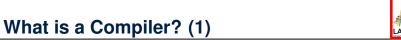
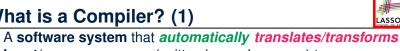
Overview of Compilation

Readings: EAC2 Chapter 1

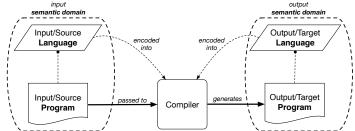
EECS4302 M: Compilers and Interpreters Winter 2020

CHEN-WEI WANG





input/source programs (written in one language) to output/target programs (written in another language).



- Semantic Domain: context with its own vocabulary and meanings e.g., OO, database, predicates
- Source and target may be in different semantic domains. e.g., Java programs to SQL relational database schemas/queries e.g., C procedural programs to MISP assembly instructions

• The idea about a compiler is extremely powerful:

You can turn anything to anything else,

as long as the following are *clear* about them:

 SYNTAX [**specifiable** as CFGs]

 SEMANTICS [programmable as mapping functions]

· Construction of a compiler should conform to good

software engineering principles.

 Modularity & Information Hiding [interacting components]

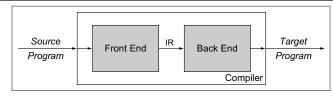
Single Choice Principle

Design Patterns (e.g., composite, visitor)

Regression Testing at different levels: e.g., Unit & Acceptance

3 of 18

Compiler: Typical Infrastructure (1)



- FRON END:
 - Encodes: knowledge of the source language
 - Transforms: from the **source** to some **IR** (intermediate representation)
 - Principle: *meaning* of the source must be *preserved* in the *IR*.
- BACK END:
 - Encodes knowledge of the target language
 - Transforms: from the IR to the target

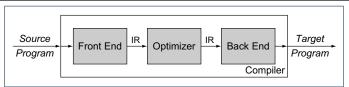
Q. How many *IRs* needed for building a number of compilers:

JAVA-TO-C, EIFFEL-TO-C, JAVA-TO-PYTHON, EIFFEL-TO-PYTHON?

A. Two IRs suffice: One for OO; one for procedural.

⇒ IR should be as *language-independent* as possible.

Compiler: Typical Infrastructure (2)



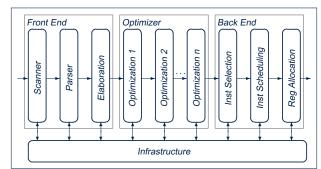
OPTIMIZER:

- An IR-to-IR transformer that aims at "improving" the output of front end, before passing it as input of the back end.
- Think of this transformer as attempting to discover an "optimal" solution to some computational problem. e.g., runtime performance, static design
- Q. Behaviour of the target program predicated upon?
- 1. **Meaning** of the **source** preserved in **IR**?
- 2. IR-to-IR transformation of the optimizer semantics-preserving?
- 3. *Meaning* of **IR** preserved in the generated **target**?
 - (1) (3) necessary & sufficient for the *soundness* of a compiler.

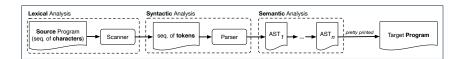
5 of 18

Example Compiler One

- Consider a conventional compiler which turns a C-like program into executable machine instructions.
- The **source** (C-like program) and **target** (machine instructions) are at different levels of abstraction:
 - C-like program is like "high-level" **specification**.
 - Macine instructions are the low-level, efficient *implementation*.



Example Compiler One: Scanner vs. Parser vs. Optimizer



- The same input program may be treated differently:
 - 1. As a *character sequence* [subject to *lexical* analysis]
- 2. As a token sequence
- [subject to **syntactic** analysis]
- **3.** As a *abstract syntax tree (AST)* [subject to *semantic* analysis]
- (1) & (2) are routine tasks of lexical/grammar rule specification.
- (3) is where the most fun is about writing a compiler:

A series of *semantics-preserving* AST-to-AST transformations.

7 of 18

Example Compiler One: Scanner

- The source program is treated as a sequence of *characters*.
- A scanner performs *lexical analysis* on the input character sequence and produces a sequence of tokens.
- ANALOGY: Tokens are like individual words in an essay. ⇒ Invalid tokens ≈ Misspelt words
 - e.g., a token for a useless delimiter: e.g., space, tab, new line
- e.g., a token for a useful delimiter: e.g., (,), {, }, ,
- e.g., a token for an identifier (for e.g., a variable, a function)
- e.g., a token for a keyword (e.g., int, char, if, for, while)
- e.g., a token for a number (for e.g., 1.23, 2.46)
- **Q.** How to specify such pattern pattern of characters?

A. Regular Expressions (REs)

e.g., RE for keyword while

[while]

- e.g., RE for an identifier
- $[[a-zA-Z][a-zA-Z0-9_]*]$

e.g., RE for a white space 8 of 18

Example Compiler One: Parser

- A parser's input is a sequence of *tokens* (by some scanner).
- A parser performs syntactic analysis on the input token sequence and produces an abstract syntax tree (AST).
- ANALOGY: ASTs are like individual **sentences** in an essay.
 - ⇒ Tokens not *parseable* into a valid AST ≈ Grammatical errors
 - Q. An essay with no speling and grammatical errors good enough?
 - **A.** No, it may talk about non-sense (sentences in wrong contexts).
 ⇒ An input program with no lexical/syntactic errors should still be subject to semantic analysis (e.g., type checking, code optimization).

Q.: How to specify such pattern pattern of tokens?

A.: Context-Free Grammars (CFGs)

e.g., CFG (with terminals and non-terminals) for a while-loop:

```
WhileLoop ::= WHILE LPAREN BoolExpr RPAREN LCBRAC Impl RCBRAC Impl ::= | Instruction SEMICOL Impl
```

9 of 18

Example Compiler One: Optimizer

• Consider an input AST which has the pretty printing:

```
b := ...; c := ...; a := ...

across i |..| n is i

loop

read d

a := a * 2 * b * c * d

end
```

- Q. AST of above program optimized for performance?
- **A.** No : values of 2, b, c stay invariant within the loop.
- An *optimizer* may *transform* AST like above into:

```
b := ...; c := ...; a := ...

temp := 2 * b * c

across i |..| n is i

loop

read d

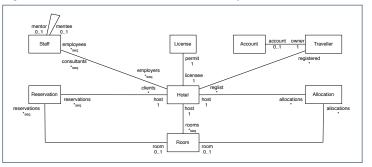
a := a * d

end
```

10 of 18

Example Compiler Two

- Consider a compiler which turns a *Domain-Specific Language* (*DSL*) of classes & predicates into a *SQL* database.
- The input/source contains 2 parts:
 - DATA MODEL: classes and associations (client-supplier relations) e.g., data model of a Hotel Reservation System:



• BEHAVIOURAL MODEL: update methods specified as predicates

Example Compiler Two: Mapping Data

[PRIMARY KEY]

```
class A {
  attributes
  s: string
  as: set(A . b) [*] }
```

```
class B {
  attributes
  is: set (int)
  b: B . as }
```

- Each class is turned into a class table:
 - Column oid stores the object reference.
 - Implementation strategy for attributes:

1						
	SINGLE-VALUED	Multi-Valued				
PRIMITIVE-TYPED	column in <i>class table</i>	collection table				
REFERENCE-TYPED	association table					

- Each collection table:
 - Column oid stores the context object.
 - 1 column stores the corresponding primitive value or oid.
- Each association table:
 - Column oid stores the association reference.
 - 2 columns store oid's of both association ends. [FOREIGN KEY]

Example Compiler Two: Input/Source

• Consider a **valid** input/source program:

```
class Account {
  attributes
   owner: Traveller . account
  balance: int
}
```

```
class Traveller {
  attributes
   name: string
  reglist: set(Hotel . registered)[*]
}
```

```
class Hotel {
  attributes
    name: string
    registered: set(Traveller . reglist)[*]
methods
  register {
        t? : extent(Traveller)
        & t? /: registered
        ==>
        registered := registered \/ {t?}
        || t?.reglist := t?.reglist \/ {this}
    }
}
```

How do you specify the scanner and parser accordingly?

13 of 18

Example Compiler Two: Output/Target

• Class associations are compiled into database schemas.

```
CREATE TABLE 'Account'(
   'oid' INTEGER AUTO_INCREMENT, 'balance' INTEGER,
   PRIMARY KEY ('oid'));

CREATE TABLE 'Traveller'(
   'oid' INTEGER AUTO_INCREMENT, 'name' CHAR(30),
   PRIMARY KEY ('oid'));

CREATE TABLE 'Hotel'(
   'oid' INTEGER AUTO_INCREMENT, 'name' CHAR(30),
   PRIMARY KEY ('oid'));

CREATE TABLE 'Account_owner_Traveller_account'(
   'oid' INTEGER AUTO_INCREMENT, 'owner' INTEGER, 'account' INTEGER,
   PRIMARY KEY ('oid'));

CREATE TABLE 'Traveller_reglist_Hotel_registered'(
   'oid' INTEGER AUTO_INCREMENT, 'reglist' INTEGER,
   PRIMARY KEY ('oid'));
```

Predicate methods are compiled into stored procedures.

```
CREATE PROCEDURE 'Hotel_register'(IN 'this?' INTEGER, IN 't?' INTEGER)
BEGIN
...
END
```

14 of 18

Example Compiler Two: Mapping BehaviourLASSONDE

Challenge: Transform the OO dot notation into table queries.
 e.g., The AST corresponding to the following dot notation
 (in context of class Account, retrieving the owner's list of registrations)

```
this.owner.reglist
```

may be transformed into the following (nested) table lookups:

- At the database level:
 - o Maintaining a large amount of data is efficient
 - Specifying data and updates is tedious & error-prone.
 - RESOLUTIONS:
 - Define a DSL supporting the right level of *abstraction* for specification
 - Implement a DSL-TO-SQL compiler.

15 of 18

Beyond this lecture ...

- Read Chapter 1 of EAC2 to find out more about Example Compiler One
- Read this paper to find out more about Example Compiler Two:

http://dx.doi.org/10.4204/EPTCS.105.8

Index (1)

What is a Compiler? (1)

What is a Compiler? (2)

Compiler: Typical Infrastructure (1)

Compiler: Typical Infrastructure (2)

Example Compiler One

Example Compiler One:

Scanner vs. Parser vs. Optimizer

Example Compiler One: Scanner

Example Compiler One: Parser

Example Compiler One: Optimizer

Example Compiler Two

17 of 18

Index (2)

Example Compiler Two: Mapping Data

Example Compiler Two: Input/Source

Example Compiler Two: Output/Target

Example Compiler Two: Mapping Behaviour

Beyond this lecture...

Scanner: Lexical Analysis

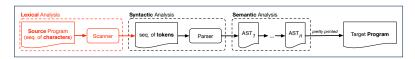
Readings: EAC2 Chapter 2

EECS4302 M: Compilers and Interpreters Winter 2020

CHEN-WEI WANG

Scanner in Context

• Recall:



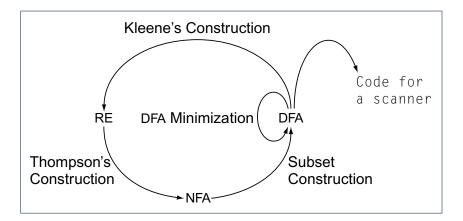
- Treats the input programas as a a sequence of characters
- Applies rules recognizing character sequences as tokens

[**lexical** analysis]

- Upon termination:
 - Reports character sequences not recognizable as tokens
 - Produces a a sequence of tokens
- Only part of compiler touching every character in input program.
- Tokens recognizable by scanner constitute a regular language.

2 of 68

Scanner: Formulation & Implementation



3 of 68

Alphabets

- An *alphabet* is a *finite*, *nonempty* set of symbols.
 - The convention is to write Σ , possibly with a informative subscript, to denote the alphabet in question.

e.g.,
$$\Sigma_{eng} = \{a, b, \dots, z, A, B, \dots, Z\}$$
 [the English alphabet] e.g., $\Sigma_{bin} = \{0, 1\}$ [the binary alphabet] e.g., $\Sigma_{dec} = \{d \mid 0 \le d \le 9\}$ [the decimal alphabet] e.g., Σ_{key} [the keyboard alphabet]

• Use either a *set enumeration* or a *set comprehension* to define your own alphabet.

Strings (1)

- A *string* or a *word* is *finite* sequence of symbols chosen from some *alphabet*.
 - e.g., Oxford is a string from the English alphabet Σ_{eng}
 - e.g., 01010 is a string from the binary alphabet Σ_{bin}
 - e.g., 01010.01 is *not* a string from Σ_{bin}
 - e.g., 57 is a string from the binary alphabet Σ_{dec}
- It is not correct to say, e.g., $01010 \in \Sigma_{bin}$

[Why?]

- The *length* of a string w, denoted as |w|, is the number of characters it contains.
 - e.g., | Oxford| = 6
 - \circ is the *empty string* ($|\epsilon| = 0$) that may be from any alphabet.
- Given two strings *x* and *y*, their *concatenation*, denoted as *xy*, is a new string formed by a copy of *x* followed by a copy of *y*.
 - \circ e.g., Let x = 01101 and y = 110, then xy = 01101110
 - The empty string ϵ is the *identity for concatenation*:

 $\epsilon W = W = W\epsilon$ for any string W

Strings (2)

• Given an alphabet Σ , we write Σ^k , where $k \in \mathbb{N}$, to denote the set of strings of length k from Σ

$$\Sigma^k = \{ w \mid w \text{ is from } \Sigma \wedge |w| = k \}$$

- \circ e.g., $\{0,1\}^2 = \{00, 01, 10, 11\}$
- \circ Σ^0 is $\{\epsilon\}$ for any alphabet Σ
- Σ^+ is the set of *nonempty* strings from alphabet Σ

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \ldots = \{ w \mid w \in \Sigma^k \land k > 0 \} = \bigcup_{k > 0} \Sigma^k$$

• Σ^* is the set of strings of all possible lengths from alphabet Σ

$$\Sigma^* = \Sigma^+ \cup \{\epsilon\}$$

Review Exercises: Strings

- **1.** What is $|\{a, b, ..., z\}^5|$?
- **2.** Enumerate, in a systematic manner, the set $\{a, b, c\}^4$.
- **3.** Explain the difference between Σ and Σ^1 . Σ is a set of *symbols*; Σ^1 is a set of *strings* of length 1.
- **4.** Prove or disprove: $\Sigma_1 \subseteq \Sigma_2 \Rightarrow \Sigma_1^* \subseteq \Sigma_2^*$

7 of 68

LAS

Languages

• A language L over Σ (where $|\Sigma|$ is finite) is a set of strings s.t.

$$L \subseteq \Sigma^*$$

- When useful, include an informative subscript to denote the *language L* in question.
 - e.g., The language of valid Java programs

$$L_{Java} = \{prog \mid prog \in \Sigma_{kev}^* \land prog \text{ compiles in Eclipse}\}$$

 $\circ~$ e.g., The language of strings with n 0's followed by n 1's $(\textit{n} \geq 0)$

$$\{\epsilon, 01, 0011, 000111, \dots\} = \{0^n 1^n \mid n \ge 0\}$$

o e.g., The language of strings with an equal number of 0's and 1's

$$\{\epsilon, 01, 10, 0011, 0101, 0110, 1100, 1010, 1001, \dots\}$$

= $\{w \mid \# \text{ of } 0' \text{ s in } w = \# \text{ of } 1' \text{ s in } w\}$

R of 68

Review Exercises: Languages

- **1.** Use set comprehensions to define the following languages. Be as *formal* as possible.
 - A language over {0,1} consisting of strings beginning with some
 0's (possibly none) followed by at least as many 1's.
 - A language over {a, b, c} consisting of strings beginning with some a's (possibly none), followed by some b's and then some c's, s.t. the # of a's is at least as many as the sum of #'s of b's and c's.
- **2.** Explain the difference between the two languages $\{\epsilon\}$ and \emptyset .
- **3.** Justify that Σ^* , \varnothing , and $\{\epsilon\}$ are all languages over Σ .
- **4.** Prove or disprove: If *L* is a language over Σ , and $\Sigma_2 \supseteq \Sigma$, then *L* is also a language over Σ_2 .

