack, in iterations 1 to 3. In iteration 4, the parser reduces by
production 5; it replaces the top two symbols on the stack, ( and ), with
Pair and moves to state 5.

Between these two examples, the parser recognized the string ( ) at stacktop
as a handle three times. It behaved differently in each case, based on the prior
left context encoded in the stack. Comparing these three situations exposes
how the stacked states control the future direction of the parse.

With the first example, ( ), the parser was in s7 with a lookahead of
eof when it found the handle. The reduction reveals s0 beneath ( ), and
Goto[s0,Pair ] is s2. In s2, a lookahead of eof leads to another reduction
followed by an accept action. A lookahead of ) in s2 produces an error.

64 of 96



BUP: Example Tracing (2.3)

Consider the steps of performing BUP on input ()) :

3.4 Bottom-Up Parsing 123

The second example, (( ))( ), encounters a handle for ( ) twice. The
first handle occurs in iteration 4. The parser is in s10 with a lookahead of ).
It has previously shifted (, (, and ) onto the stack. The Action table indi-
cates “r 5,” so the parser reduces by Pair ! ( ). The reduction reveals s3

beneath ( ) and Goto[s3,Pair] is s5, a state in which further )’s are legal.
The second time it finds ( ) as a handle occurs in iteration 10. The reduction
reveals s1 beneath ( ) and takes the parser to s4. In s4, a lookahead of either
eof or ( triggers a reduction of List Pair to List, while a lookahead of ) is
an error.

The Action and Goto tables, along with the stack, cause the parser to track
prior left context and let it take different actions based on that context. Thus,
the parser handles correctly each of the three instances in which it found a
handle for ( ). We will revisit this issue when we examine the construction
of Action and Goto.

Parsing an Erroneous Input String
To see how an lr(1) parser discovers a syntax error, consider the sequence
of actions that it takes on the string “( ) )”, shown below:

Iteration State word Stack Handle Action

initial — ( $ 0 — none — —
1 0 ( $ 0 — none — shift 3

2 3 ) $ 0 ( 3 — none — shift 7

3 7 ) $ 0 ( 3 ) 7 — none — error

The first two iterations of the parse proceed as in the first example, “( )”.
The parser shifts ( and ). In the third iteration of the while loop, it looks at
the Action table entry for state 7 and ). That entry contains neither shift,
reduce, nor accept, so the parser interprets it as an error.

The lr(1) parser detects syntax errors through a simple mechanism: the
corresponding table entry is invalid. The parser detects the error as soon
as possible, before reading any words beyond those needed to prove the
input erroneous. This property allows the parser to localize the error to a
specific point in the input. Using the available context and knowledge of
the grammar, we can build lr(1) parsers that provide good diagnostic error
messages.

Using LR Parsers
The key to lr parsing lies in the construction of the Action and Goto tables.
The tables encode all of the legal reduction sequences that can arise in a
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LR(1) Items: Definition
● In LR(1) parsing, Action and Goto tabeles encode legitimate

ways (w.r.t. a grammar) for finding handles (for reductions).
● In a table-driven LR(1) parser, the table-construction

algorithm represents each potential handle (for a reduction)
with an LR(1) item e.g.,[A→ � ● �, a]
where:○ A production rule A→ �� is currently being applied.○ A placeholder, ●, indicates the position of the parser’s stack top.✓ The parser’s stack contains � (“left context”).✓ � is yet to be matched.

Remark. Upon matching ��, if a matches the current word, then we
“replace” �� (and their corresponding states) with A (and its
corresponding state).○ A terminal symbol a servers as a lookahead symbol .
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LR(1) Items: Scenarios
An LR(1) item can be:
1. POSSIBILITY [A→ ●��, a]○ In the current parsing context, an A would be valid.○ ● represents the position of the parser’s stack top○ Recognizing a � next would be one step towards discovering an A.
2. PARTIALLY COMPLETION [A→ � ● �, a]○ The parser has progressed from [A→ ●��, a] by recognizing �.○ Recognizing a � next would be one step towards discovering an A.
3. COMPLETION [A→ ��●, a]○ Parser has progressed from [A→ ●��, a] by recognizing ��.○ �� found in a context where an A followed by a would be valid.○ If the current input word matches a, then:

● Current complet item is a handle .● Parser can reduce �� to A (and replace �� with A in its stack).
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LR(1) Items: Example (1.1)
Consider the following grammar for parentheses:

120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

Initial State: [Goal → ●List , eof]
Desired Final State: [Goal → List●, eof]
Intermediate States: Subset Construction

Q. Derive all LR(1) items for the above grammar.
○ FOLLOW(List) = {eof,(} FOLLOW(Pair) = {eof,(,)}○ For each production A→ �, given FOLLOW(A), LR(1) items are:

{ [A→ ●��, a] � a ∈ FOLLOW(A) }∪{ [A→ � ● �, a] � a ∈ FOLLOW(A) }∪{ [A→ ��●, a] � a ∈ FOLLOW(A) }
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LR(1) Items: Example (1.2)
Q. Given production A→ � (e.g., Pair → ( Pair )), how many
LR(1) items can be generated?○ The current parsing progress (on matching the RHS) can be:

1. ●( Pair )
2. ( ●Pair )
3. ( Pair● )
4. ( Pair )●○ Lookahead symbol following Pair? FOLLOW(Pair) = {eof,(,)}○ All possible LR(1) items related to Pair → ( Pair )?
✓ [●( Pair ), eof] [●( Pair ), (] [●( Pair ), )]✓ [( ●Pair ), eof] [( ●Pair ), (] [( ●Pair ), )]✓ [( Pair● ), eof] [( Pair● ), (] [( Pair● ), )]✓ [( Pair )●, eof] [( Pair )●, (] [( Pair )●, )]

A. How many in general (in terms of A and �)?��� + 1������������
possible positions of ●

× �FOLLOW(A)�����������������������������������������������������������������������
possible lookahead symbols
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LR(1) Items: Example (1.3)
A. There are 33 LR(1) items in the parentheses grammar.

