1. Consider the following grammar:

$L \rightarrow R$ a	$R \ ightarrow$ aba	$Q \rightarrow ext{bbc}$
$\mid ~Q$ ba	caba	bc
	$\mid R$ bc	

Is it suitable for a **top-down predictive** parser?

- If so, show that it satisfies the LL(1) condition.
- If not, identify the problem(s) and correct it (them). Also show that the revised grammar satisfies the LL(1) condition.

Solution:

• The given grammar contains a **direct** left-recursion on the non-terminal R:

$$egin{array}{cccc} R &
ightarrow & {
m aba} \ & | & {
m caba} \ & | & R & {
m bc} \end{array}$$

By removing the left-recursion, we rewrite the above productions as:

$$egin{array}{cccc} R &
ightarrow & {\sf aba}R' \ & | & {\sf caba}R' \ R' &
ightarrow & {\sf bc}R' \ & | & \epsilon \end{array}$$

Here is the revised grammar:

$egin{array}{cccc} L & o & R & {\sf a} \ & & & Q & {\sf ba} \end{array}$	$egin{array}{ccc} R & ightarrow & {\sf aba} R' \ & & {\sf caba} R' \ R' & ightarrow & {\sf bc} R' \end{array}$	$\begin{array}{ccc} Q & ightarrow & { m bbc} \ & & { m bc} \end{array}$
	ϵ	

• However, the revised grammar still fails the LL(1) condition: Each of the productions $A \rightarrow \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma_n$ satisfying

 $\forall i, j : 1 \leq i, j \leq n \land i \neq j \bullet \mathbf{First}^+(\gamma_i) \cap \mathbf{First}^+(\gamma_j) = \varnothing$

Specifically, this production fails the above LL(1) condition by having a common prefix **b** among the RHS of multiple production rules:

$$\begin{array}{rrr} Q & \rightarrow & {\rm bbc} \\ & | & {\rm bc} \end{array}$$

We then apply left factoring to remove the common prefix:

$$egin{array}{rcl} Q &
ightarrow ~ {f b}Q' \ Q' &
ightarrow ~ bc \ & ert ~ {f c} \end{array}$$

Here is the revised grammar:

• To show that this revised grammar is LL(1), we must then show that the **FIRST**⁺ sets of the alternative RHSs for each non-terminal are **disjoint**:

NON-TERMINAL	ALTERNATIVE	First ⁺ Set	INTERSECTION
L	Ra	$\{a,c\}$	a
	Qba	{b}	
R	aba R'	{a}	Ø
	caba R'	{c}	
R'	bcR'	{b}	a
	έ	$\mathbf{Follow}(R) = \{\mathbf{a}\}$	
Q'	bc	{b}	Ø
	С	{c}	