Hint: Prove that $\Sigma \subseteq \Sigma_2 \land L \subseteq \Sigma^* \Rightarrow L \subseteq \Sigma_2^*$

5. Prove or disprove: If *L* is a language over Σ , and $\Sigma_2 \subseteq \Sigma$, then *L* is also a language over Σ_2 .

Hint: Prove that $\Sigma_2 \subseteq \Sigma \land L \subseteq \Sigma^* \Rightarrow L \subseteq \Sigma_2^*$

9 of 68

Problems

 Given a language L over some alphabet Σ, a problem is the decision on whether or not a given string w is a member of L.

 $w \in L$

Is this equivalent to deciding $w \in \Sigma^*$?

[*No*]

e.g., The Java compiler solves the problem of *deciding* if the *string of symbols* typed in the Eclipse editor is a *member* of *L_{Java}* (i.e., set of Java programs with no syntax and type errors).

LASSONDE

Regular Expressions (RE): Introduction

- Regular expressions (RegExp's) are:
 - A type of *language-defining* notation
 - This is *similar* to the equally-expressive *DFA*, *NFA*, and ϵ -*NFA*.
 - Textual and look just like a programming language
 - e.g., $01^* + 10^*$ denotes $L = \{0x \mid x \in \{1\}^*\} \cup \{1x \mid x \in \{0\}^*\}$
 - e.g., (0*10*10*)*10* denotes $L = \{w \mid w \text{ has odd } \# \text{ of } 1' \text{ s} \}$
 - This is *dissimilar* to the diagrammatic *DFA*, *NFA*, and ϵ -*NFA*.
 - RegExp's can be considered as a "user-friendly" alternative to NFA for describing software components.
 [e.g., text search]
 - Writing a RegExp is like writing an algebraic expression, using the defined operators, e.g., ((4 + 3) * 5) % 6
- Despite the programming convenience they provide, RegExp's, *DFA*, *NFA*, and ϵ -*NFA* are all *provably equivalent*.
 - They are capable of defining all and only regular languages.

RE: Language Operations (1)

- Given Σ of input alphabets, the simplest RegExp is $s \in \Sigma^1$.
 - e.g., Given $\Sigma = \{a, b, c\}$, expression a denotes the language consisting of a single string a.
- Given two languages L, M ∈ Σ*, there are 3 operators for building a larger language out of them:
 - 1. Union

$$L \cup M = \{ w \mid w \in L \lor w \in M \}$$

In the textual form, we write + for union.

2. Concatenation

$$LM = \{xy \mid x \in L \land y \in M\}$$

In the textual form, we write either . or nothing at all for concatenation.

12 of 68

RE: Language Operations (2)

3. Kleene Closure (or Kleene Star)

$$L^* = \bigcup_{i>0} L^i$$

where

$$L^{0} = \{\epsilon\}$$

$$L^{1} = L$$

$$L^{2} = \{x_{1}x_{2} \mid x_{1} \in L \land x_{2} \in L\}$$
...
$$L^{i} = \{\underbrace{x_{1}x_{2} ... x_{i}}_{i \text{ repetations}} \mid x_{j} \in L \land 1 \leq j \leq i\}$$

In the textual form, we write * for closure.

Question: What is $|L^i|$ ($i \in \mathbb{N}$)? [$|L|^i$] **Question:** Given that $L = \{0\}^*$, what is L^* ?

13 of 68

RE: Construction (1)

We may build regular expressions recursively:

- Each (*basic* or *recursive*) form of regular expressions denotes a language (i.e., a set of strings that it accepts).
- Base Case:
 - Constants ϵ and \varnothing are regular expressions.

$$L(\epsilon) = \{\epsilon\}$$

$$L(\emptyset) = \emptyset$$

∘ An input symbol $a \in \Sigma$ is a regular expression.

$$L(a) = \{a\}$$

If we want a regular expression for the language consisting of only the string $w \in \Sigma^*$, we write w as the regular expression.

• Variables such as L, M, etc., might also denote languages.

RE: Construction (2)

- **Recursive Case** Given that *E* and *F* are regular expressions:
 - The union E + F is a regular expression.

$$L(E+F)=L(E)\cup L(F)$$

• The concatenation EF is a regular expression.

$$L(EF) = L(E)L(F)$$

• Kleene closure of *E* is a regular expression.

$$L(E^*) = (L(E))^*$$

• A parenthesized *E* is a regular expression.

$$L((E)) = L(E)$$

15 of 68

LASSOND

RE: Construction (3)

Exercises:

- $\varnothing L$ [$\varnothing L = \varnothing = L\varnothing$]
- Ø*

$$\varnothing^* = \varnothing^0 \cup \varnothing^1 \cup \varnothing^2 \cup \dots$$

= $\{\epsilon\} \cup \varnothing \cup \varnothing \cup \dots$
= $\{\epsilon\}$

- $\varnothing^*L = L = L\varnothing^*$
- $\varnothing + L$ [$\varnothing + L = L = \varnothing + L$]

16 ot 68

RE: Construction (4)

Write a regular expression for the following language

$$\{ w \mid w \text{ has alternating 0's and 1's} \}$$

• Would (01)* work?

[alternating 10's?]

- Would (01)* + (10)* work?
- [starting and ending with 1?]
- $0(10)^* + (01)^* + (10)^* + 1(01)^*$
- · It seems that:
 - 1st and 3rd terms have (10)* as the common factor.
 - 2nd and 4th terms have (01)* as the common factor.
- Can we simplify the above regular expression?
- $(\epsilon + 0)(10)^* + (\epsilon + 1)(01)^*$

17 of 68

RE: Review Exercises

Write the regular expressions to describe the following languages:

- $\{ w \mid w \text{ ends with } 01 \}$
- $\{ w \mid w \text{ contains } 01 \text{ as a substring } \}$
- $\{ w \mid w \text{ contains no more than three consecutive 1's} \}$
- $\{ w \mid w \text{ ends with } 01 \lor w \text{ has an odd } \# \text{ of } 0's \}$
- •

•

$$\begin{cases} xy & x \in \{0,1\}^* \land y \in \{0,1\}^* \\ \land & x \text{ has alternating 0's and 1's} \\ \land & y \text{ has an odd # 0's and an odd # 1's} \end{cases}$$

RE: Operator Precedence

- In an order of *decreasing precedence*:
 - Kleene star operator
 - Concatenation operator
 - Union operator
- When necessary, use parentheses to force the intended order of evaluation.
- e.g.,

```
 \begin{array}{lll} \circ & 10^* \text{ vs. } (10)^* & & & [10^* \text{ is equivalent to } 1(0^*)] \\ \circ & 01^* + 1 \text{ vs. } 0(1^* + 1) & & [01^* + 1 \text{ is equivalent to } (0(1^*)) + (1)] \\ \circ & 0 + 1^* \text{ vs. } (0 + 1)^* & & [0 + 1^* \text{ is equivalent to } (0) + (1^*)] \end{array}
```

19 of 68

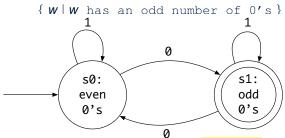
DFA: Deterministic Finite Automata (1.1)

- A deterministic finite automata (DFA) is a finite state machine (FSM) that accepts (or recognizes) a pattern of behaviour.
 - For our purpose of this course, we study patterns of *strings* (i.e., how *alphabet symbols* are ordered).
 - Unless otherwise specified, we consider strings in $\{0,1\}^*$
 - Each pattern contains the set of satisfying strings.
 - We describe the patterns of strings using *set comprehensions*:
 - $\{ w \mid w \text{ has an odd number of 0's} \}$ $\{ w \mid w \text{ has an even number of 1's} \}$ $\{ w \mid w \text{ has equal } \# \text{ of alternating 0's and 1's} \}$ $\{ w \mid w \text{ contains 01 as a substring} \}$ $\{ w \mid w \text{ has an even number of 0's} \}$ $\{ w \mid w \text{ has an even number of 1's} \}$
- Given a pattern description, we design a DFA that accepts it.
 - The resulting DFA can be transformed into an executable program.

20 of 68

DFA: Deterministic Finite Automata (1.2)

The *transition diagram* below defines a DFA which *accepts* exactly the language



- Each incoming or outgoing arc (called a transition) corresponds to an input alphabet symbol.
- \circ s_0 with an unlabelled *incoming* transition is the *start state*.
- s₃ drawn as a double circle is a final state.
- All states have <u>outgoing</u> transitions covering {0, 1}.

21 of 68

DFA: Deterministic Finite Automata (1.3)

The *transition diagram* below defines a DFA which *accepts* exactly the language

W has equal # of alternating 0's and 1's

1

s1:
more
0's
equal
0's
s8:
equal
001)

s0:
not
alternot
alter-

Review Exercises: Drawing DFAs

Draw the transition diagrams for DFAs which accept other example string patterns:

- $\{ w \mid w \text{ has an even number of 1's} \}$
- $\{ w \mid w \text{ contains } 01 \text{ as a substring } \}$
- $\left\{ w \mid w \text{ has an even number of 0's} \right\}$ $\wedge w \text{ has an odd number of 1's}$

23 of 68

DFA: Deterministic Finite Automata (2.1)

A deterministic finite automata (DFA) is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states.
- ∘ ∑ is a finite set of *input symbols* (i.e., the *alphabet*).
- ∘ δ : $(Q \times \Sigma) \rightarrow Q$ is a transition function

 δ takes as arguments a state and an input symbol and returns a state.

- \circ $q_0 \in Q$ is the start state.
- \circ $F \subseteq Q$ is a set of final or accepting states.

DFA: Deterministic Finite Automata (2.2)

- Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$:
 - We write L(M) to denote the language of M: the set of strings that M accepts.
 - A string is accepted if it results in a sequence of transitions: beginning from the start state and ending in a final state.

$$L(M) = \left\{ \begin{array}{c} a_1 a_2 \dots a_n \mid \\ 1 \leq i \leq n \wedge a_i \in \Sigma \wedge \delta(q_{i-1}, a_i) = q_i \wedge q_n \in F \end{array} \right\}$$

- ∘ M rejects any string $w \notin L(M)$.
- We may also consider L(M) as concatenations of labels from the set of all valid paths of M's transition diagram; each such path starts with q_0 and ends in a state in F.

25 of 68

DFA: Deterministic Finite Automata (2.3)

• Given a *DFA M* = $(Q, \Sigma, \delta, q_0, F)$, we may simplify the definition of L(M) by extending δ (which takes an input symbol) to $\hat{\delta}$ (which takes an input string).

$$\hat{\delta}: (Q \times \Sigma^*) \to Q$$

We may define $\hat{\delta}$ recursively, using δ !

$$\hat{\delta}(q,\epsilon) = q
\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a)$$

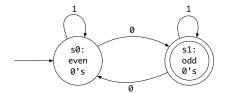
where $q \in Q$, $x \in \Sigma^*$, and $a \in \Sigma$

• A neater definition of L(M): the set of strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ is an *accepting state*.

$$L(M) = \{ w \mid w \in \Sigma^* \wedge \hat{\delta}(q_0, w) \in F \}$$

• A language L is said to be a <u>regular language</u>, if there is some DFA M such that L = L(M).

DFA: Deterministic Finite Automata (2.4)



We formalize the above DFA as $M = (Q, \Sigma, \delta, q_0, F)$, where

- $Q = \{s_0, s_1\}$
- $\Sigma = \{0, 1\}$
- $\delta = \{((s_0, 0), s_1), ((s_0, 1), s_0), ((s_1, 0), s_0), ((s_1, 1), s_1)\}$

state \ input	0	1
s_0	<i>S</i> ₁	s_0
s_1	s_0	<i>s</i> ₁

- $q_0 = s_0$
- $F = \{s_1\}$

• F = { S

DFA: Deterministic Finite Automata (2.5.1)

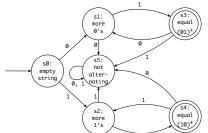


We formalize the above DFA as $M = (Q, \Sigma, \delta, q_0, F)$, where

- $Q = \{s_0, s_1, s_2, s_3, s_4, s_5\}$
- $\Sigma = \{0, 1\}$
- $q_0 = s_0$
- $F = \{s_3, s_4\}$

28 of 68

DFA: Deterministic Finite Automata (2.5.2)



δ =

		0	
_:	state \ input	0	1
	s ₀ s ₁	<i>S</i> ₁	s ₂
	<i>s</i> ₁	<i>S</i> ₅	<i>s</i> ₃
	<i>S</i> ₂	S ₁ S ₅ S ₄	\$2 \$3 \$5 \$5 \$2 \$5
	<i>s</i> ₃	<i>S</i> ₁	<i>S</i> ₅
	<i>S</i> ₃ <i>S</i> ₄ <i>S</i> ₅	\$5 \$5	<i>s</i> ₂
	<i>\$</i> 5	<i>S</i> ₅	<i>S</i> ₅

29 of 68

Review Exercises: Formalizing DFAs

Formalize DFAs (as 5-tuples) for the other example string patterns mentioned:

- $\{ w \mid w \text{ has an even number of 0's} \}$
- $\{ w \mid w \text{ contains } 01 \text{ as a substring } \}$
- $\left\{ m{w} \mid m{w} \text{ has an even number of 0's} \right\}$

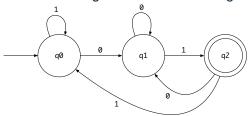
1) LASSONDE

NFA: Nondeterministic Finite Automata (1.1) LASSONDE

Problem: Design a DFA that accepts the following language:

$$L = \{ x01 \mid x \in \{0,1\}^* \}$$

That is, *L* is the set of strings of 0s and 1s ending with 01.