126 CHAPTER 3 Parsers

[Goal ! • List,eof]

[Goal ! List •,eof]

[List ! • List Pair,eof] [List ! • List Pair,( ]
[List ! List • Pair,eof] [List ! List • Pair,( ]
[List ! List Pair •,eof] [List ! List Pair •,( ]

[List ! • Pair,eof ] [List ! • Pair,( ]
[List ! Pair •,eof ] [List ! Pair •,( ]

[Pair ! • ( Pair ),eof ] [Pair ! • ( Pair ),)] [Pair ! • ( Pair ),(]
[Pair ! ( • Pair ),eof ] [Pair ! ( • Pair ),)] [Pair ! ( • Pair ),(]
[Pair ! ( Pair • ),eof ] [Pair ! ( Pair • ),)] [Pair ! ( Pair • ),(]
[Pair ! ( Pair ) •,eof ] [Pair ! ( Pair ) •,)] [Pair ! ( Pair ) •,(]

[Pair ! • ( ),eof] [Pair ! • ( ),(] [Pair ! • ( ),)]
[Pair ! ( • ),eof] [Pair ! ( • ),(] [Pair ! ( • ),)]
[Pair ! ( ) •,eof] [Pair ! ( ) •,(] [Pair ! ( ) •,)]

n FIGURE 3.19 LR(1) Items for the Parentheses Grammar.

an A. One valid next step would be to recognize a � . We call such an
item partially complete.

3. [A!�� •,a] indicates that the parser has found �� in a context where
an A followed by an a would be valid. If the lookahead symbol is a,
then the item is a handle and the parser can reduce �� to A. Such an
item is complete.

In an lr(1) item, the • encodes some local left context—the portions of
the production already recognized. (Recall, from the earlier examples, that
the states pushed onto the stack encode a summary of the context to the
left of the current lr(1) item—in essence, the history of the parse so far.)
The lookahead symbol encodes one symbol of legal right context. When the
parser finds itself in a state that includes [A!�� •,a] with a lookahead of a,
it has a handle and should reduce �� to A.

Figure 3.19 shows the complete set of lr(1) items generated by the
parentheses grammar. Two items deserve particular notice. The first,
[Goal ! • List,eof], represents the initial state of the parser—looking for
a string that reduces to Goal, followed by eof. Every parse begins in this
state. The second, [Goal ! List •,eof], represents the desired final state of
the parser—finding a string that reduces to Goal, followed by eof. This
item represents every successful parse. All of the possible parses result from
stringing together parser states in a grammar-directed way, beginning with
[Goal ! • List,eof] and ending with [Goal ! List •,eof].
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LR(1) Items: Example (2)
Consider the following grammar for expressions:

3.3 Top-Down Parsing 101

focus pop(), which advances its attention to the next node, terminal
or nonterminal, on the fringe.

In the classic expression grammar, direct left recursion appears in the
productions for both Expr and Term.

Original Transformed

Expr ! Expr + Term

| Expr - Term

| Term

Term ! Term x Factor

| Term ÷ Factor

| Factor

Expr ! Term Expr
0

Expr
0 ! + Term Expr 0

| - Term Expr
0

| ✏

Term ! Factor Term
0

Term
0 ! x Factor Term

0

| ÷ Factor Term
0

| ✏

Plugging these replacements back into the classic expression grammar yields
a right-recursive variant of the grammar, shown in Figure 3.4. It specifies the
same set of expressions as the classic expression grammar.

The grammar in Figure 3.4 eliminates the problem with nontermination. It
does not avoid the need for backtracking. Figure 3.5 shows the behavior of
the top-down parser with this grammar on the input a + b x c. The example
still assumes oracular choice; we will address that issue in the next subsec-
tion. It matches all 5 terminals and applies 11 productions—3 more than it
did with the left-recursive grammar. All of the additional rule applications
involve productions that derive ✏.

This simple transformation eliminates direct left recursion. We must also
eliminate indirect left recursion, which occurs when a chain of rules such as
↵!�, �!� , and �!↵� creates the situation that ↵!+↵�. Such indirect
left recursion is not always obvious; it can be obscured by a long chain of
productions.

0 Goal ! Expr

1 Expr ! Term Expr
0

2 Expr
0 ! + Term Expr

0

3 | - Term Expr
0

4 | ✏

5 Term ! Factor Term
0

6 Term
0 ! x Factor Term

0

7 | ÷ Factor Term
0

8 | ✏

9 Factor ! ( Expr )

10 | num

11 | name

n FIGURE 3.4 Right-Recursive Variant of the Classic Expression Grammar.Q. Derive all LR(1) items for the above grammar.
Hints. First compute FOLLOW for each non-terminal:

106 CHAPTER 3 Parsers

for each A 2 N T do;
FOLLOW(A)  ;;

end;

FOLLOW(S)  {eof };

while (FOLLOW sets are still changing) do;
for each p 2 P of the form A!�1�2 · · ·�k do;

TRAILER  FOLLOW(A);

for i  k down to 1 do;
if �i 2 N T then begin;

FOLLOW(�i)  FOLLOW(�i) [ TRAILER;

if ✏ 2 FIRST(�i)

then TRAILER  TRAILER [ (FIRST(�i) � ✏);
else TRAILER  FIRST(�i);

end;
else TRAILER  FIRST(�i); // is {�i}

end;
end;

end;

n FIGURE 3.8 Computing FOLLOW Sets for Non-Terminal Symbols.

and syntax errors, the parser needs to know which words can appear as the
leading symbol after a valid application of rule 4—the set of symbols that
can follow an Expr

0.