Given an input string w, we may simplify the above DFA by:

- *nondeterministically* treating state q_0 as both:
 - a state ready to read the last two input symbols from w
 - a state *not yet ready* to read the last two input symbols from *w*
- \circ substantially reducing the outgoing transitions from q_1 and q_2

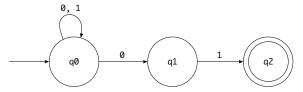
R1 of 68

Compare the above DFA with the DFA in slide 39

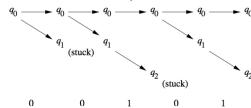
LASSONDE

NFA: Nondeterministic Finite Automata (1.2) LASSONDE

• A *non-deterministic finite automata (NFA)* that accepts the same language:



• How an NFA determines if an input 00101 should be processed:



32 of 68

NFA: Nondeterministic Finite Automata (2)

- A nondeterministic finite automata (NFA), like a DFA, is a FSM that accepts (or recognizes) a pattern of behaviour.
- An NFA being *nondeterministic* means that from a given state, the *same input label* might corresponds to *multiple transitions* that lead to *distinct states*.
 - Each such transition offers an alternative path.
 - Each alternative path is explored independently and in parallel.
 - If **there exists** an alternative path that *succeeds* in processing the input string, then we say the NFA *accepts* that input string.
 - If **all** alternative paths get stuck at some point and *fail* to process the input string, then we say the NFA *rejects* that input string.
- NFAs are often more succinct (i.e., fewer states) and easier to design than DFAs.
- However, NFAs are just as expressive as are DFAs.
 - We can always convert an NFA to a DFA.

33 of 68

NFA: Nondeterministic Finite Automata (3.1) LASSONDE

• A nondeterministic finite automata (NFA) is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states.
- ∘ ∑ is a finite set of *input symbols* (i.e., the *alphabet*).
- $\circ \ \delta: (Q \times \Sigma) \to \mathbb{P}(Q) \text{ is a transition function}$
 - δ takes as arguments a state and an input symbol and returns a set of states.
- \circ $q_0 \in Q$ is the start state.
- ∘ $F \subseteq Q$ is a set of final or accepting states.
- What is the difference between a *DFA* and an *NFA*?
 - The transition function δ of a *DFA* returns a *single* state.
 - The transition function δ of an *NFA* returns a *set* of states.

NFA: Nondeterministic Finite Automata (3.2) LASSONDE

• Given a NFA $M = (Q, \Sigma, \delta, q_0, F)$, we may simplify the definition of L(M) by extending δ (which takes an input symbol) to $\hat{\delta}$ (which takes an input string).

$$\hat{\delta}: (Q \times \Sigma^*) \to \mathbb{P}(Q)$$

We may define $\hat{\delta}$ recursively, using $\delta!$

$$\hat{\delta}(q,\epsilon) = \{q\}
\hat{\delta}(q,xa) = \bigcup \{\delta(q',a) \mid q' \in \hat{\delta}(q,x)\}$$

where $g \in Q$, $x \in \Sigma^*$, and $a \in \Sigma$

• A neater definition of L(M): the set of strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ contains at least one accepting state.

$$L(M) = \{ w \mid w \in \Sigma^* \wedge \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

35 of 68

NFA: Nondeterministic Finite Automata (4)

Given an input string 00101:

- **Read 0**: $\delta(q_0, 0) = \{q_0, q_1\}$
- **Read 0**: $\delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- Read 1: $\delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
- Read 0: $\delta(\boxed{q_0}, 0) \cup \delta(q_2, 0) = \{ q_0, q_1 \} \cup \emptyset = \{ q_0, \boxed{q_1} \}$
- Read 1: $\delta(q_0, 1) \cup \delta(\boxed{q_1}, 1) = \{ q_0, q_1 \} \cup \{ q_2 \} = \{ q_0, q_1, \boxed{q_2} \}$ $\therefore \{ q_0, q_1, q_2 \} \cap \{ q_2 \} \neq \emptyset \therefore 00101 \text{ is accepted}$

DFA = NFA (1)

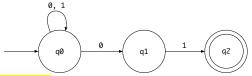
- For many languages, constructing an accepting *NFA* is easier than a *DFA*.
- From each state of an NFA:
 - \circ Outgoing transitions need **not** cover the entire Σ .
 - An input symbol may *non-deterministically* lead to multiple states.
- In practice:
 - o An NFA has just as many states as its equivalent DFA does.
 - An NFA often has fewer transitions than its equivalent DFA does.
- In the worst case:
 - While an NFA has n states, its equivalent DFA has 2^n states.
- Nonetheless, an NFA is still just as expressive as a DFA.
 - Every language accepted by some NFA can also be accepted by some DFA.

$$\forall N : NFA \bullet (\exists D : DFA \bullet L(D) = L(N))$$

17 of 68

DFA = NFA (2.2): Lazy Evaluation (1)

Given an NFA:



Subset construction (with lazy evaluation) produces a DFA transition table:

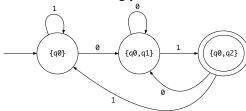
state \ input	0	1
$\{q_0\}$	$\delta(q_0,0) = \{q_0,q_1\}$	$\delta(q_0, 1) = \frac{\delta(q_0, 1)}{\{q_0\}}$
$\{q_0,q_1\}$	$\delta(q_0, 0) \cup \delta(q_1, 0)$ $= \{q_0, q_1\} \cup \emptyset$ $= \{q_0, q_1\}$	$\delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
$\{q_0,q_2\}$	$\delta(q_0, 0) \cup \delta(q_2, 0)$ $= \{q_0, q_1\} \cup \emptyset$ $= \{q_0, q_1\}$	$ \delta(q_0, 1) \cup \delta(q_2, 1) = \{q_0\} \cup \emptyset = \{q_0\} $

DFA \equiv NFA (2.2): Lazy Evaluation (2)

Applying subset construction (with lazy evaluation), we arrive in a DFA transition table:

state \ input	0	1
{ q ₀ }	$\{q_0, q_1\}$	{ q ₀ }
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1\}$	{ q ₀ }

We then draw the *DFA* accordingly:



20 of 69

Compare the above DFA with the DFA in slide 31.

DFA = **NFA** (2.2): Lazy Evaluation (3)

• Given an NFA $N = (Q_N, \Sigma_N, \delta_N, q_0, F_N)$, often only a small portion of the $|\mathbb{P}(Q_N)|$ subset states is *reachable* from $\{q_0\}$.

• RT of ReachableSubsetStates?

 $[O(2^{|Q_N|})]$

10 of 68

ϵ -NFA: Examples (1)

Draw the NFA for the following two languages:

1.

$$\begin{cases} xy & x \in \{0,1\}^* \\ & y \in \{0,1\}^* \\ & x \text{ has alternating 0's and 1's} \\ & y \text{ has an odd # 0's and an odd # 1's} \end{cases}$$

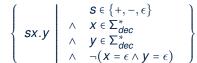
2.

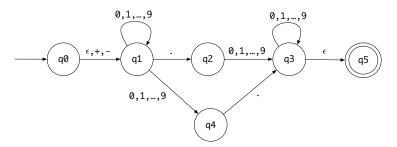
$$\begin{cases} w: \{0,1\}^* & w \text{ has alternating 0's and 1's} \\ v & w \text{ has an odd $\#$ 0's and an odd $\#$ 1's} \end{cases}$$

3.

11 of 68

ϵ -NFA: Examples (2)





From q_0 to q_1 , reading a sign is **optional**: a *plus* or a *minus*, or *nothing at all* (i.e., ϵ).

ϵ -NFA: Formalization (1)

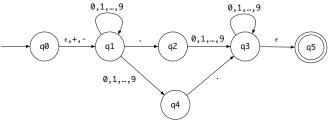
An ϵ -NFA is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of *states*.
- ∘ ∑ is a finite set of *input symbols* (i.e., the *alphabet*).
- $\circ \ \delta : (Q \times (\Sigma \cup \{\epsilon\})) \to \mathbb{P}(Q)$ is a transition function
 - δ takes as arguments a state and an input symbol, or *an empty string*
 - ϵ , and returns a set of states.
- ∘ $q_0 \in Q$ is the *start state*.
- \circ $F \subseteq Q$ is a set of final or accepting states.

13 of 68

ϵ -NFA: Formalization (2)



Draw a transition table for the above NFA's δ function:

	ϵ	+, -	•	09
q_0	{ <i>q</i> ₁ }	{ q ₁ }	Ø	Ø
q_1	Ø	Ø	$\{q_{2}\}$	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	{ q ₅ }	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	$\{q_3\}$	Ø
9 5	Ø	Ø	Ø	Ø

ϵ -NFA: Epsilon-Closures (1)

Given ε-NFA N

$$N = (Q, \Sigma, \delta, q_0, F)$$

we define the *epsilon closure* (or ϵ -closure) as a function

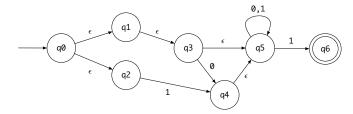
$$ECLOSE: Q \rightarrow \mathbb{P}(Q)$$

• For any state $q \in Q$

$$\mathtt{ECLOSE}(q) = \{q\} \cup \bigcup_{p \in \delta(q,\epsilon)} \mathtt{ECLOSE}(p)$$

45 of 6

ϵ -NFA: Epsilon-Closures (2)



- $\mathtt{ECLOSE}(q_0)$
- $= \{\delta(q_0, \epsilon) = \{q_1, q_2\}\}\$
 - $\{q_0\} \cup \text{ECLOSE}(q_1) \cup \text{ECLOSE}(q_2)$
- = { $ECLOSE(q_1)$, $\delta(q_1, \epsilon) = \{q_3\}$, $ECLOSE(q_2)$, $\delta(q_2, \epsilon) = \emptyset$ } { q_0 } \cup ({ q_1 } \cup $ECLOSE(q_3)$) \cup ({ q_2 } \cup \emptyset)
- = $\{ECLOSE(q_3), \delta(q_3, \epsilon) = \{q_5\}\}$
 - $\{q_0\} \cup (\{q_1\} \cup (\{q_3\} \cup ECLOSE(q_5))) \cup (\{q_2\} \cup \emptyset)$
- = $\{ECLOSE(q_5), \delta(q_5, \epsilon) = \emptyset\}$
 - $\{q_0\} \cup (\{q_1\} \cup (\{q_3\} \cup (\{q_5\} \cup \emptyset))) \cup (\{q_2\} \cup \emptyset)$

l6 ot 68

ϵ -NFA: Formalization (3)

• Given a ϵ -NFA $M = (Q, \Sigma, \delta, q_0, F)$, we may simplify the definition of L(M) by extending δ (which takes an input symbol) to $\hat{\delta}$ (which takes an input string).

$$\hat{\delta}: (Q \times \Sigma^*) \to \mathbb{P}(Q)$$

We may define $\hat{\delta}$ recursively, using $\delta!$

$$\hat{\delta}(q,\epsilon) = \text{ECLOSE}(q)
\hat{\delta}(q,xa) = \bigcup \{ \text{ECLOSE}(q'') \mid q'' \in \delta(q',a) \land q' \in \hat{\delta}(q,x) \}$$

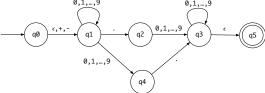
where $g \in Q$, $x \in \Sigma^*$, and $a \in \Sigma$

• Then we define L(M) as the set of strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ contains at least one accepting state.

$$L(M) = \{ w \mid w \in \Sigma^* \wedge \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

47 of 68

ϵ -NFA: Formalization (4)



Given an input string 5.6:

$$\hat{\delta}(q_0,\epsilon)$$
 = ECLOSE (q_0) = $\{q_0,q_1\}$

- Read 5: $\delta(q_0, 5) \cup \delta(q_1, 5) = \emptyset \cup \{q_1, q_4\} = \{q_1, q_4\}$ $\hat{\delta}(q_0, 5) = \text{ECLOSE}(q_1) \cup \text{ECLOSE}(q_4) = \{q_1\} \cup \{q_4\} = \{q_1, q_4\}$
- Read :: $\delta(q_1,.) \cup \delta(q_4,.) = \{q_2\} \cup \{q_3\} = \{q_2,q_3\}$ $\hat{\delta}(q_0,5.) = \texttt{ECLOSE}(q_2) \cup \texttt{ECLOSE}(q_3) = \{q_2\} \cup \{q_3,q_5\} = \{q_2,q_3,q_5\}$
- Read 6: $\delta(q_2, 6) \cup \delta(q_3, 6) \cup \delta(q_5, 6) = \{q_3\} \cup \{q_3\} \cup \emptyset = \{q_3\}$ $\hat{\delta}(q_0, 5.6) = \text{ECLOSE}(q_3) = \{q_3, q_5\}$ [5.6 is accepted]

48 of 68

DFA $\equiv \epsilon$ -**NFA**: Subset Construction (1)

Subset construction (with lazy evaluation and epsilon closures) produces a DFA transition table.

	<i>d</i> ∈ 0 9	s ∈ {+, −}	
$\{q_0, q_1\}$	$\{q_1, q_4\}$	{ q ₁ }	{ q ₂ }
$\{q_1, q_4\}$	$\{q_1, q_4\}$	Ø	$\{q_2, q_3, q_5\}$
$\{q_1\}$	$\{q_1, q_4\}$	Ø	{ q ₂ }
{ q ₂ }	$\{q_3, q_5\}$	Ø	Ø
$\{q_2, q_3, q_5\}$	$\{q_3, q_5\}$	Ø	Ø
$\{q_3, q_5\}$	$\{q_3, q_5\}$	Ø	Ø

For example, $\delta(\{q_0, q_1\}, d)$ is calculated as follows: $[d \in 0..9]$

```
 \bigcup \{ \texttt{ECLOSE}(q) \mid q \in \delta(q_0, d) \cup \delta(q_1, d) \} 
= \bigcup \{ \texttt{ECLOSE}(q) \mid q \in \emptyset \cup \{q_1, q_4\} \} 
= \bigcup \{ \texttt{ECLOSE}(q) \mid q \in \{q_1, q_4\} \} 
= \texttt{ECLOSE}(q_1) \cup \texttt{ECLOSE}(q_4) 
= \{q_1\} \cup \{q_4\} \} 
= \{q_1, q_4\}
```

19 of 68

DFA $\equiv \epsilon$ -**NFA**: Subset Construction (2)

Given an ε=NFA N = (Q_N, Σ_N, δ_N, q₀, F_N), by applying the extended subset construction to it, the resulting DFA D = (Q_D, Σ_D, δ_D, q_{D_{start}}, F_D) is such that:

```
\begin{array}{lll} \Sigma_D & = & \Sigma_N \\ Q_D & = & \left\{ \left. S \mid S \subseteq Q_N \land (\exists w : \Sigma^* \bullet S = \hat{\delta}_D(q_0, w)) \right. \right\} \\ q_{D_{start}} & = & \text{ECLOSE}(q_0) \\ F_D & = & \left\{ \left. S \mid S \subseteq Q_N \land S \cap F_N \neq \varnothing \right. \right\} \\ \delta_D(S, a) & = & \bigcup \left\{ \left. \text{ECLOSE}(s') \mid s \in S \land s' \in \delta_N(s, a) \right. \right\} \end{array}
```

Regular Expression to ϵ -NFA

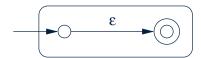
- Just as we construct each complex *regular expression* recursively, we define its equivalent ϵ -NFA recursively.
- Given a regular expression R, we construct an ϵ -NFA E, such that L(R) = L(E), with
 - Exactly one accept state.
 - No incoming arc to the start state.
 - No outgoing arc from the accept state.