To capture that knowledge, we define the set follow(Expr
0) to contain allFOLLOW set

For a nonterminal ↵, FOLLOW(↵) contains the
set of words that can occur immediately after ↵
in a sentence.

of the words that can occur to the immediate right of a string derived from
Expr

0. Figure 3.8 presents an algorithm to compute the follow set for each
nonterminal in a grammar; it assumes the existence of first sets. The algo-
rithm initializes each follow set to the empty set and then iterates over
the productions, computing the contribution of the partial suffixes to the
follow set of each symbol in each right-hand side. The algorithm halts
when it reaches a fixed point. For the right-recursive expression grammar,
the algorithm produces:

Expr Expr’ Term Term’ Factor

FOLLOW eof,) eof,) eof,+,-,) eof,+,-,) eof,+,-,x,÷,)

The parser can use follow(Expr
0) when it tries to expand an Expr

0. If the
lookahead symbol is +, it applies rule 2. If the lookahead symbol is -, it
applies rule 3. If the lookahead symbol is in follow(Expr

0), which contains
eof and ), it applies rule 4. Any other symbol causes a syntax error.

Tips. Ignore ✏ production such as Expr
′ → ✏

since the FOLLOW sets already take them into consideration.
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Canonical Collection (CC) vs. LR(1) items

120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

Recall:

LR(1) Items: 33 items

Initial State: [Goal → ●List , eof]
Desired Final State: [Goal → List●, eof]

○ The canonical collectionCC = {cc0,cc1,cc2, . . . ,ccn}
denotes the set of valid states of a LR(1) parser.
● Each cci ∈ CC (0 ≤ i ≤ n) is a set of LR(1) items.● CC ⊆ P(LR(1) items) �CC�? [ �CC� ≤ 2�LR(1) items� ]○ To model a LR(1) parser, we use techniques similar to how we

construct a DFA from an NFA ( subset construction and ✏-closure).○ Analogies.✓ LR(1) items ≈ states of source NFA✓ CC ≈ states of target DFA
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Constructing CC: The closure Procedure (1)

1 ALGORITHM: closure

2 INPUT: CFG G = (V , ⌃, R, S), a set s of LR(1) items
3 OUTPUT: a set of LR(1) items
4 PROCEDURE:
5 lastS := �
6 while(lastS ≠ s):
7 lastS := s

8 for [A→ ⋅ ⋅ ⋅ ● C �, a] ∈ s:

9 for C → � ∈ R:
10 for b ∈ FIRST(�a):
11 s := s ∪ { [ C → ●�, b] }
12 return s

○ Line 8: [A→ ⋅ ⋅ ⋅ ● C �, a] ∈ s indicates that the parser’s next task is to match C �
with a lookahead symbol a.○ Line 9: Given: matching � can reduce to C○ Line 10: Given: b ∈ FIRST(�a) is a valid lookahead symbol after reducing � to C○ Line 11: Add a new item [ C → ●�, b] into s.○ Line 6: Termination is guaranteed.
∵ Each iteration adds ≥ 1 item to s (otherwise lastS ≠ s is false).
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Constructing CC: The closure Procedure (2.1)

120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

Initial State: [Goal → ●List , eof]

Calculate cc0 = closure([Goal → ●List , eof]).
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Constructing CC: The goto Procedure (1)

1 ALGORITHM: goto

2 INPUT: a set s of LR(1) items, a symbol x

3 OUTPUT: a set of LR(1) items
4 PROCEDURE:
5 moved := �
6 for item ∈ s:
7 if item = [↵→ � ● x�, a] then
8 moved := moved ∪ { [↵→ �x ● �, a] }
9 end

10 return closure(moved)

Line 7: Given: item [↵ → � ● x�, a] (where x is the next to match)
Line 8: Add [↵ → �x ● �, a] (indicating x is matched) to moved

Line 10: Calculate and return closure(moved) as the “next state”
from s with a “transition” x.
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Constructing CC: The goto Procedure (2)
120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

3.4 Bottom-Up Parsing 129

goto(s,x)
moved  ;
for each item i 2 s

if the form of i is [↵!� • x�, a] then
moved  moved [ {[↵!�x • �, a]}

return closure(moved)

n FIGURE 3.21 Thegoto Function.

The goto function, shown in Figure 3.21, takes a set of lr(1) items s and
a grammar symbol x and returns a new set of lr(1) items. It iterates over
the items in s. When it finds an item in which the • immediately precedes
x, it creates a new item by moving the • rightward past x. This new item
represents the parser’s configuration after recognizing x. Goto places these
new items in a new set, takes its closure to complete the parser state, and
returns that new state.

Given the initial set for the parentheses grammar,

cc0 =

8
><

>:

[Goal! • List, eof] [List! • List Pair, eof] [List! • List Pair, (]
[List! • Pair, eof] [List! • Pair, (] [Pair! • ( Pair ), eof]
[Pair! • ( Pair ),(] [Pair! • ( ), eof] [Pair! • ( ),(]

9
>=

>;

we can derive the state of the parser after it recognizes an initial ( by com-
puting goto(cc0,( ). The inner loop finds four items that have • before (.
Goto creates a new item for each, with the • advanced beyond (. Closure
adds two more items, generated from the items with • before Pair. These
items introduce the lookahead symbol ). Thus, goto(cc0,( ) returns

(
[Pair! ( • Pair ),eof] [Pair! ( • Pair ),(] [Pair! ( • ),eof]

[Pair! ( • ),(] [Pair! • ( Pair ),)] [Pair! • ( ),)]

)

.

To find the set of states that derive directly from some state such as cc0, the
algorithm can compute goto(cc0,x) for each x that occurs after a • in an
item in cc0. This produces all the sets that are one symbol away from cc0.
To compute the complete canonical collection, we simply iterate this process
to a fixed point.

The Algorithm
To construct the canonical collection of sets of lr(1) items, the algorithm
computes the initial set, cc0, and then systematically finds all of the sets of
lr(1) items that are reachable from cc0. It repeatedly applies goto to the new
sets in CC; goto, in turn, uses closure. Figure 3.22 shows the algorithm.

For a grammar with the goal production S
0!S, the algorithm begins by

initializing CC to contain cc0, as described earlier. Next, it systematically

Calculate goto(cc0, (). [“next state” from cc0 taking (]
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1 ALGORITHM: BuildCC
2 INPUT: a grammar G = (V , ⌃, R, S), goal production S → S

′
3 OUTPUT:
4 (1) a set CC = {cc0, cc1, . . . , ccn} where cci ⊆ G’s LR(1) items
5 (2) a transition function

6 PROCEDURE:
7 cc0 := closure({[S′ → ●S, eof]})
8 CC := {cc0}
9 processed := {cc0}

10 lastCC := �
11 while(lastCC ≠ CC):
12 lastCC := CC
13 for cci s.t. cci ∈ CC ∧ cci �∈ processed:
14 processed := processed ∪ {cci}
15 for x s.t. [⋅ ⋅ ⋅→ ⋅ ⋅ ⋅ ● x . . . ] ∈ cci

16 temp := goto(cci , x)
17 if temp �∈ CC then
18 CC := CC ∪ {temp}
19 end
20 � := � ∪ (cci , x, temp)
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120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.

● Calculate CC = {cc0,cc1, . . . ,cc11}● Calculate the transition function � ∶ CC ×⌃→ CC
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Resulting transition table:

3.4 Bottom-Up Parsing 131

Iteration Item Goal List Pair ( ) eof

0 cc0 ; cc1 cc2 cc3 ; ;
1 cc1 ; ; cc4 cc3 ; ;

cc2 ; ; ; ; ; ;
cc3 ; ; cc5 cc6 cc7 ;

2 cc4 ; ; ; ; ; ;
cc5 ; ; ; ; cc8 ;
cc6 ; ; cc9 cc6 cc10 ;
cc7 ; ; ; ; ; ;

3 cc8 ; ; ; ; ; ;
cc9 ; ; ; ; cc11 ;
cc10 ; ; ; ; ; ;

4 cc11 ; ; ; ; ; ;

n FIGURE 3.23 Trace of the LR(1) Construction on the Parentheses Grammar.

cc0 =

8
<

:

[Goal ! • List, eof] [List ! • List Pair, eof] [List ! • List Pair, (]
[List ! • Pair, eof] [List ! • Pair, (] [Pair ! • ( Pair ), eof]
[Pair ! • ( Pair ),(] [Pair ! • ( ), eof] [Pair ! • ( ),(]

9
=

;

Since each item has the • at the start of its right-hand side, cc0 contains only
possibilities. This is appropriate, since it is the parser’s initial state. The first
iteration of the while loop produces three sets, cc1, cc2, and cc3. All of the
other combinations in the first iteration produce empty sets, as indicated in
Figure 3.23, which traces the construction of CC.

goto(cc0, List) is cc1.

cc1 =

8
<

:

[Goal ! List •, eof] [List ! List • Pair, eof] [List ! List • Pair, (]
[Pair ! • ( Pair ), eof] [Pair ! • ( Pair ), (] [Pair ! • ( ), eof]

[Pair ! • ( ), (]

9
=

;

cc1 represents the parser configurations that result from recognizing a List.
All of the items are possibilities that lead to another pair of parentheses,
except for the item [Goal ! List •, eof]. It represents the parser’s accept
state—a reduction by Goal ! List, with a lookahead of eof.

goto(cc0, Pair) is cc2.

cc2 =
n

[List ! Pair •, eof] [List ! Pair •, (]
o

cc2 represents the parser configurations after it has recognized an initial Pair.
Both items are handles for a reduction by List ! Pair.
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Resulting DFA for the parser:

3.4 Bottom-Up Parsing 135

For the parentheses grammar, the construction produces the Action and
Goto tables shown in Figure 3.16b on page 120. As we saw, combining the
tables with the skeleton parser in Figure 3.15 creates a functional parser for
the language.

In practice, an lr(1) parser generator must produce other tables needed by
the skeleton parser. For example, when the skeleton parser in Figure 3.15 on
page 119 reduces by A ! �, it pops “2 ⇥ |� |” symbols from the stack and
pushes A onto the stack. The table generator must produce data structures
that map a production from the reduce entry in the Action table, say A ! �,
into both |� | and A. Other tables, such as a map from the integer representing
a grammar symbol into its textual name, are needed for debugging and for
diagnostic messages.

Handle Finding, Revisited
lr(1) parsers derive their efficiency from a fast handle-finding mechanism
embedded in the Action and Goto tables. The canonical collection, CC, rep-
resents a handle-finding dfa for the grammar. Figure 3.25 shows the dfa for
our example, the parentheses grammar.

How can the lr(1) parser use a dfa to find the handles, when we know
that the language of parentheses is not a regular language? The lr(1) parser
relies on a simple observation: the set of handles is finite. The set of handles The LR(1) parser makes the handle’ s position

implicit, at stacktop. This design decision
drastically reduces the number of possible
handles.

is precisely the set of complete lr(1) items—those with the placeholder •
at the right end of the item’s production. Any language with a finite set of
sentences can be recognized by a dfa. Since the number of productions and
the number of lookahead symbols are both finite, the number of complete
items is finite, and the language of handles is a regular language.

When the lr(1) parser executes, it interleaves two kinds of actions: shifts
and reduces. The shift actions simulate steps in the handle-finding dfa. The
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n FIGURE 3.25 Handle-Finding DFA for the Parentheses Grammar.
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Resulting canonical collection CC:
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goto(s,x)
moved  ;
for each item i 2 s

if the form of i is [↵!� • x�, a] then
moved  moved [ {[↵!�x • �, a]}

return closure(moved)

n FIGURE 3.21 Thegoto Function.

The goto function, shown in Figure 3.21, takes a set of lr(1) items s and
a grammar symbol x and returns a new set of lr(1) items. It iterates over
the items in s. When it finds an item in which the • immediately precedes
x, it creates a new item by moving the • rightward past x. This new item
represents the parser’s configuration after recognizing x. Goto places these
new items in a new set, takes its closure to complete the parser state, and
returns that new state.