51 of 68

Regular Expression to ϵ -NFA

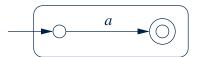
Base Cases:

ullet ϵ



• Ø

a



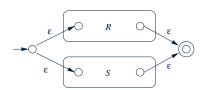
[*a* ∈ Σ]

Regular Expression to ϵ -NFA

Recursive Cases:

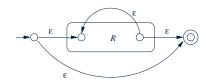
[R and S are RE's]

• R + S



RS

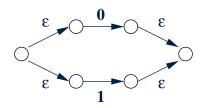
R*



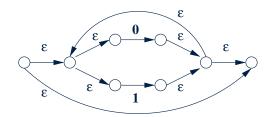
53 of 68

Regular Expression to ϵ -NFA: Examples (1.1) ASSONDE

• 0 + 1

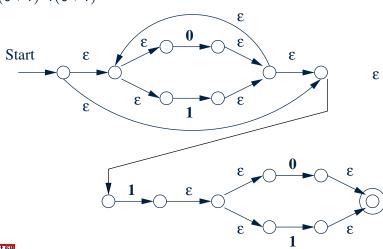


• $(0+1)^*$



Regular Expression to ϵ -NFA: Examples (1.2) ASSONDE

• (0+1)*1(0+1)



Minimizing DFA: Motivation

- Recall: Regular Expresion $\longrightarrow \epsilon$ -NFA \longrightarrow DFA
- DFA produced by the subset construction (with lazy evaluation) may not be minimum on its size of state.
- When the required size of memory is sensitive (e.g., processor's cache memory), the fewer number of DFA states, the better.


```
ALGORITHM: MinimizeDFAStates INPUT: DFA M = (Q, \Sigma, \delta, q_0, F) OUTPUT: M' s.t. minimum |Q| and equivalent behaviour as M PROCEDURE: P := \emptyset \ /* \ refined \ partition \ so \ far \ */ T := \left\{ \begin{array}{c} F, Q - F \end{array} \right\} \ /* \ last \ refined \ partition \ */ \\ \text{while} \ (P \neq T): \\ P := T \\ T := \emptyset \\ \text{for} (p \in P \ s.t. \ |p| > 1): \\ \text{find the maximal } S \subseteq p \ s.t. \ \textit{splittable}(p, S) \\ \text{if } S \neq \emptyset \ \text{then} \\ T := T \cup \left\{ S, \ p - S \right\} \\ \text{else} \\ T := T \cup \left\{ p \right\} \\ \text{end}
```

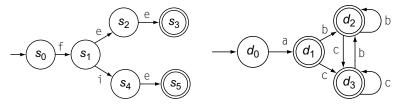
splittable(p, S) holds iff there is $c \in \Sigma$ s.t.

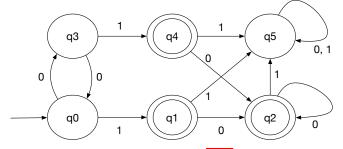
- Transition c leads all $s \in S$ to states in the **same partition** p1.
- Transition *c* leads some $s \in p S$ to a *different partition* $p2 (p2 \neq p1)$.

57 of 68

58 of 68

Minimizing DFA: Examples





Exercises: Minimize the DFA from here; Q1 & Q2, p59, EAC2.

Exercise: Regular Expression to Minimized DFA

Given regular expression r [0..9] + which specifies the pattern of a register name, derive the equivalent DFA with the minimum number of states. Show all steps.

9 of 68

Implementing DFA as Scanner

- The source language has a list of *syntactic categories*:
- A compiler's scanner must recognize words from all syntactic categories of the source language.
 - Each syntactic category is specified via a regular expression.

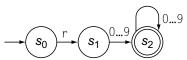
$$r_1$$
 + r_1 + ... + r_n
syn. cat. 1 syn. cat. 2 syn. cat.

- Overall, a scanner should be implemented based on the minimized DFA accommodating all syntactic categories.
- Principles of a scanner:
 - Returns one word at a time
 - Each returned word is the *longest possible* that matches a *pattern*
 - A priority may be specified among patterns (e.g., new is a keyword, not identifier)

60 of 68

Implementing DFA: Table-Driven Scanner (1) LASSONDE

- Consider the *syntactic category* of register names.
- Specified as a regular expression: r[0..9]+
- Afer conversion to ϵ -NFA, then to DFA, then to **minimized DFA**:



• The following tables encode knowledge about the above DFA:

61 of 68

Implementing DFA: Table-Driven Scanner (2 LASSONDE

The scanner then is implemented via a 4-stage skeleton:

```
NextWord()
 -- Stage 1: Initialization
 state := s_0 ; word := \epsilon
 initialize an empty stack S; s.push(bad)
 -- Stage 2: Scanning Loop
 while (state ≠ Se)
  NextChar(char) ; word := word + char
  if state ∈ F then reset stack S end
  s.push(state)
  cat := CharCat[char]
  state := \delta[state, cat]
 -- Stage 3: Rollback Loop
 while (state \notin F \land state \neq bad)
  state := s.pop()
  truncate word
 -- Stage 4: Interpret and Report
 if state ∈ F then return Type[state]
 else return invalid
 end
```

Index (1)

Scanner in Context

Scanner: Formulation & Implementation

Alphabets

Strings (1)

Strings (2)

Review Exercises: Strings

Languages

Review Exercises: Languages

Problems

Regular Expressions (RE): Introduction

RE: Language Operations (1)

63 of 68

Index (2)

RE: Language Operations (2)

RE: Construction (1)

RE: Construction (2)

RE: Construction (3)

RE: Construction (4)

RE: Review Exercises

RE: Operator Precedence

DFA: Deterministic Finite Automata (1.1)

DFA: Deterministic Finite Automata (1.2)

DFA: Deterministic Finite Automata (1.3)

Review Exercises: Drawing DFAs

64 of 68

Index (3)

DFA: Deterministic Finite Automata (2.1)

DFA: Deterministic Finite Automata (2.2)

DFA: Deterministic Finite Automata (2.3)

DFA: Deterministic Finite Automata (2.4)

DFA: Deterministic Finite Automata (2.5.1)

DFA: Deterministic Finite Automata (2.5.2)

Review Exercises: Formalizing DFAs

NFA: Nondeterministic Finite Automata (1.1)

NFA: Nondeterministic Finite Automata (1.2)

NFA: Nondeterministic Finite Automata (2)

NFA: Nondeterministic Finite Automata (3.1)

65 of 68

Index (4)

NFA: Nondeterministic Finite Automata (3.2)

NFA: Nondeterministic Finite Automata (4)

 $DFA \equiv NFA (1)$

DFA \equiv NFA (2.2): Lazy Evaluation (1)

DFA \equiv NFA (2.2): Lazy Evaluation (2)

DFA \equiv NFA (2.2): Lazy Evaluation (3)

E-NFA: Examples (1)

e-NFA: Examples (2)

ε-NFA: Formalization (1)

∈-NFA: Formalization (2)

 ϵ -NFA: Epsilon-Closures (1)

Index (5)

€-NFA: Epsilon-Closures (2)

∈-NFA: Formalization (3)

e-NFA: Formalization (4)

DFA $\equiv \epsilon$ -NFA: Subset Construction (1)

DFA $\equiv \epsilon$ -NFA: Subset Construction (2)

Regular Expression to ϵ -NFA

Regular Expression to ϵ -NFA

Regular Expression to ϵ -NFA

Regular Expression to ϵ -NFA: Examples (1.1)

Regular Expression to ϵ -NFA: Examples (1.2)

Minimizing DFA: Motivation

67 of 68

Index (6)

Minimizing DFA: Algorithm

Minimizing DFA: Examples

Exercise:

Regular Expression to Minimized DFA

Implementing DFA as Scanner

Implementing DFA: Table-Driven Scanner (1)

Implementing DFA: Table-Driven Scanner (2)

Parser: Syntactic Analysis

Readings: EAC2 Chapter 3

EECS4302 M: Compilers and Interpreters Winter 2020

CHEN-WEI WANG

Parser in Context

Recall:

- Treats the input programas as a a sequence of <u>classified</u> tokens/words
- Applies rules parsing token sequences as

abstract syntax trees (ASTs)

[**syntactic** analysis]

- Upon termination:
 - Reports token sequences not derivable as ASTs
 - Produces an AST
- No longer considers *every character* in input program.
- Derivable token sequences constitute a context-free language (CFL).

2 of 96

Context-Free Languages: Introduction

- We have seen *regular languages*:
 - o Can be described using finite automata or regular expressions.
 - Satisfy the *pumping lemma*.
- Languages with a *recursive* structure are provably *non-regular*. e.g., $\{0^n1^n \mid n \ge 0\}$
- Context-free grammars (CFG's) are used to describe strings that can be generated in a recursive fashion.
- Context-free languages (CFL's) are:
 - Languages that can be described using CFG's.
 - A proper superset of the set of regular languages.

8 of 96

CFG: Example (1.1)

• The language that we previously proved as non-regular

$$\{0^n \# 1^n \mid n \ge 0\}$$

can be described using the following grammar:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

- A grammar contains a collection of substitution or production rules, where:
 - ∘ A *terminal* is a word $w \in \Sigma^*$ (e.g., 0, 1, *etc.*).
 - ∘ A variable or non-terminal is a word $w \notin \Sigma^*$ (e.g., A, B, etc.).
 - A start variable occurs on the LHS of the topmost rule (e.g., A).

1 of 96

CFG: Example (1.2)

- Given a grammar, generate a string by:
- 1. Write down the start variable.
- **2.** Choose a production rule where the *start variable* appears on the LHS of the arrow, and *substitute* it by the RHS.
- **3.** There are two cases of the re-written string:
 - **3.1** It contains *no* variables, then you are done.
 - **3.2** It contains *some* variables, then *substitute* each variable using the relevant *production rules*.
- 4. Repeat Step 3.
- e.g., We can generate an *infinite* number of strings from

$$\begin{array}{ccc}
A & \rightarrow & 0A1 \\
A & \rightarrow & B \\
B & \rightarrow & \#
\end{array}$$

$$\circ$$
 $A \Rightarrow B \Rightarrow \#$

$$\circ A \Rightarrow 0A1 \Rightarrow 0B1 \Rightarrow 0#1$$

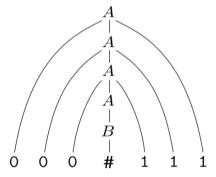
$$\circ$$
 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$

○ ..

CFG: Example (1.2)

Given a CFG, the *derivation* of a string can be shown as a *parse tree*.

e.g., The derivation of 000#111 has the parse tree



CFG: Example (2)

Design a CFG for the following language:

$$\{w \mid w \in \{0,1\}^* \land w \text{ is a palidrome}\}$$

e.g., 00, 11, 0110, 1001, etc.

 $\begin{array}{ccc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0 \\ P & \rightarrow & 1 \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$

7 of 96

CFG: Example (3)

Design a CFG for the following language:

$$\{ww^{R} \mid w \in \{0,1\}^{*}\}$$

e.g., 00, 11, 0110, etc.

$$\begin{array}{ccc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$$

CFG: Example (4)

Design a CFG for the set of binary strings, where each block of 0's followed by at least as many 1's.

• We use *S* to represent one such string, and *A* to represent each such block in *S*.

```
S \rightarrow \epsilon {BC of S}

S \rightarrow AS {RC of S}

A \rightarrow \epsilon {BC of A}

A \rightarrow 01 {BC of A}

A \rightarrow 0A1 {RC of A: equal 0's and 1's}

A \rightarrow A1 {RC of A: more 1's}
```

9 of 96

CFG: Example (5.1) Version 1

Design the grammar for the following small expression language, which supports:

- Arithmetic operations: +, -, *, /
- Relational operations: >, <, >=, <=, ==, /=
- Logical operations: true, false, !, &&, ||, => Start with the variable *Expression*.
- There are two possible versions:
 - **1.** All operations are mixed together. [e.g., (1 + true)/false]
 - **2.** Relevant operations are grouped together. Try both!

CFG: Example (5.2) Version 1

Expression → IntegerConstant

-IntegerConstantBooleanConstant

| BinaryOp | UnaryOp | (Expression)

IntegerConstant → Digit

| Digit IntegerConstant

Digit $\rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

BooleanConstant → TRUE | FALSE

11 of 96

LASSONDE

CFG: Example (5.3) Version 1

BinaryOp → Expression + Expression | Expression - Expression | Expression * Expression | Expression / Expression | Expression & Expression | Expression | Expression | Expression = Expression | Expression / Expression | Expression > Expression | Expression > Expression | Expression < Expression

UnaryOp → ! Expression



However, Version 1 of CFG:

Parses string that requires further semantic analysis (e.g., type checking):

e.g., 3 => 6

• Is *ambiguous*, meaning that a string may have <u>more than one</u> ways to interpret it.

e.g., Draw the parse tree(s) for 3 * 5 + 4

13 of 96

CFG: Example (5.5) Version 2

Expression \rightarrow ArithmeticOp

| RelationalOp | LogicalOp

(Expression)

IntegerConstant → Digit

| Digit IntegerConstant

 $\textit{Digit} \qquad \qquad \rightarrow \quad 0 \; | \; 1 \; | \; 2 \; | \; 3 \; | \; 4 \; | \; 5 \; | \; 6 \; | \; 7 \; | \; 8 \; | \; 9$

BooleanConstant → TRUE | FALSE

14 of 96

CFG: Example (5.6) Version 2

```
ArithmeticOp →
                  ArithmeticOp + ArithmeticOp
                  ArithmeticOp - ArithmeticOp
                  ArithmeticOp * ArithmeticOp
                  ArithmeticOp / ArithmeticOp
                  (ArithmeticOp)
                  IntegerConstant
                  -IntegerConstant
RelationalOp →
                  ArithmeticOp == ArithmeticOp
                  ArithmeticOp /= ArithmeticOp
                  ArithmeticOp > ArithmeticOp
                  ArithmeticOp < ArithmeticOp
LogicalOp
                  LogicalOp & & LogicalOp
                  LogicalOp | | LogicalOp
                  LogicalOp => LogicalOp
                  ! LogicalOp
                  (LogicalOp)
                  RelationalOp
                  BooleanConstant
```

CFG: Formal Definition (1)

- A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S) :
 - *V* is a finite set of *variables*.
 - \circ Σ is a finite set of *terminals*.

$$V \cap \Sigma = \emptyset$$

• R is a finite set of rules s.t.

$$R \subseteq \{v \rightarrow s \mid v \in V \land s \in (V \cup \Sigma)^*\}$$

- ∘ S ∈ V is is the *start variable*.
- Given strings $u, v, w \in (V \cup \Sigma)^*$, variable $A \in V$, and a rule $A \rightarrow w$:
 - $uAv \Rightarrow uwv$ menas that uAv yields uwv.
 - \circ $u \stackrel{*}{\Rightarrow} v$ means that u derives v, if:
 - u = v; or
 - $U \Rightarrow U_1 \Rightarrow U_2 \Rightarrow \cdots \Rightarrow U_k \Rightarrow V$

[a yield sequence]

• Given a CFG $G = (V, \Sigma, R, S)$, the language of G

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

17 of 96

CFG: Example (5.7) Version 2

However, Version 2 of CFG:

- o Eliminates some cases for further semantic analysis:
 - e.g., (1 + 2) = (5 / 4)

[no parse tree]

- Still Parses string that might require further semantic analysis:
 e.g., (1 + 2) / (5 (2 + 3))
- Is ambiguous, meaning that a string may have more than one ways to interpret it.
 - e.g., Draw the parse tree(s) for 3 * 5 + 4

CFG: Formal Definition (2): Example

• Design the CFG for strings of properly-nested parentheses.

e.g., (), () (), ((() ())) (), etc.