Given the initial set for the parentheses grammar,

cc0 =

8
><

>:

[Goal! • List, eof] [List! • List Pair, eof] [List! • List Pair, (]
[List! • Pair, eof] [List! • Pair, (] [Pair! • ( Pair ), eof]
[Pair! • ( Pair ),(] [Pair! • ( ), eof] [Pair! • ( ),(]

9
>=

>;

we can derive the state of the parser after it recognizes an initial ( by com-
puting goto(cc0,( ). The inner loop finds four items that have • before (.
Goto creates a new item for each, with the • advanced beyond (. Closure
adds two more items, generated from the items with • before Pair. These
items introduce the lookahead symbol ). Thus, goto(cc0,( ) returns

(
[Pair! ( • Pair ),eof] [Pair! ( • Pair ),(] [Pair! ( • ),eof]

[Pair! ( • ),(] [Pair! • ( Pair ),)] [Pair! • ( ),)]

)

.

To find the set of states that derive directly from some state such as cc0, the
algorithm can compute goto(cc0,x) for each x that occurs after a • in an
item in cc0. This produces all the sets that are one symbol away from cc0.
To compute the complete canonical collection, we simply iterate this process
to a fixed point.

The Algorithm
To construct the canonical collection of sets of lr(1) items, the algorithm
computes the initial set, cc0, and then systematically finds all of the sets of
lr(1) items that are reachable from cc0. It repeatedly applies goto to the new
sets in CC; goto, in turn, uses closure. Figure 3.22 shows the algorithm.

For a grammar with the goal production S
0!S, the algorithm begins by

initializing CC to contain cc0, as described earlier. Next, it systematically
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Iteration Item Goal List Pair ( ) eof

0 cc0 ; cc1 cc2 cc3 ; ;
1 cc1 ; ; cc4 cc3 ; ;

cc2 ; ; ; ; ; ;
cc3 ; ; cc5 cc6 cc7 ;

2 cc4 ; ; ; ; ; ;
cc5 ; ; ; ; cc8 ;
cc6 ; ; cc9 cc6 cc10 ;
cc7 ; ; ; ; ; ;

3 cc8 ; ; ; ; ; ;
cc9 ; ; ; ; cc11 ;
cc10 ; ; ; ; ; ;

4 cc11 ; ; ; ; ; ;

n FIGURE 3.23 Trace of the LR(1) Construction on the Parentheses Grammar.

cc0 =

8
<

:

[Goal ! • List, eof] [List ! • List Pair, eof] [List ! • List Pair, (]
[List ! • Pair, eof] [List ! • Pair, (] [Pair ! • ( Pair ), eof]
[Pair ! • ( Pair ),(] [Pair ! • ( ), eof] [Pair ! • ( ),(]

9
=

;

Since each item has the • at the start of its right-hand side, cc0 contains only
possibilities. This is appropriate, since it is the parser’s initial state. The first
iteration of the while loop produces three sets, cc1, cc2, and cc3. All of the
other combinations in the first iteration produce empty sets, as indicated in
Figure 3.23, which traces the construction of CC.

goto(cc0, List) is cc1.

cc1 =

8
<

:

[Goal ! List •, eof] [List ! List • Pair, eof] [List ! List • Pair, (]
[Pair ! • ( Pair ), eof] [Pair ! • ( Pair ), (] [Pair ! • ( ), eof]

[Pair ! • ( ), (]

9
=

;

cc1 represents the parser configurations that result from recognizing a List.
All of the items are possibilities that lead to another pair of parentheses,
except for the item [Goal ! List •, eof]. It represents the parser’s accept
state—a reduction by Goal ! List, with a lookahead of eof.

goto(cc0, Pair) is cc2.

cc2 =
n

[List ! Pair •, eof] [List ! Pair •, (]
o

cc2 represents the parser configurations after it has recognized an initial Pair.
Both items are handles for a reduction by List ! Pair.
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cc6 ; ; cc9 cc6 cc10 ;
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3 cc8 ; ; ; ; ; ;
cc9 ; ; ; ; cc11 ;
cc10 ; ; ; ; ; ;

4 cc11 ; ; ; ; ; ;

n FIGURE 3.23 Trace of the LR(1) Construction on the Parentheses Grammar.

cc0 =

8
<

:

[Goal ! • List, eof] [List ! • List Pair, eof] [List ! • List Pair, (]
[List ! • Pair, eof] [List ! • Pair, (] [Pair ! • ( Pair ), eof]
[Pair ! • ( Pair ),(] [Pair ! • ( ), eof] [Pair ! • ( ),(]

9
=

;

Since each item has the • at the start of its right-hand side, cc0 contains only
possibilities. This is appropriate, since it is the parser’s initial state. The first
iteration of the while loop produces three sets, cc1, cc2, and cc3. All of the
other combinations in the first iteration produce empty sets, as indicated in
Figure 3.23, which traces the construction of CC.

goto(cc0, List) is cc1.

cc1 =

8
<

:

[Goal ! List •, eof] [List ! List • Pair, eof] [List ! List • Pair, (]
[Pair ! • ( Pair ), eof] [Pair ! • ( Pair ), (] [Pair ! • ( ), eof]

[Pair ! • ( ), (]

9
=

;

cc1 represents the parser configurations that result from recognizing a List.
All of the items are possibilities that lead to another pair of parentheses,
except for the item [Goal ! List •, eof]. It represents the parser’s accept
state—a reduction by Goal ! List, with a lookahead of eof.

goto(cc0, Pair) is cc2.

cc2 =
n

[List ! Pair •, eof] [List ! Pair •, (]
o

cc2 represents the parser configurations after it has recognized an initial Pair.
Both items are handles for a reduction by List ! Pair.
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goto(cc0,() is cc3.

cc3 =
(

[Pair ! • ( Pair ), )] [Pair ! ( • Pair ), eof] [Pair ! ( • Pair ), (]
[Pair ! • ( ), )] [Pair ! ( • ), eof] [Pair ! ( • ), (]

)

cc3 represents the parser’s configuration after it recognizes an initial (.
When the parser enters state 3, it must recognize a matching ) at some point
in the future.

The second iteration of the while loop tries to derive new sets from cc1,
cc2, and cc3. Five of the combinations produce nonempty sets, four of which
are new.

goto(cc1, Pair) is cc4.

cc4 =
n

[List ! List Pair •, eof] [List ! List Pair •, (]
o

The left context for this set is cc1, which represents a state where the parser
has recognized one or more occurrences of List. When it then recognizes a
Pair, it enters this state. Both items represent a reduction by List ! List Pair.

goto(cc1,() is cc3, which represents the future need to find a matching ).

goto(cc3, Pair) is cc5.

cc5 =
n

[Pair ! ( Pair • ), eof] [Pair ! ( Pair • ), (]
o

cc5 consists of two partially complete items. The parser has recognized a (

followed by a Pair; it now must find a matching ). If the parser finds a ), it
will reduce by rule 4, Pair ! ( Pair ).

goto(cc3,() is cc6.

cc6 =
(

[Pair ! • ( Pair ), )] [Pair ! ( • Pair ), )]
[Pair ! • ( ), )] [Pair ! ( • ), )]

)

The parser arrives in cc6 when it encounters a ( and it already has at least
one ( on the stack. The items show that either a ( or a ) lead to valid states.

goto(cc3,)) is cc7.

cc7 =
n

[Pair ! ( ) •, eof] [Pair ! ( ) •, (]
o

If, in state 3, the parser finds a ), it takes the transition to cc7. Both items
specify a reduction by Pair ! ( ).

The third iteration of the while loop tries to derive new sets from cc4,
cc5, cc6, and cc7. Three of the combinations produce new sets, while one
produces a transition to an existing state.
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goto(cc5,)) is cc8.

cc8 =
n

[Pair ! ( Pair ) •, eof] [Pair ! ( Pair ) •, (]
o

When it arrives in state 8, the parser has recognized an instance of rule 4,
Pair ! ( Pair ). Both items specify the corresponding reduction.

goto(cc6, Pair) is cc9.

cc9 =
n

[Pair ! ( Pair • ), )]
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table:
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Constructing Action and Goto Tables (1)
1 ALGORITHM: BuildActionGotoTables

2 INPUT:
3 (1) a grammar G = (V , ⌃, R, S)
4 (2) goal production S → S

′
5 (3) a canonical collection CC = {cc0, cc1, . . . , ccn}
6 (4) a transition function � ∶ CC ×⌃→ CC
7 OUTPUT: Action Table & Goto Table

8 PROCEDURE:
9 for cci ∈ CC:

10 for item ∈ cci:
11 if item = [A→ � ● x�, a]\pause∧�(cci ,x) = ccj then
12 Action[i, x] := shift j

13 elseif item = [A→ �●, a] then
14 Action[i, a] := reduce A→ �
15 elseif item = [S → S

′●, eof] then
16 Action[i, eof] := accept
17 end
18 for v ∈ V:
19 if �(cci , v) = ccj then
20 Goto[i, v] = j

21 end

○ L12, 13: Next valid step in discovering A is to match terminal symbol x.○ L14, 15: Having recognized �, if current word matches lookahead a, reduce � to A.○ L16, 17: Accept if input exhausted and what’s recognized reducible to start var. S.○ L20, 21: Record consequence of a reduction to non-terminal v from state i

82 of 96



Constructing Action and Goto Tables (2)
Resulting Action and Goto tables:

120 CHAPTER 3 Parsers

1 Goal ! List

2 List ! List Pair

3 | Pair

4 Pair ! ( Pair )

5 | ( )

Action Table Goto Table

State eof ( ) List Pair

0 s 3 1 2
1 acc s 3 4
2 r 3 r 3
3 s 6 s 7 5
4 r 2 r 2
5 s 8
6 s 6 s 10 9
7 r 5 r 5
8 r 4 r 4
9 s 11

10 r 5
11 r 4

(a) Parentheses Grammar (b) Action and Goto Tables

n FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-
In an LR parser, the handle is always positioned at
stacktop and the chain of handles produces a
reverse rightmost derivation.

dle, hPair ! ( ) i,t, where t is the stack top. The Action table directs the
parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and
Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle hList ! Pair,ti and reduces, which leaves the parser in state 1 (specified
by Goto[0,List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle hGoal ! List,ti. The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. lr(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

Figure 3.17 shows the parser’s behavior on the input string, “( ( ) ) ( ).”
The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the lr(1) parser, this frontier appears on the stack.
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BUP: Discovering Ambiguity (1)

136 CHAPTER 3 Parsers

parser performs one shift action per word in the input stream. When the
handle-finding dfa reaches a final state, the lr(1) parser performs a reduce
action. The reduce actions reset the state of the handle-finding dfa to reflect
the fact that the parser has recognized a handle and replaced it with a non-
terminal. To accomplish this, the parser pops the handle and its state off
the stack, revealing an older state. The parser uses that older state, the look-
ahead symbol, and the Goto table to discover the state in the dfa from which
handle-finding should continue.

The reduce actions tie together successive handle-finding phases. The reduc-
tion uses left context—the state revealed by the reduction summarizes the
prior history of the parse—to restart the handle-finding dfa in a state that
reflects the nonterminal that the parser just recognized. For example, in the
parse of “( ( ) ) ( )”, the parser stacked an instance of state 3 for every
( that it encounters. These stacked states allow the algorithm to match up
the opening and closing parentheses.

Notice that the handle-finding dfa has transitions on both terminal and non-
terminal symbols. The parser traverses the nonterminal edges only on a
reduce action. Each of these transitions, shown in gray in Figure 3.25, corre-
sponds to a valid entry in the Goto table. The combined effect of the terminal
and nonterminal actions is to invoke the dfa recursively each time it must
recognize a nonterminal.