Present your answer in a formal manner.

• $G = (\{S\}, \{(,)\}, R, S)$, where R is

$$S \rightarrow (S) \mid SS \mid \epsilon$$

• Draw parse trees for the above three strings that *G* generates.

CFG: Formal Definition (3): Example

- Consider the grammar $G = (V, \Sigma, R, S)$:
 - ∘ R is

- ∘ *V* = {*Expr*, *Term*, *Factor*}
- $\circ \Sigma = \{a, +, \star, (,)\}$
- \circ S = Expr
- *Precedence* of operators + and * is embedded in the grammar.
 - "Plus" is specified at a **higher** level (*Expr*) than is "times" (*Term*).
 - Both operands of a multiplication (Factor) may be parenthesized.

19 of 96

Regular Expressions to CFG's

 Recall the semantics of regular expressions (assuming that we do not consider Ø):

$$L(\epsilon) = \{\epsilon\}$$

 $L(a) = \{a\}$
 $L(E+F) = L(E) \cup L(F)$
 $L(EF) = L(E)L(F)$
 $L(E^*) = (L(E))^*$
 $L(E) = L(E)$

• e.g., Grammar for $(00 + 1)^* + (11 + 0)^*$

$$S \rightarrow A \mid B$$

$$A \rightarrow \epsilon \mid AC$$

$$C \rightarrow 00 \mid 1$$

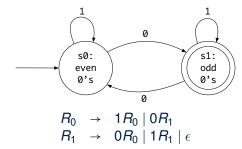
$$B \rightarrow \epsilon \mid BD$$

$$D \rightarrow 11 \mid 0$$

20 of 96

DFA to CFG's

- Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$:
 - ∘ Make a variable R_i for each state $q_i ∈ Q$.
 - Make R_0 the start variable, where q_0 is the start state of M.
 - Add a rule $R_i \rightarrow aR_i$ to the grammar if $\delta(q_i, a) = q_i$.
 - ∘ Add a rule R_i → ϵ if q_i ∈ F.
- e.g., Grammar for



21 of 96

CFG: Leftmost Derivations (1)

$$Expr \rightarrow Expr + Term | Term$$
 $Term \rightarrow Term * Factor | Factor$
 $Factor \rightarrow (Expr) | a$

• Unique leftmost derivation for the string a + a * a:

$$Expr \Rightarrow Expr + Term \\ \Rightarrow Term + Term \\ \Rightarrow Factor + Term \\ \Rightarrow a + Term \\ \Rightarrow a + Term * Factor \\ \Rightarrow a + Factor * Factor \\ \Rightarrow a + a * Factor \\ \Rightarrow a + a * a * a$$

This leftmost derivation suggests that a * a is the right operand of +.

CFG: Rightmost Derivations (1)

$$Expr \rightarrow Expr + Term | Term$$
 $Term \rightarrow Term * Factor | Factor$
 $Factor \rightarrow (Expr) | a$

Unique rightmost derivation for the string a + a * a:

$$Expr \Rightarrow Expr + Term$$

$$\Rightarrow Expr + Term * Factor$$

$$\Rightarrow Expr + Term * a$$

$$\Rightarrow Expr + Factor * a$$

$$\Rightarrow Expr + a * a$$

$$\Rightarrow Term + a * a$$

$$\Rightarrow Factor + a * a$$

$$\Rightarrow a + a * a$$

This rightmost derivation suggests that a * a is the right operand of +.

23 of 96

CFG: Leftmost Derivations (2)

$$Expr \rightarrow Expr + Term \mid Term$$
 $Term \rightarrow Term * Factor \mid Factor$
 $Factor \rightarrow (Expr) \mid a$

• Unique leftmost derivation for the string (a + a) * a:

$$Expr \Rightarrow Term \\ \Rightarrow Term * Factor \\ \Rightarrow Factor * Factor \\ \Rightarrow (Expr) * Factor \\ \Rightarrow (Expr + Term) * Factor \\ \Rightarrow (Term + Term) * Factor \\ \Rightarrow (Factor + Term) * Factor \\ \Rightarrow (a + Term) * Factor \\ \Rightarrow (a + Factor) * Factor \\ \Rightarrow (a + a) * Factor \\ \Rightarrow (a + a) * A$$

This <u>leftmost derivation</u> suggests that (a + a) is the left poperand of \star .

CFG: Rightmost Derivations (2)

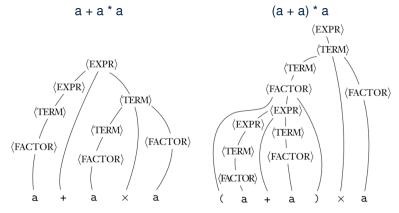
 $Expr \rightarrow Expr + Term \mid Term$ $Term \rightarrow Term * Factor \mid Factor$ $Factor \rightarrow (Expr) \mid a$

• Unique rightmost derivation for the string (a + a) * a:

This $\frac{\textit{rightmost derivation}}{\textit{operand of } \star}$ suggests that (a + a) is the left

CFG: Parse Trees vs. Derivations (1)

• Parse trees for (leftmost & rightmost) derivations of expressions:



 Orders in which derivations are performed are not reflected on parse trees.

CFG: Parse Trees vs. Derivations (2)

- A string $w \in \Sigma^*$ may have more than one derivations.
 - **Q**: distinct *derivations* for $w \in \Sigma^* \Rightarrow$ distinct *parse trees* for w?
 - **A**: Not in general : Derivations with *distinct orders* of variable substitutions may still result in the *same parse tree*.
- For example:

```
Expr \rightarrow Expr + Term | Term
Term \rightarrow Term * Factor | Factor
Factor \rightarrow (Expr) | a
```

For string a + a * a, the *leftmost* and *rightmost* derivations have *distinct orders* of variable substitutions, but their corresponding *parse trees are the same*.

27 of 96

CFG: Ambiguity: Definition

Given a grammar $G = (V, \Sigma, R, S)$:

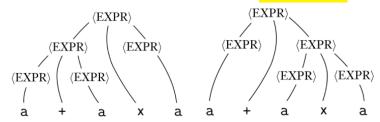
- A string $w \in \Sigma^*$ is derived *ambiguously* in G if there exist two or more *distinct* parse trees or, equally, two or more *distinct* leftmost derivations or, equally, two or more *distinct* rightmost derivations.
 - Here we require that all such derivations have been completed by following a particular order (leftmost or rightmost) to avoid *false alarm*.
- *G* is *ambiguous* if it generates some string ambiguously.

CFG: Ambiguity: Exercise (1)

Is the following grammar ambiguous?

$$Expr \rightarrow Expr + Expr \mid Expr \star Expr \mid (Expr) \mid a$$

Yes : it generates the string a + a * a ambiguously :



 Distinct ASTs (for the same input) mean distinct semantic interpretations: e.g.,

when a post-order traversal is used to implement evaluation

• Exercise: Show *leftmost* derivations for the two parse trees.

29 of 96

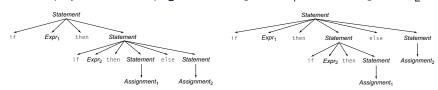
LASSONDE

CFG: Ambiguity: Exercise (2.1)

• Is the following grammar ambiguous?

• Yes : it generates the following string *ambiguously*:

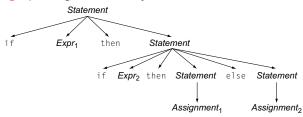
if Expr₁ then if Expr₂ then Assignment₁ else Assignment₂



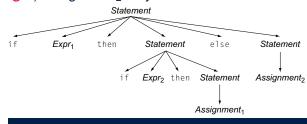
- This is called the *dangling else* problem.
- Exercise: Show *leftmost* derivations for the two parse trees.

CFG: Ambiguity: Exercise (2.2)

(*Meaning 1*) Assignment₂ may be associated with the inner if:



(Meaning 2) Assignment, may be associated with the outer if:



CFG: Ambiguity: Exercise (2.3)

 We may remove the ambiguity by specifying that the dangling else is associated with the nearest if:

Statement → if Expr then Statement
| if Expr then WithElse else Statement
| Assignment

WithElse → if Expr then WithElse else WithElse
| Assignment

- When applying if ... then WithElse else Statement:
 - The *true* branch will be produced via *WithElse*.
 - The *false* branch will be produced via *Statement*.

There is **no circularity** between the two non-terminals.

R1 of 96

Discovering Derivations

- Given a CFG $G = (V, \Sigma, R, S)$ and an input program $p \in \Sigma^*$:
 - So far we *manually* come up a valid derivation $S \stackrel{*}{\Rightarrow} p$.
 - A parser is supposed to <u>automate</u> this derivation process.
 Given an input sequence of (t, c) pairs, where token t (e.g., r241) belongs to some <u>syntactic category</u> c (e.g., register):
 Either output a <u>valid derivation</u> (as an <u>AST</u>), or signal an <u>error</u>.
- In the process of building an AST for the input program:
 - Root of AST: start symbol S of G
 - Internal nodes: A subset of variables V of G
 - Leaves of AST: token sequence input by the scanner
 - ⇒ Discovering the *grammatical connections* (according to *R*) between the root, internal nodes, and leaves is the hard part!
- Approaches to Parsing: $[w \in (V \cup \Sigma)^*, A \in V, A \to w] \in R]$ • Top-down parsing
 - For a node representing **A**, extend it with a subtree representing **w**.
 - Bottom-up parsing
 - For a substring matching w, build a node representing A accordingly.

3 01 96

LASSONDE

TDP: Discovering Leftmost Derivation

```
ALGORITHM: TDParse
 INPUT: CFG G = (V, \Sigma, R, S)
 OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE:
 root := a new node for the start symbol S
 focus := root
 initialize an empty stack trace
 trace, push (null)
 word := NextWord()
 while (true):
    if focus \in V then
       if \exists \underline{unvisited} rule focus \rightarrow \beta_1 \beta_2 \dots \beta_n \in R then
         create \beta_1, \beta_2 \dots \beta_n as children of focus
          trace.push(\beta_n\beta_{n-1}...\beta_2)
          focus := \beta_1
         if focus = S then report syntax error
         else backtrack
    elseif word matches focus them
       word := NextWord()
       focus ·= trace non()
    elseif word = EOF \( \) focus = null then return root
    else backtrack
```

backtrack \(\delta\) pop focus.siblings; focus := focus.parent; focus.resetChildren

TDP: Exercise (1)

• Given the following CFG G:

Trace TDParse on how to build an AST for input a + a * a.

- Running TDParse with G results an infinite loop !!!
 - TDParse focuses on the *leftmost* non-terminal.
 - The grammar **G** contains *left-recursions*.
- We must first convert left-recursions in G to right-recursions.

R5 of 96

TDP: Exercise (2)

• Given the following CFG G:

Exercise. Trace *TDParse* on building AST for a + a * a.

Exercise. Trace *TDParse* on building AST for (a + a) * a.

Q: How to handle ϵ -productions (e.g., $Expr \rightarrow \epsilon$)?

A: Execute focus := trace.pop() to advance to next node.

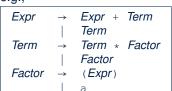
- Running *TDParse* will **terminate** :: **G** is **right-recursive**.
- We will learn about a systematic approach to converting left-recursions in a given grammar to right-recursions.

86 of 96

Left-Recursions (LR): Direct vs. Indirect

Given CFG $G = (V, \Sigma, R, S), \alpha, \beta, \gamma \in (V \cup \Sigma)^*, G$ contains:

- \circ A *cycle* if $\exists A \in V \bullet A \stackrel{*}{\Rightarrow} A$
- A **direct** LR if $A \rightarrow A\alpha \in R$ for non-terminal $A \in V$



• An *indirect* LR if $A \rightarrow B\beta \in R$ for non-terminals $A, B \in V$, $B \stackrel{*}{\Rightarrow} A\gamma$

$$\begin{array}{ccc}
A & \rightarrow & Br \\
B & \rightarrow & Cd \\
C & \rightarrow & At
\end{array}$$

 $A \rightarrow Br, B \stackrel{*}{\Rightarrow} Atd$

 $A \rightarrow Ba, B \stackrel{*}{\Rightarrow} Aafd$

87 of 96

TDP: (Preventively) Eliminating LRs


```
ALGORITHM: RemoveLR
         INPUT: CFG G = (V, \Sigma, R, S)
         ASSUME: G acyclic \land with no \epsilon-productions
         OUTPUT: G' s.t. G' \equiv G, G' has no
 5
                       indirect & direct left-recursions
       PROCEDURE:
          impose an order on V: \langle \langle A_1, A_2, \dots, A_n \rangle \rangle
         for i: 1 .. n:
 9
            for j: 1 ... i-1:
10
              if \exists A_i \rightarrow A_i \gamma \in R \land A_i \rightarrow \delta_1 \mid \delta_2 \mid \ldots \mid \delta_m \in R then
11
                 replace A_i \rightarrow A_i \gamma with A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_m \gamma
12
               end
13
            for A_i \rightarrow A_i \alpha \mid \beta \in R:
               replace it with: A_i \rightarrow \beta A', A' \rightarrow \alpha A' \mid \epsilon
```

L9 to **L11**: Remove *indirect* left-recursions from A_1 to A_{i-1} . **L12** to **L13**: Remove *direct* left-recursions from A_1 to A_{i-1} . **Loop Invariant (outer for-loop)**? At the start of i^{th} iteration:

• No direct or indirect left-recursions for A_1, A_2, \dots, A_{i-1} .

• More precisely: $\forall k : k < i \bullet \neg (\exists I \bullet I \le k \land A_k \to A_I \cdots \in R)$

LASSONDE

CFG: Eliminating ϵ -Productions (1)

- Motivations:
 - *TDParse* requires CFG with no ϵ -productions.
 - \circ *RemoveLR* produces CFG which may contain ϵ -productions.
- $\epsilon \notin L \Rightarrow \exists \ \mathsf{CFG} \ G = (V, \ \Sigma, \ R, \ S) \ \mathsf{s.t.} \ G \ \mathsf{has} \ \mathsf{no} \ \epsilon\mathsf{-productions}.$ An $\epsilon\mathsf{-production}$ has the form $A \to \epsilon$.
- A variable A is *nullable* if $A \stackrel{*}{\Rightarrow} \epsilon$.
 - Each terminal symbol is not nullable.
 - Variable *A* is *nullable* if either:
 - $A \rightarrow \epsilon \in R$; or
 - $A \rightarrow B_1 B_2 \dots B_k \in R$, where each variable B_i $(1 \le i \le k)$ is a *nullable*.
- Given a production B → CAD, if only variable A is nullable, then there are 2 versions of B: B → CAD | CD
- In general, given a production A → X₁X₂...X_k with k symbols, if m of the k symbols are nullable:
 - \circ m < k: There are 2^m versions of A.
 - \circ m = k: There are $2^m 1$ versions of A.

R9 of 96

CFG: Eliminating ϵ -Productions (2)

• Eliminate ϵ -productions from the following grammar:

$$S \rightarrow AB$$

$$A \rightarrow aAA \mid \epsilon$$

$$B \rightarrow bBB \mid \epsilon$$

• Which are the *nullable* variables?

$$S \rightarrow A \mid B \mid AB$$
 $\{S \rightarrow \epsilon \text{ not included}\}$
 $A \rightarrow aAA \mid aA \mid a \{A \rightarrow aA \text{ duplicated}\}$
 $B \rightarrow bBB \mid bB \mid b \{B \rightarrow bB \text{ duplicated}\}$

Backtrack-Free Parsing (1)

- TDParse automates the top-down, leftmost derivation process by consistently choosing production rules (e.g., in order of their appearance in CFG).
 - This inflexibility may lead to inefficient runtime performance due to the need to backtrack.
 - e.g., It may take the construction of a giant subtree to find out a mismatch with the input tokens, which end up requiring it to backtrack all the way back to the root (start symbol).
- We may avoid backtracking with a modification to the parser:
 - When deciding which production rule to choose, consider:
 - (1) the *current* input symbol
 - (2) the **consequential** *first* symbol if a rule was applied for *focus*

[lookahead symbol]

- Using a one symbol lookhead, w.r.t. a right-recursive CFG, each alternative for the leftmost nonterminal leads to a unique terminal, allowing the parser to decide on a choice that prevents backtracking.
- Such CFG is *backtrack free* with a *lookhead* of one symbol.
- We also call such backtrack-free CFG a predictive grammar.

The FIRST Set: Definition

- Say we write $T \subset \mathbb{P}(\Sigma^*)$ to denote the set of valid tokens recognizable by the scanner.
- **FIRST** (α) \triangleq set of symbols that can appear as the *first word* in some string derived from α .
- More precisely:

$$\mathbf{FIRST}(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in T \\ \{w \mid w \in \Sigma^* \land \alpha \stackrel{*}{\Rightarrow} w\beta \land \beta \in (V \cup \Sigma)^*\} & \text{if } \alpha \in V \end{cases}$$

The FIRST Set: Examples

• Consider this *right*-recursive CFG:

• Compute First for each terminal (e.g., num, +, ():

• Compute **FIRST** for each non-terminal (e.g., *Expr*, *Term'*):

	Expr	Expr'	Term	Term'	Factor
FIRST	<pre>(, name, num</pre>	+, -, ϵ	<pre>(, name, num</pre>	X, \div , ϵ	<pre>(, name, num</pre>

43 of 96

Computing the FIRST Set

$$\textbf{FIRST}(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in \mathcal{T} \\ \{w \mid w \in \Sigma^* \land \alpha \xrightarrow{*} w\beta \land \beta \in (V \cup \Sigma)^*\} & \text{if } \alpha \in V \end{cases}$$

```
ALGORITHM: GetFirst
   INPUT: CFG G = (V, \Sigma, R, S)
   T \subset \Sigma^* denotes valid terminals
   OUTPUT: FIRST: V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})
   for \alpha \in (T \cup \{eof, \epsilon\}): First(\alpha) := \{\alpha\}
   for A \in V: First(A) := \emptyset
   lastFirst := ∅
   while (lastFirst # FIRST) :
       lastFirst := FIRST
       for A \rightarrow \beta_1 \beta_2 \dots \beta_k \in R s.t. \forall \beta_i : \beta_i \in (T \cup V):
           rhs := First(\beta_1) - {\epsilon}
           for (i := 1; \epsilon \in FIRST(\beta_i) \land i < k; i++):
               rhs := rhs \cup (FIRST(\beta_{i+1}) - {\epsilon})
           if i = k \land \epsilon \in FIRST(\beta_k) then
               rhs := rhs \cup \{\epsilon\}
           First(A) := First(A) \cup rhs
```

Computing the FIRST Set: Extension

• Recall: FIRST takes as input a token or a variable.

$$\boxed{\mathsf{FIRST}: V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})}$$

 The computation of variable rhs in algoritm GetFirst actually suggests an extended, overloaded version:

FIRST :
$$(V \cup T \cup \{\epsilon, eof\})^* \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$$

FIRST may also take as input a string $\beta_1 \beta_2 \dots \beta_n$ (RHS of rules).

• More precisely:

$$\begin{aligned} & \mathsf{FIRST}(\beta_1 \beta_2 \dots \beta_n) = \\ & \left\{ \begin{array}{l} & \forall i : 1 \le i < k \bullet \epsilon \in \mathsf{FIRST}(\beta_i) \\ & \land \\ & \epsilon \notin \mathsf{FIRST}(\beta_k) \end{array} \right. \end{aligned}$$

Note. β_k is the first symbol whose **FIRST** set does not contain ϵ .

45 of 96

Extended FIRST Set: Examples

Consider this *right*-recursive CFG:

```
e.g., FIRST(Term\ Expr') = FIRST(Term) = \{\underline{(}, name, num\}
```

e.g.,
$$FIRST(+ Term Expr') = FIRST(+) = \{+\}$$

e.g.,
$$FIRST(- Term Expr') = FIRST(-) = \{-\}$$

e.g.,
$$FIRST(\epsilon) = \{\epsilon\}$$

46 of 96

Is the FIRST Set Sufficient

• Consider the following three productions:

In TDP, when the parser attempts to expand an Expr' node, it **looks ahead with one symbol** to decide on the choice of rule: $FIRST(+) = \{+\}$, $FIRST(-) = \{-\}$, and $FIRST(\epsilon) = \{\epsilon\}$.

Q. When to choose rule (3) (causing focus := trace.pop())?

A?. Choose rule (3) when $focus \neq FIRST(+) \land focus \neq FIRST(-)$?

- Correct but inefficient in case of illegal input string: syntax error is only reported after possibly a long series of backtrack.
- Useful if parser knows which words can appear, after an application of the ε-production (rule (3)), as leadling symbols.
- **FOLLOW** $(v:V) \triangleq$ set of symbols that can appear to the immediate right of a string derived from α .

FOLLOW(
$$v$$
) = { $w \mid w, x, y \in \Sigma^* \land v \stackrel{*}{\Rightarrow} x \land S \stackrel{*}{\Rightarrow} xwy$ }

17 of 96

The Follow Set: Examples

• Consider this *right*-recursive CFG:

• Compute **Follow** for each non-terminal (e.g., *Expr*, *Term'*):

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

Computing the Follow Set


```
\mathsf{Follow}(v) = \{ w \mid w, x, y \in \Sigma^* \land v \overset{*}{\Rightarrow} x \land S \overset{*}{\Rightarrow} xwy \}
```

```
ALGORITHM: GetFollow
   INPUT: CFG G = (V, \Sigma, R, S)
   OUTPUT: Follow: V \longrightarrow \mathbb{P}(T \cup \{eof\})
   for A \in V: Follow(A) := \emptyset
   Follow(S) := \{eof\}
   lastFollow := Ø
   while (lastFollow # Follow):
      lastFollow := Follow
      for A \rightarrow \beta_1 \beta_2 \dots \beta_k \in R:
         trailer := Follow(A)
          for i: k .. 1:
             if \beta_i \in V then
                Follow(\beta_i) := Follow(\beta_i) \cup trailer
                if \epsilon \in \texttt{First}(\beta_i)
                   then trailer := trailer \cup (FIRST(\beta_i) - \epsilon)
                    else trailer := FIRST(\beta_i)
             else
                 trailer := First(\beta_i)
```

49 of 96

Backtrack-Free Grammar

- A backtrack-free grammar (for a top-down parser), when expanding the focus internal node, is always able to choose a unique rule with the one-symbol lookahead (or report a syntax error when no rule applies).
- To formulate this, we first define:

$$\mathsf{FIRST}^+(A \to \beta) = \begin{cases} \mathsf{FIRST}(\beta) & \text{if } \epsilon \notin \mathsf{FIRST}(\beta) \\ \mathsf{FIRST}(\beta) \cup \mathsf{FOLLOW}(A) & \text{otherwise} \end{cases}$$

FIRST(β) is the extended version where β may be $\beta_1\beta_2...\beta_n$

• Now, a *backtrack-free grammar* has each of its productions $A \rightarrow \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_n$ satisfying:

$$\forall i, j : 1 \leq i, j \leq n \land i \neq j \bullet \mathsf{FIRST}^+(\gamma_i) \cap \mathsf{FIRST}^+(\gamma_i) = \emptyset$$

TDP: Lookahead with One Symbol

```
ALGORITHM: TDParse
 INPUT: CFG G = (V, \Sigma, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE:
 root := a new node for the start symbol S
 focus := root
 initialize an empty stack trace
 trace.push(null)
 word := NextWord()
 while (true):
   if focus ∈ V then % use FOLLOW set as well?
      if \exists unvisited rule focus \rightarrow \beta_1 \beta_2 \dots \beta_n \in R \land word \in First^+(\beta) then
         create \beta_1, \beta_2 \dots \beta_n as children of focus
         trace. push (\beta_n \beta_{n-1} \dots \beta_2)
         focus := \beta_1
      else
         if focus = S then report syntax error
         else backtrack
    elseif word matches focus then
      word := NextWord()
       focus := trace.pop()
    elseif word = EOF \( \) focus = null then return root
    else backtrack
```

backtrack \(\delta\) pop focus.siblings; focus := focus.parent; focus.resetChildren

51 of 96

Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?

- $\circ \ \epsilon \notin \mathsf{FIRST}(\mathit{Factor}) \Rightarrow \mathsf{FIRST}^+(\mathit{Factor}) = \mathsf{FIRST}(\mathit{Factor})$
- o FIRST(Factor → name) = {name}
 o FIRST(Factor → name [ArgList]) = {name}
 o FIRST(Factor → name (ArgList)) = {name}
 - ... The above grammar is **not** backtrack free.
 - ⇒ To expand an AST node of *Factor*, with a *lookahead* of name, the parser has no basis to choose among rules 11, 12, and 13.

Backtrack-Free Grammar: Left-Factoring

- A CFG is <u>not</u> backtrack free if there exists a <u>common prefix</u> (name) among the RHS of <u>multiple</u> production rules.
- To make such a CFG backtrack-free, we may transform it using left factoring: a process of extracting and isolating common prefixes in a set of production rules.
 - Identify a common prefix α :

$$A \rightarrow \alpha\beta_1 \mid \alpha\beta_2 \mid \dots \mid \alpha\beta_n \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_j$$
 [each of $\gamma_1, \gamma_2, \dots, \gamma_j$ does not begin with α]

Rewrite that production rule as:

$$\begin{array}{ccc}
A & \rightarrow & \alpha B \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_j \\
B & \rightarrow & \beta_1 \mid \beta_2 \mid \dots \mid \beta_n
\end{array}$$

- New rule $B \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$ may <u>also</u> contain *common prefixes*.
- Rewriting continues until no common prefixes are identified.

53 of 96

Left-Factoring: Exercise

• Use *left-factoring* to remove all *common prefixes* from the following grammar.

• Identify common prefix name and rewrite rules 11, 12, and 13:

Factor
$$\rightarrow$$
 name Arguments

Arguments \rightarrow [ArgList]

| (ArgList)

Any more *common prefixes*?

[No]

TDP: Terminating and Backtrack-Free

- Given an arbitrary CFG as input to a top-down parser:
 - Q. How do we avoid a *non-terminating* parsing process?
 - **A.** Convert left-recursions to right-recursion.
 - Q. How do we minimize the need of *backtracking*?
 - A. left-factoring & one-symbol lookahead using FIRST⁺
- <u>Not</u> every context-free *language* has a corresponding backtrack-free context-free grammar.

Given a CFL I, the following is undecidable:

$$\exists cfg \mid L(cfg) = I \land isBacktrackFree(cfg)$$

• Given a CFG $g = (V, \Sigma, R, S)$, whether or not g is **backtrack-free** is **decidable**:

For each $A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n \in R$:

$$\forall i, j : 1 \le i, j \le n \land i \ne j \bullet \mathsf{FIRST}^+(\gamma_i) \cap \mathsf{FIRST}^+(\gamma_j) = \emptyset$$

55 of 96

Backtrack-Free Parsing (2.1)

- A *recursive-descent* parser is:
 - A top-down parser
 - Structured as a set of mutually recursive procedures
 Each procedure corresponds to a non-terminal in the grammar.

See an example.

- Given a **backtrack-free** grammar, a tool (a.k.a. **parser generator**) can automatically generate:
 - FIRST, FOLLOW, and FIRST* sets
 - An efficient recursive-descent parser
 This generated parser is called an LL(1) parser, which:
 - Processes input from Left to right
 - Constructs a Leftmost derivation
 - Uses a lookahead of **1** symbol
- LL(1) grammars are those working in an LL(1) scheme.
 LL(1) grammars are backtrack-free by definition.

56 of 96

Backtrack-Free Parsing (2.2)

Consider this CFG with FIRST⁺ sets of the RHSs:

		Pı	FIRST ⁺	
2	Expr'	\rightarrow	+ Term Expr'	{+}
3			- Term Expr′	{ - }
4			ϵ	$\{\epsilon, \mathrm{eof}, \underline{)}\}$

• The corresponding *recursive-descent* parser is structured as:

```
ExprPrim()
if word = + v word = - then /* Rules 2, 3 */
    word := NextWord()
if (Term())
    then return ExprPrim()
    else return false
elseif word = ) v word = eof then /* Rule 4 */
    return true
else
    report a syntax error
    return false
end

Term()
...
```

See: parser generator

LL(1) Parser: Exercise

Consider the following grammar:

```
L 
ightharpoonup R a R 
ightharpoonup aba aba Q 
ightharpoonup bbc | caba | bc | R bc
```

- **Q.** Is it suitable for a *top-down predictive* parser?
- If so, show that it satisfies the *LL(1)* condition.
- If not, identify the problem(s) and correct it (them). Also show that the revised grammar satisfies the <u>LL(1)</u> condition.