3.4.3 Errors in the Table Construction
As a second example of the lr(1) table construction, consider the ambigu-
ous grammar for the classic if-then-else construct. Abstracting away
the details of the controlling expression and all other statements (by treat-
ing them as terminal symbols) produces the following four-production
grammar:

1 Goal ! Stmt

2 Stmt ! if expr then Stmt

3 | if expr then Stmt else Stmt

4 | assign

It has two nonterminal symbols, Goal and Stmt, and six terminal symbols,
if, expr, then, else, assign, and the implicit eof.

The construction begins by initializing cc0 to the item [Goal !
• Stmt, eof ] and taking its closure to produce the first set.

● Calculate CC = {cc0,cc1, . . . ,}● Calculate the transition function � ∶ CC ×⌃→ CC
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BUP: Discovering Ambiguity (2.1)
Resulting transition table: 3.4 Bottom-Up Parsing 137

Item Goal Stmt if expr then else assign eof

0 cc0 ; cc1 cc2 ; ; ; cc3 ;
1 cc1 ; ; ; ; ; ; ; ;

cc2 ; ; ; cc4 ; ; ; ;
cc3 ; ; ; ; ; ; ; ;

2 cc4 ; ; ; ; cc5 ; ; ;
3 cc5 ; cc6 cc7 ; ; ; cc8 ;
4 cc6 ; ; ; ; ; cc9 ; ;

cc7 ; ; ; cc10 ; ; ; ;
cc8 ; ; ; ; ; ; ; ;

5 cc9 ; cc11 cc2 ; ; ; cc3 ;
cc10 ; ; ; ; cc12 ; ; ;

6 cc11 ; ; ; ; ; ; ; ;
cc12 ; cc13 cc7 ; ; ; cc8 ;

7 cc13 ; ; ; ; ; cc14 ; ;
8 cc14 ; cc15 cc7 ; ; ; cc8 ;
9 cc15 ; ; ; ; ; ; ; ;

n FIGURE 3.26 Trace of the LR(1) Construction on theIf-Then-Else Grammar.

cc0 =
(

[Goal ! • Stmt, eof ] [Stmt ! • if expr then Stmt, eof ]
[Stmt ! • assign, eof ] [Stmt ! • if expr then Stmt else Stmt, eof ]

)

From this set, the construction begins deriving the remaining members of
the canonical collection of sets of lr(1) items.

Figure 3.26 shows the progress of the construction. The first iteration exam-
ines the transitions out of cc0 for each grammar symbol. It produces three
new sets for the canonical collection from cc0: cc1 for Stmt, cc2 for if, and
cc3 for assign. These sets are:

cc1 =
n

[Goal ! Stmt •,eof ]
o

cc2 =
(

[Stmt ! if • expr then Stmt,eof ],
[Stmt ! if • expr then Stmt else Stmt,eof ]

)

cc3 =
n

[Stmt ! assign •,eof ]
o

The second iteration examines transitions out of these three new sets.
Only one combination produces a new set, looking at cc2 with the symbol
expr.

cc4 =
(

[Stmt ! if expr • then Stmt,eof],
[Stmt ! if expr • then Stmt else Stmt,eof]

)
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BUP: Discovering Ambiguity (2.2.1)

Resulting canonical collection CC:

3.4 Bottom-Up Parsing 137
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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Resulting canonical collection CC:
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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The next iteration computes transitions from cc4; it creates cc5 as
goto(cc4,then).

cc5 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt,eof ],
[Stmt ! if expr then • Stmt else Stmt,eof ],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}]

9
>>>>>=

>>>>>;

The fourth iteration examines transitions out of cc5. It creates new sets for
Stmt, for if, and for assign.

cc6 =
(

[Stmt ! if expr then Stmt •,eof ],
[Stmt ! if expr then Stmt • else Stmt,eof ]

)

cc7 =
(

[Stmt ! if • expr then Stmt,{eof,else}],
[Stmt ! if • expr then Stmt else Stmt, {eof,else}]

)

cc8 = {[Stmt ! assign •, {eof,else}]}

The fifth iteration examines cc6, cc7, and cc8. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from cc6 leads to cc9, and the transition on expr from
cc7 creates cc10.

cc9 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt,eof ],
[Stmt ! • if expr then Stmt,eof ],
[Stmt ! • if expr then Stmt else Stmt,eof ],
[Stmt ! • assign,eof ]

9
>>>=

>>>;

cc10 =
(

[Stmt ! if expr • then Stmt, {eof,else}],
[Stmt ! if expr • then Stmt else Stmt, {eof,else}]

)

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cc11 from cc9 on Stmt and cc12 from cc10 on then. It
also creates duplicate sets for cc2 and cc3 from cc9.

cc11 = {[Stmt ! if expr then Stmt else Stmt •,eof ]}

cc12 =

8
>>>>><

>>>>>:

[Stmt ! if expr then • Stmt, {eof,else}],
[Stmt ! if expr then • Stmt else Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>>>=

>>>>>;
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Iteration seven creates cc13 from cc12 on Stmt. It recreates cc7 and cc8.

cc13 =
(

[Stmt ! if expr then Stmt • , {eof,else}],
[Stmt ! if expr then Stmt • else Stmt, {eof,else}]

)

Iteration eight finds one new set, cc14 from cc13 on the transition for else.

cc14 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>=

>>>;

Iteration nine generates cc15 from cc14 on the transition for Stmt, along with
duplicates of cc7 and cc8.

cc15= {[Stmt ! if expr then Stmt else Stmt •, {eof,else}]}

The final iteration looks at cc15. Since the • lies at the end of every item
in cc15, it can only generate empty sets. At this point, no additional sets of
items can be added to the canonical collection, so the algorithm has reached
a fixed point. It halts.