BUP: Discovering Rightmost Derivation

- In TDP, we build the <u>start variable</u> as the *root node*, and then work towards the *leaves*. [leftmost derivation]
- In Bottom-Up Parsing (BUP):
 - Words (terminals) are still returned from left to right by the scanner.
 - As terminals, or a mix of terminals and variables, are identified as
 reducible to some variable A (i.e., matching the RHS of some
 production rule for A), then a layer is added.
 - Eventually:
 - accept:

The start variable is reduced and all words have been consumed.

reiect:

The next word is not eof, but no further reduction can be identified.

Q. Why can BUP find the *rightmost* derivation (RMD), if any?

A. BUP discovers steps in a *RMD* in its *reverse* order.

59 of 96

BUP: Discovering Rightmost Derivation (1)

- *table*-driven *LR(1)* parser: an implementation for BUP, which
 - Processes input from Left to right
 - o Constructs a Rightmost derivation
 - Uses a lookahead of 1 symbol
- A language has the *LR(1)* property if it:
 - Can be parsed in a single Left to right scan,
 - To build a reversed Rightmost derivation,
 - Using a lookahead of 1 symbol to determine parsing actions.
- Critical step in a bottom-up parser is to find the *next* handle.

60 ot 06

BUP: Discovering Rightmost Derivation (2)


```
ALGORITHM: BUParse
INPUT: CFG G = (V, \Sigma, R, S), Action & Goto Tables
OUTPUT: Report Parse Success or Syntax Error
PROCEDURE:
 initialize an empty stack trace
 trace.push(S) /* start state */
word := NextWord()
while (true)
  state := trace.top()
  act := Action[state, word]
  if act = ''accept'' then
    succeed()
  elseif act = ''reduce A \rightarrow \beta'' then
    trace.pop() 2 \times |\beta| times /* word + state */
    state := trace.top()
    trace.push(A)
    next := Goto[state, A]
    trace.push(next)
  elseif act = ``shift si'' then
    trace.push (word)
    trace.push(Si)
    word := NextWord()
  else
    fail()
```

61 of 96

BUP: Example Tracing (1)

• Consider the following grammar for parentheses:

```
 \begin{array}{cccc} 1 & Goal \rightarrow List \\ 2 & List \rightarrow List Pair \\ 3 & & | Pair \\ 4 & Pair \rightarrow \underline{(\ Pair\ \underline{)}} \\ 5 & & | \underline{(\ \underline{)}\ \underline{)}} \end{array}
```

Assume: tables Action and Goto constructed accordingly:

		Acti	on T	Got	Table	
	State	eof	<u>(</u>	<u>)</u>	List	Pair
	0		s 3		1	2
	1	acc	s 3			4
	2	r 3	r 3			
	3		s 6	s 7		5
	4	r 2	r 2			
	5			s 8		
	6		s 6	s 10		9
	7	r 5	r 5			
	8	r 4	r 4			
	9			s 11		
	10			r 5		
ı	11			r 4		

In **Action** table:

- s_i: shift to state i
- r_i: reduce to the LHS of production #j

BUP: Example Tracing (2.1)

Consider the steps of performing BUP on input ():

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ 0	— none —	_
1	0	(\$ 0	— none —	shift 3
2	3)	\$ 0 <u>(</u> 3	— none —	shift 7
3	7	eof	\$ 0 <u>(</u> 3 <u>)</u> 7	<u>()</u>	reduce 5
4	2	eof	\$ 0 Pair 2	Pair	reduce 3
5	1	eof	\$ 0 <i>List</i> 1	List	accept

63 of 96

BUP: Example Tracing (2.2)

Consider the steps of performing BUP on input (())():

Iteration	State	word	Stack	Handle	Action
initial	_	<u>(</u>	\$ 0	— none —	_
1	0	(\$ 0	— none —	shift 3
2	3	<u>(</u>	\$ 0 <u>(</u> 3	— none —	shift 6
3	6	<u>)</u>	\$ 0 <u>(</u> 3 <u>(</u> 6	— none —	shift 10
4	10)	\$ 0 <u>(</u> 3 <u>(</u> 6 <u>)</u> 10	<u>()</u>	reduce 5
5	5)	\$ 0 <u>(</u> 3 Pair 5	— none —	shift 8
6	8	(\$ 0 <u>(</u> 3 Pair 5 <u>)</u> 8	<u>(</u> Pair <u>)</u>	reduce 4
7	2	<u>(</u>	\$ 0 Pair 2	Pair	reduce 3
8	1	<u>(</u>	\$ 0 List 1	— none —	shift 3
9	3)	\$ 0 <i>List</i> 1 (3	— none —	shift 7
10	7	eof	\$ 0 <i>List</i> 1 <u>(</u> 3 <u>)</u> 7	<u>()</u>	reduce 5
11	4	eof	\$ 0 List 1 Pair 4	List Pair	reduce 2
12	1	eof	\$ 0 List 1	List	accept

BUP: Example Tracing (2.3)

Consider the steps of performing BUP on input ()):

Iteration	State	word	Stack	Handle	Action
initial	_	<u>(</u>	\$ O	— none —	
1	0	(\$ 0	— none —	shift 3
2	3)	\$ 0 <u>(</u> 3	— none —	shift 7
3	7	<u>)</u>	\$ 0 <u>(</u> 3 <u>)</u> 7	— none —	error

55 of 96

LR(1) Items: Definition

- In *LR(1)* parsing, **Action** and **Goto** tabeles encode legitimate ways (w.r.t. a grammar) for finding *handles* (for *reductions*).
- In a *table*-driven *LR(1)* parser, the table-construction algorithm represents each potential *handle* (for a *reduction*) with an *LR(1) item* e.g.,

$$[A \rightarrow \beta \bullet \gamma, a]$$

where:

- A production rule $A \rightarrow \beta \gamma$ is currently being applied.
- A placeholder, •, indicates the position of the parser's *stack top*.
 - \checkmark The parser's stack contains β ("left context").
 - $\checkmark \gamma$ is yet to be matched.

Remark. Upon matching $\beta\gamma$, if a matches the current word, then we "replace" $\beta\gamma$ (and their corresponding states) with A (and its corresponding state).

• A terminal symbol a servers as a *lookahead symbol*.

LR(1) Items: Scenarios

An *LR(1) item* can be:

1. Possibility

$$[A \rightarrow \bullet \beta \gamma, a]$$

- In the current parsing context, an A would be valid.
- represents the position of the parser's stack top
- Recognizing a β next would be one step towards discovering an A.

2. PARTIALLY COMPLETION

$$[A \rightarrow \beta \bullet \gamma, a]$$

- The parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing β .
- \circ Recognizing a γ next would be one step towards discovering an A.

3. COMPLETION

$$[A \rightarrow \beta \gamma \bullet, a]$$

- Parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing $\beta \gamma$.
- $\beta \gamma$ found in a context where an *A* followed by a would be valid.
- o If the current input word matches a, then:
 - Current complet item is a handle.
 - Parser can *reduce* $\beta \gamma$ to *A* (and replace $\beta \gamma$ with *A* in its stack).

LR(1) Items: Example (1.1)

Consider the following grammar for parentheses:

$$\begin{array}{cccc} 1 & Goal \rightarrow List \\ 2 & List \rightarrow List \ Pair \\ 3 & | \ Pair \\ 4 & Pair \rightarrow (\ Pair \) \\ 5 & | \ (\) \end{array}$$

Initial State: [Goal → •List, eof]

Desired Final State: [Goal → List•, eof]

Intermediate States: Subset Construction

Q. Derive all LR(1) items for the above grammar.

- FOLLOW(List) = {eof, (} FOLLOW(Pair) = {eof, (,)}
- For each production $A \rightarrow \beta$, given **Follow**(A), *LR*(1) *items* are:

$$\left\{ \begin{array}{l} \left[A \rightarrow \bullet \beta \gamma, \ a \right] \mid a \in \mathsf{FoLLow}(A) \end{array} \right\} \\ \cup \\ \left\{ \begin{array}{l} \left[A \rightarrow \beta \bullet \gamma, \ a \right] \mid a \in \mathsf{FoLLow}(A) \end{array} \right\} \\ \cup \\ \left\{ \begin{array}{l} \left[A \rightarrow \beta \gamma \bullet, \ a \right] \mid a \in \mathsf{FoLLow}(A) \end{array} \right\} \end{array}$$

68 of 96

LR(1) Items: Example (1.2)

Q. Given production $A \rightarrow \beta$ (e.g., $Pair \rightarrow (Pair)$), how many LR(1) items can be generated?

- The current parsing progress (on matching the RHS) can be:
 - **1.** (*Pair*)
 - **2.** (•*Pair*)
 - **3.** (*Pair*)
 - 4. (Pair) •
- Lookahead symbol following Pair?Follow(Pair) = {eof, (,)}
- All possible LR(1) items related to $Pair \rightarrow (Pair)$?

```
√ [ • ( Pair ), eof] [ • ( Pair ), (] [ • ( Pair ), )]
√ [ ( •Pair ), eof] [ ( •Pair ), (] [ ( •Pair ), )]
√ [ ( Pair • ), eof] [ ( Pair • ), (] [ ( Pair • ), )]
√ [ ( Pair ) •, eof] [ ( Pair ) •, (] [ ( Pair ) •, )]
```

A. How many in general (in terms of *A* and β)?

$$|\beta| + 1$$
 × $|Follow(A)|$

possible positions of • possible lookahead symbols

69 of 96

LR(1) Items: Example (1.3)

A. There are 33 *LR(1) items* in the parentheses grammar.

```
[Goal \rightarrow \bullet List, eof]
[Goal \rightarrow List \bullet, eof]
[List \rightarrow \bullet List \ Pair, eof] [List \rightarrow \bullet List \ Pair, ()]
[List \rightarrow List \bullet Pair.eof]
                                          [List \rightarrow List \bullet Pair,(]
[List \rightarrow List Pair \bullet, eof] [List \rightarrow List Pair \bullet, (]
[List \rightarrow \bullet Pair, eof]
                                             [List \rightarrow \bullet Pair,(]
[List \rightarrow Pair \bullet, e of ]
                                            [List \rightarrow Pair \bullet,(]
[Pair \rightarrow \bullet (Pair), eof] [Pair \rightarrow \bullet (Pair),)]
                                                                                      [Pair \rightarrow \bullet (Pair), (]
[Pair \rightarrow (\bullet Pair), eof] [Pair \rightarrow (\bullet Pair),)]
                                                                                      [Pair \rightarrow (\bullet Pair), (]
[Pair \rightarrow (Pair \bullet), eof] [Pair \rightarrow (Pair \bullet),)]
                                                                                      [Pair \rightarrow (Pair \bullet), (]
[Pair \rightarrow (Pair) \bullet, eof] [Pair \rightarrow (Pair) \bullet,)]
                                                                                      [Pair \rightarrow (Pair) \bullet, (]
[Pair \rightarrow \bullet (), eof]
                                             [Pair \rightarrow \bullet ( ), ( ]
                                                                                      [Pair \rightarrow \bullet (),)]
[Pair \rightarrow (\bullet), eof]
                                                                                      [Pair \rightarrow (\bullet),)]
                                            [Pair \rightarrow ( \bullet ), (]
[Pair \rightarrow () \bullet, eof]
                                            [Pair \rightarrow (\ ) \bullet, (\ ]
                                                                                      [Pair \rightarrow () \bullet,)]
```


LR(1) Items: Example (2)

Consider the following grammar for expressions:

Q. Derive all LR(1) items for the above grammar.

Hints. First compute **Follow** for each non-terminal:

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

Tips. Ignore ϵ *production* such as $Expr' \rightarrow \epsilon$ since the **Follow** sets already take them into consideration.

71 of 96

Canonical Collection (CC) vs. LR(1) items

Recall:

LR(1) Items: 33 items

Initial State: [*Goal* → •*List*, eof]

Desired Final State: [Goal → List•, eof]

The canonical collection

 $CC = \{ cc_0, cc_1, cc_2, \dots, cc_n \}$

denotes the set of valid states of a LR(1) parser.

- Each $cc_i \in CC$ $(0 \le i \le n)$ is a set of **LR(1) items**.
- $\mathcal{CC} \subseteq \mathbb{P}(\mathsf{LR}(1) \text{ items})$

 $|\mathcal{CC}|$?

[$|\mathcal{CC}| \le 2^{|LR(1) \text{ items}|}$]

- To model a LR(1) parser, we use techniques similar to how we construct a DFA from an NFA (subset construction and ϵ -closure).
- Analogies.
 - √ LR(1) items ≈ states of source NFA
 - \checkmark $CC \approx$ states of target *DFA*

72 of 06

Constructing CC: The closure Procedure (1) LASSONDE


```
1 ALGORITHM: closure
2 INPUT: CFG G = (V, \Sigma, R, S), a set s of LR(1) items
3 OUTPUT: a set of LR(1) items
4 PROCEDURE:
| lastS := \emptyset while (lastS \neq s):
7 | lastS := s
8 | for [A \rightarrow \cdots \bullet C \ \delta, \ a] \in S:
9 | for C \rightarrow \gamma \in R:
10 | for b \in FIRST(\delta a):
11 | s := s \cup \{ [C \rightarrow \bullet \gamma, \ b] \}
12 | return s
```

- Line 8: [A → · · · C · δ, a] ∈ s indicates that the parser's next task is to match C · δ with a lookahead symbol a.
- **Line 9**: Given: matching γ can reduce to C
- **Line 10**: Given: $b \in FIRST(\delta a)$ is a valid lookahead symbol after reducing γ to C
- Line 11: Add a new item $\begin{bmatrix} C \\ \rightarrow \bullet \gamma$, b] into s.
- Line 6: Termination is guaranteed.
- \therefore Each iteration adds ≥ 1 item to s (otherwise *lastS* $\neq s$ is *false*).

73 of 96

Constructing CC: The closure Procedure (2.1 ASSONDE

Calculate $cc_0 = closure(\lceil Goal \rightarrow \bullet List, eof \rceil)$.

LASSONDE

Constructing CC: The *goto* Procedure (1)

```
1 ALGORITHM: golo 1NPUT: a set s of LR(1) items, a symbol x 0UTPUT: a set of LR(1) items  
4 PROCEDURE: moved := \emptyset for item \in s: if item = [\alpha \to \beta \bullet x\delta, a] then moved := moved \cup \{ [\alpha \to \beta x \bullet \delta, a] \} end 10 return closure(moved)
```

Line 7: Given: item $[\alpha \to \beta \bullet x\delta, a]$ (where x is the next to match) **Line 8**: Add $[\alpha \to \beta x \bullet \delta, a]$ (indicating x is matched) to *moved* **Line 10**: Calculate and return closure(moved) as the "next state" from s with a "transition" x.