The ambiguity in the grammar becomes apparent during the table-filling
algorithm. The items in states cc0 through cc12 generate no conflicts. State
cc13 contains four items:

1. [Stmt ! if expr then Stmt • , else]
2. [Stmt ! if expr then Stmt • , eof ]
3. [Stmt ! if expr then Stmt • else Stmt, else]
4. [Stmt ! if expr then Stmt • else Stmt, eof ]

Item 1 generates a reduce entry for cc13 and the lookahead else. Item 3
generates a shift entry for the same location in the table. Clearly, the table
entry cannot hold both actions. This shift-reduce conflict indicates that the
grammar is ambiguous. Items 2 and 4 generate a similar shift-reduce conflict

A typical error message from a parser generator
includes the LR(1) items that generate the
conflict; another reason to study the table
construction.

with a lookahead of eof. When the table-filling algorithm encounters such
a conflict, the construction has failed. The table generator should report the
problem—a fundamental ambiguity between the productions in the specific
lr(1) items—to the compiler writer.

In this case, the conflict arises because production 2 in the grammar is a
prefix of production 3. The table generator could be designed to resolve this
conflict in favor of shifting; that forces the parser to recognize the longer
production and binds the else to the innermost if.

3.4 Bottom-Up Parsing 139

Iteration seven creates cc13 from cc12 on Stmt. It recreates cc7 and cc8.

cc13 =
(

[Stmt ! if expr then Stmt • , {eof,else}],
[Stmt ! if expr then Stmt • else Stmt, {eof,else}]

)

Iteration eight finds one new set, cc14 from cc13 on the transition for else.

cc14 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>=

>>>;

Iteration nine generates cc15 from cc14 on the transition for Stmt, along with
duplicates of cc7 and cc8.

cc15= {[Stmt ! if expr then Stmt else Stmt •, {eof,else}]}

The final iteration looks at cc15. Since the • lies at the end of every item
in cc15, it can only generate empty sets. At this point, no additional sets of
items can be added to the canonical collection, so the algorithm has reached
a fixed point. It halts.

The ambiguity in the grammar becomes apparent during the table-filling
algorithm. The items in states cc0 through cc12 generate no conflicts. State
cc13 contains four items:

1. [Stmt ! if expr then Stmt • , else]
2. [Stmt ! if expr then Stmt • , eof ]
3. [Stmt ! if expr then Stmt • else Stmt, else]
4. [Stmt ! if expr then Stmt • else Stmt, eof ]

Item 1 generates a reduce entry for cc13 and the lookahead else. Item 3
generates a shift entry for the same location in the table. Clearly, the table
entry cannot hold both actions. This shift-reduce conflict indicates that the
grammar is ambiguous. Items 2 and 4 generate a similar shift-reduce conflict

A typical error message from a parser generator
includes the LR(1) items that generate the
conflict; another reason to study the table
construction.

with a lookahead of eof. When the table-filling algorithm encounters such
a conflict, the construction has failed. The table generator should report the
problem—a fundamental ambiguity between the productions in the specific
lr(1) items—to the compiler writer.

In this case, the conflict arises because production 2 in the grammar is a
prefix of production 3. The table generator could be designed to resolve this
conflict in favor of shifting; that forces the parser to recognize the longer
production and binds the else to the innermost if.
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BUP: Discovering Ambiguity (3)
● Consider cc13

3.4 Bottom-Up Parsing 139

Iteration seven creates cc13 from cc12 on Stmt. It recreates cc7 and cc8.

cc13 =
(

[Stmt ! if expr then Stmt • , {eof,else}],
[Stmt ! if expr then Stmt • else Stmt, {eof,else}]

)

Iteration eight finds one new set, cc14 from cc13 on the transition for else.

cc14 =

8
>>><

>>>:

[Stmt ! if expr then Stmt else • Stmt, {eof,else}],
[Stmt ! • if expr then Stmt, {eof,else}],
[Stmt ! • if expr then Stmt else Stmt, {eof,else}],
[Stmt ! • assign, {eof,else}]

9
>>>=

>>>;

Iteration nine generates cc15 from cc14 on the transition for Stmt, along with
duplicates of cc7 and cc8.

cc15= {[Stmt ! if expr then Stmt else Stmt •, {eof,else}]}

The final iteration looks at cc15. Since the • lies at the end of every item
in cc15, it can only generate empty sets. At this point, no additional sets of
items can be added to the canonical collection, so the algorithm has reached
a fixed point. It halts.

The ambiguity in the grammar becomes apparent during the table-filling
algorithm. The items in states cc0 through cc12 generate no conflicts. State
cc13 contains four items:

1. [Stmt ! if expr then Stmt • , else]
2. [Stmt ! if expr then Stmt • , eof ]
3. [Stmt ! if expr then Stmt • else Stmt, else]
4. [Stmt ! if expr then Stmt • else Stmt, eof ]

Item 1 generates a reduce entry for cc13 and the lookahead else. Item 3
generates a shift entry for the same location in the table. Clearly, the table
entry cannot hold both actions. This shift-reduce conflict indicates that the
grammar is ambiguous. Items 2 and 4 generate a similar shift-reduce conflict

A typical error message from a parser generator
includes the LR(1) items that generate the
conflict; another reason to study the table
construction.

with a lookahead of eof. When the table-filling algorithm encounters such
a conflict, the construction has failed. The table generator should report the
problem—a fundamental ambiguity between the productions in the specific
lr(1) items—to the compiler writer.

In this case, the conflict arises because production 2 in the grammar is a
prefix of production 3. The table generator could be designed to resolve this
conflict in favor of shifting; that forces the parser to recognize the longer
production and binds the else to the innermost if.

Q. What does it mean if the current word to consume is else?
A. We can either shift (then expecting to match another Stmt) or
reduce to a Stmt .
A single Action table entry cannot hold these two alternatives.
This is known as the shift-reduce conflict .● Consider another scenario, say:[A→ ��●, a][B → ��●, a]
Q. What does it mean if the current word to consume is a?
A. We can either reduce to A or reduce to B.
A single Action table entry cannot hold these two alternatives.
This is known as the reduce-reduce conflict .
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