75 of 96

Constructing \mathcal{CC} : The *goto* Procedure (2)

Calculate $goto(cc_0, \cdot)$. ["next state" from cc_0 taking (]

Constructing CC: The Algorithm (1)

```
ALGORITHM: BuildCC
        INPUT: a grammar G = (V, \Sigma, R, S), goal production S \to S'
         (1) a set \mathcal{CC} = \{cc_0, cc_1, \dots, cc_n\} where cc_i \subseteq G' s LR(1) items
          (2) a transition function
      PROCEDURE:
        cc_0 := closure(\{[S' \rightarrow \bullet S, eof]\})
        CC := \{cc_0\}
        processed := \{cc_0\}
        lastCC := \emptyset
10
        while (lastCC \neq CC):
          lastCC := CC
13
          for cc_i s.t. cc_i \in CC \land cc_i \notin processed:
            processed := processed \cup \{cc_i\}
15
            for x s.t. [\cdots \rightarrow \cdots \bullet x \dots] \in cc_i
             temp := goto(cc_i, x)
16
17
              if temp \notin CC then
18
                CC := CC \cup \{temp\}
19
              end
20
              \delta := \delta \cup (cc_i, \times, temp)
```

77 of 96

Constructing CC: The Algorithm (2.1)


```
 \begin{array}{cccc} 1 & Goal \rightarrow List \\ 2 & List \rightarrow List \ Pair \\ 3 & | \ Pair \\ 4 & Pair \rightarrow \underline{(\ Pair\ \underline{)}} \\ 5 & | \underline{(\ \underline{)}} \\ \end{array}
```

- Calculate $\mathcal{CC} = \{cc_0, cc_1, \dots, cc_{11}\}$
- Calculate the transition function $\delta : \mathcal{CC} \times \Sigma \to \mathcal{CC}$

78 of 96

Constructing CC: The Algorithm (2.2)

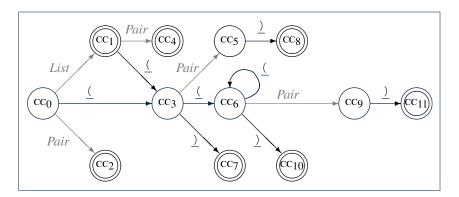
Resulting transition table:

Iteration	Item	Goal	List	Pair	<u>(</u>	<u>)</u>	eof
0	cc_0	Ø	cc_1	cc_2	CC ₃	Ø	Ø
1	CC_1	Ø Ø	Ø Ø	CC ₄	CC ₃	Ø Ø	Ø Ø
	CC_3	Ø	Ø	CC ₅	cc ₆	CC ₇	Ø
2	CC ₄	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø CC8	Ø Ø
	cc_6	Ø Ø	Ø Ø	CC ₉	cc_6	cc_{10}	Ø
3	CC ₇	Ø	Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø
	CC ₉ CC ₁₀	Ø Ø	Ø Ø	Ø Ø	Ø Ø	cc ₁₁	Ø Ø
4	CC ₁₁	Ø	Ø	Ø	Ø	Ø	Ø

79 of 96

Constructing CC: The Algorithm (2.3)

Resulting DFA for the parser:



RO of 96

Constructing CC: The Algorithm (2.4.1)

Resulting canonical collection CC:

```
 \begin{aligned} &\operatorname{cc}_{0} = \begin{bmatrix} \operatorname{[Goal } \to \operatorname{List} \operatorname{eof}_{1} & \operatorname{List} \to \operatorname{List} \operatorname{Pair}_{1}, \operatorname{cof}_{1} \\ \operatorname{[List } \to \operatorname{Pair}_{1}, \operatorname{eof}_{1} \\ \operatorname{[Pair } \to \operatorname{c}_{1} \operatorname{Pair}_{2}, \operatorname{cof}_{1} \\ \operatorname{[Pair } \to \operatorname{c}_{2} \operatorname{Pair}_{2}, \operatorname{cof}_{2} \\ \operatorname{[Pair } \to \operatorname{c}_{2} \operatorname{Pair}_{2}, \operatorname{cof}_{2} \\ \operatorname{[Pair } \to \operatorname{c}_{2} \operatorname{Pair}_{2
```

Constructing Action and Goto Tables (1)


```
ALGORITHM: BuildActionGotoTables
 2
        TNPIIT.
 3
           (1) a grammar G = (V, \Sigma, R, S)
           (2) goal production S \to S'
           (3) a canonical collection CC = \{cc_0, cc_1, \dots, cc_n\}
          (4) a transition function \delta: CC \times \Sigma \to CC
        OUTPUT: Action Table & Goto Table
8
      PROCEDURE:
        for cc_i \in CC:
10
         for item ∈ cc::
           if item = [A \rightarrow \beta \bullet x\gamma, a] \cdot pause \wedge \delta(cc_i, x) = cc_i then
11
12
             Action[i, x] := shift j
13
            elseif item = [A \rightarrow \beta \bullet, a] then
             Action[i, a] := reduce A \rightarrow \beta
15
            elseif item = [S \rightarrow S' \bullet, eof] then
16
             Action[i, eof] := accept
17
18
          for v \in V:
19
           if \delta(cc_i, v) = cc_i then
20
             Goto[i, v] = j
            end
```

- L12, 13: Next valid step in discovering A is to match terminal symbol x.
- L14, 15: Having recognized β , if current word matches lookahead a, reduce β to A.
- L16, 17: Accept if input exhausted and what's recognized reducible to start var. S.
- L20, 21: Record consequence of a reduction to non-terminal v from state i

Constructing *Action* and *Goto* **Tables** (2)

Resulting Action and Goto tables:

	Action Table			Goto	Table
State	eof	<u>(</u>	<u>)</u>	List	Pair
0		s 3		1	2
1	acc	s 3			4
2	r 3	r 3			
3		s 6	s 7		5
4	r 2	r 2			
5			s 8		
6		s 6	s 10		9
7	r 5	r 5			
8	r 4	r 4			
9			s 11		
10			r 5		
11			r 4		

BUP: Discovering Ambiguity (1)

1	Goal	\rightarrow	Stmt
2	Stmt	\rightarrow	if expr then <i>Stmt</i>
3			if expr then <i>Stmt</i> else <i>Stmt</i>
4			assign

- Calculate $\mathcal{CC} = \{cc_0, cc_1, \dots, \}$
- Calculate the transition function $\delta : \mathcal{CC} \times \Sigma \to \mathcal{CC}$

BUP: Discovering Ambiguity (2.1)

Resulting transition table:

	Item	Goal	Stmt	if	expr	then	else	assign	eof
0	cc_0	Ø	cc_1	cc_2	Ø	Ø	Ø	CC ₃	Ø
1	cc_1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	CC_2	Ø	Ø	Ø	CC_4	Ø	Ø	Ø	Ø
	CC_3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
2	cc_4	Ø	Ø	Ø	Ø	CC_5	Ø	Ø	Ø
3	CC_5	Ø	cc_6	CC7	Ø	Ø	Ø	CC8	Ø
4	CC_6	Ø	Ø	Ø	Ø	Ø	CC ₉	Ø	Ø
	CC7	Ø	Ø	Ø	cc_{10}	Ø	Ø	Ø	Ø
	CC8	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
5	CC9	Ø	cc_{11}	cc_2	Ø	Ø	Ø	CC_3	Ø
	cc_{10}	Ø	Ø	Ø	Ø	cc_{12}	Ø	Ø	Ø
6	cc_{11}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	cc_{12}	Ø	cc_{13}	CC_7	Ø	Ø	Ø	CC ₈	Ø
7	cc_{13}	Ø	Ø	Ø	Ø	Ø	CC_{14}	Ø	Ø
8	cc_{14}	Ø	cc_{15}	CC7	Ø	Ø	Ø	CC8	Ø
9	CC_{15}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

BUP: Discovering Ambiguity (2.2.1)

Resulting canonical collection CC:

$$cc_0 = \begin{cases} [\textit{Goal} \rightarrow \bullet \textit{Stmt}, \texttt{eof}] & [\textit{Stmt} \rightarrow \bullet \text{ if expr then } \textit{Stmt}, \texttt{eof}] \\ [\textit{Stmt} \rightarrow \bullet \bullet \texttt{stsign}, \texttt{eof}] & [\textit{Stmt} \rightarrow \bullet \texttt{if expr then } \textit{Stmt}, \texttt{eof}] \end{cases}$$

$$cc_2 = \begin{cases} [\textit{Stmt} \rightarrow \text{ if } \bullet \text{ expr then } \textit{Stmt}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if } \bullet \text{ expr then } \textit{Stmt}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eof}, \texttt{eof}, \texttt{eof}], \\ [\textit{Stmt} \rightarrow \text{ if expr then } \textit{Stmt}, \texttt{eof}, \texttt{eo$$

 $\mathbf{cc_7} = \begin{cases} [\mathit{Stmt} \to \mathsf{if} \bullet \mathsf{expr} \mathsf{ then} \mathit{Stmt}, \{\mathsf{eof}, \mathsf{else}\}], \\ [\mathit{Stmt} \to \mathsf{if} \bullet \mathsf{expr} \mathsf{ then} \mathit{Stmt} \mathsf{else} \mathit{Stmt}, \{\mathsf{eof}, \mathsf{else}\}] \end{cases}$

BUP: Discovering Ambiguity (2.2.2)

Resulting canonical collection CC:

[Stmt → • assign, {eof, else}]

$$cc_{9} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{10} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{10} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{10} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{10} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{11} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \mathsf{else} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{12} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{12} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$[\mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$[\mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \mathsf{else} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{13} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; \mathsf{else} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{14} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; \bullet \; \mathsf{else} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$[\mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; \bullet \; \mathsf{else} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

$$cc_{14} = \left\{ \begin{bmatrix} \mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; \bullet \; \bullet \; \mathsf{else} \; \mathit{Stmt}, \mathsf{eof}, \mathsf{else} \end{bmatrix} \right\}$$

87 of 96

BUP: Discovering Ambiguity (3)

• Consider cc₁₃

$$cc_{13} = \begin{cases} [\mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; , \{\mathsf{eof}, \mathsf{else}\}], \\ [\mathit{Stmt} \rightarrow \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathit{Stmt} \; \bullet \; \mathsf{else} \; \mathit{Stmt}, \{\mathsf{eof}, \mathsf{else}\}] \end{cases}$$

Q. What does it mean if the current word to consume is else?

A. We can either **shift** (then expecting to match another **Stmt**) or reduce to a **Stmt**.

A single Action table entry cannot hold these two alternatives.

This is known as the *shift-reduce conflict*.

· Consider another scenario, say:

$$[A \rightarrow \gamma \delta \bullet, a]$$

 $[B \rightarrow \gamma \delta \bullet, a]$

Q. What does it mean if the current word to consume is a?

A. We can either **reduce** to A or **reduce** to B.

A single *Action* table entry cannot hold these two alternatives.

This is known as the *reduce-reduce conflict*.

R8 of 96

Index (1)

Parser in Context

Context-Free Languages: Introduction

CFG: Example (1.1)

CFG: Example (1.2)

CFG: Example (1.2)

CFG: Example (2)

CFG: Example (3)

CFG: Example (4)

CFG: Example (5.1) Version 1

CFG: Example (5.2) Version 1

CFG: Example (5.3) Version 1

R9 of 96

Index (2)

CFG: Example (5.4) Version 1

CFG: Example (5.5) Version 2

CFG: Example (5.6) Version 2

CFG: Example (5.7) Version 2

CFG: Formal Definition (1)

CFG: Formal Definition (2): Example

CFG: Formal Definition (3): Example

Regular Expressions to CFG's

DFA to CFG's

CFG: Leftmost Derivations (1)

CFG: Rightmost Derivations (1)

Index (3)

CFG: Leftmost Derivations (2)

CFG: Rightmost Derivations (2)

CFG: Parse Trees vs. Derivations (1)

CFG: Parse Trees vs. Derivations (2)

CFG: Ambiguity: Definition

CFG: Ambiguity: Exercise (1)

CFG: Ambiguity: Exercise (2.1)

CFG: Ambiguity: Exercise (2.2)

CFG: Ambiguity: Exercise (2.3)

Discovering Derivations

TDP: Discovering Leftmost Derivation

91 of 96

LASSONDE

Index (4)

TDP: Exercise (2)

Left-Recursions (LF): Direct vs. Indirect

TDP: (Preventively) Eliminating LRs

CFG: Eliminating ϵ -Productions (1)

CFG: Eliminating ϵ -Productions (2)

Backtrack-Free Parsing (1)

The first Set: Definition

The first Set: Examples

Computing the first Set

Computing the first Set: Extension

92 of 96

Index (5)

Extended first Set: Examples

s the first Set Sufficient?

The follow Set: Examples

Computing the follow Set

Backtrack-Free Grammar

TDP: Lookahead with One Symbol

Backtrack-Free Grammar: Exercise

Backtrack-Free Grammar: Left-Factoring

Left-Factoring: Exercise

TDP: Terminating and Backtrack-Free

Backtrack-Free Parsing (2.1)

93 of 96

Index (6)

Backtrack-Free Parsing (2.2)

LL(1) Parser: Exercise

BUP: Discovering Rightmost Derivation

BUP: Discovering Rightmost Derivation (1)

BUP: Discovering Rightmost Derivation (2)

BUP: Example Tracing (1)

BUP: Example Tracing (2.1)

BUP: Example Tracing (2.2)

BUP: Example Tracing (2.3)

LR(1) Items: Definition

LR(1) Items: Scenarios

Index (7)

LR(1) Items: Example (1.1)

LR(1) Items: Example (1.2)

LR(1) Items: Example (1.3)

LR(1) Items: Example (2)

Canonical Collection (\mathcal{CC}) vs. LR(1) items

Constructing \mathcal{CC} : The closure Procedure (1)

Constructing \mathcal{CC} : The closure Procedure (2.1)

Constructing CC: The goto Procedure (1)

Constructing CC: The goto Procedure (2)

Constructing \mathcal{CC} : The Algorithm (1)

Constructing \mathcal{CC} : The Algorithm (2.1)

95 of 96

Index (8)

Constructing \mathcal{CC} : The Algorithm (2.2)

Constructing \mathcal{CC} : The Algorithm (2.3)

Constructing \mathcal{CC} : The Algorithm (2.4)

Constructing Action and Goto Tables (1)

Constructing Action and Goto Tables (2)

BUP: Discovering Ambiguity (1)

BUP: Discovering Ambiguity (2.1)

BUP: Discovering Ambiguity (2.2.1)

BUP: Discovering Ambiguity (2.2.2)

BUP: Discovering Ambiguity (3)

96 ot 96