Program Correctness
OOSC2 Chapter 11

EECS3311 A: Software Design Winter 2020

CHEN-WEI WANG

LASSONDE

[TRUE]

[FALSE]

Assertions: Preconditions

Given preconditions P_1 and P_2 , we say that

 P_2 requires less than P_1 if

 P_2 is *less strict* on (thus *allowing more*) inputs than P_1 does.

LASSONDE

LASSONDE

 $\{ x \mid P_1(x) \} \subseteq \{ x \mid P_2(x) \}$

More concisely:

 $P_1 \Rightarrow P_2$

e.g., For cor	nmand witho	draw(amou	nt: INTEGER),	
P ₂ : amoun	$t \ge 0$ require	<i>s less</i> than	<i>P</i> ₁ : <i>amount</i> > 0	
What is the	precondition	that requir	es the least?	[<i>true</i>]
3 of 48				

Assertions: Weak vs. Strong

• Describe each assertion as a set of satisfying value.

$$x > 3$$
 has satisfying values { $x | x > 3$ } = { 4,5,6,7,...
 $x > 4$ has satisfying values { $x | x > 4$ } = { 5,6,7,... }

> 4 has satisfying values
$$\{x \mid x > 4\} = \{5, 6, 7, ...\}$$

- An assertion p is **stronger** than an assertion q if p's set of satisfying values is a subset of *q*'s set of satisfying values.
 - Logically speaking, p being stronger than q (or, q being weaker than *p*) means $p \Rightarrow q$.
 - e.g., $x > 4 \Rightarrow x > 3$
- What's the weakest assertion?
- What's the strongest assertion?
- In *Design by Contract* :
 - A weaker *invariant* has more acceptable object states
 - e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT
 - A weaker precondition has more acceptable input values
 - A weaker *postcondition* has more acceptable output values

Assertions: Postconditions

Given **postconditions** or **invariants** Q_1 and Q_2 , we say that

 Q_2 ensures more than Q_1 if

 Q_2 is **stricter** on (thus **allowing less**) outputs than Q_1 does.

$$\{ x \mid Q_2(x) \} \subseteq \{ x \mid Q_1(x) \}$$

More concisely:

 $Q_2 \Rightarrow Q_1$

e.g., For query q(i: INTEGER): BOOLEAN,

 $\overline{Q_2}$: **Result** = $(i > 0) \land (i \mod 2 = 0)$ **ensures more** than

 Q_1 : **Result** = (*i* > 0) \lor (*i* **mod** 2 = 0)

What is the *postcondition* that *ensures the most*? [false]

Motivating Examples (1)

Is this feature correct?

class FOO		
i: INTEGER		
increment_by_9		
require		
i > 3		
do		
<i>i</i> := <i>i</i> + 9		
ensure		
<i>i</i> > 13		
end		
end		
L		

- **Q**: Is i > 3 is too weak or too strong?
- A: Too weak
- \therefore assertion *i* > 3 allows value 4 which would fail postcondition.

5 of 48

Software Correctness

• Correctness is a *relative* notion:

consistency of *implementation* with respect to *specification*.

LASSONDE

LASSONDE

- \Rightarrow This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program **S** and its *specification* (pre-condition *Q* and

post-condition \mathbf{R}) as a *Boolean predicate* : $\{\mathbf{Q}\} \in \{\mathbf{R}\}$

- e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$
- e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$
- If $\{Q\} \in \{R\}$ can be proved TRUE, then the S is correct.
- e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$ can be proved TRUE.
- If $\{Q\} \in \{R\}$ cannot be proved TRUE, then the S is incorrect. e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ cannot be proved TRUE.

7 of 48

Motivating Examples (2)

SCHOOL OF ENGINEERIN

Is this feature correct?

class FOO	
<i>i</i> : INTEGER	
increment_by_9	
require	
i > 5	
do	
<i>i</i> := <i>i</i> + 9	
ensure	
<i>i</i> > 13	
end	
end	

- **Q**: Is i > 5 too weak or too strong?
- A: Maybe too strong
- : assertion i > 5 disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.

Hoare Logic

- Consider a program S with precondition Q and postcondition R.
 - {**Q**} s {**R**} is a *correctness predicate* for program **S**
 - {**Q**} S {**R**} is TRUE if program **S** starts executing in a state satisfying the precondition **Q**, and then:
 - (a) The program S terminates.
 - (b) Given that program S terminates, then it terminates in a state satisfying the postcondition *R*.
- Separation of concerns

(a) requires a proof of *termination*.

- (b) requires a proof of *partial correctness*.
- Proofs of (a) + (b) imply *total correctness*.

Hoare Logic and Software Correctness

Consider the <u>contract view</u> of a feature f (whose body of implementation is **S**) as a Hoare Triple :

{**Q**} S {**R**} **Q** is the *precondition* of *f*. s is the implementation of f. **R** is the *postcondition* of f. • {*true*} s {*R*} All input values are valid [Most-user friendly] • { false } s { R } All input values are invalid [Most useless for clients] • {**Q**} s {**true**} All output values are valid [Most risky for clients; Easiest for suppliers] • {**Q**} S {**false**} All output values are invalid [Most challenging coding task] • { *true*} s { *true*} All inputs/outputs are valid (No contracts) [Least informative] 9 of 48

Hoare Logic A Simple Example

LASSONDE

Given $\{??\}n := n + 9\{n > 13\}$:

- n > 4 is the *weakest precondition (wp)* for the given implementation (n := n + 9) to start and establish the postcondition (n > 13).
- Any precondition that is *equal to or stronger than* the *wp* (*n* > 4) will result in a correct program.

e.g., $\{n > 5\}n := n + 9\{n > 13\}$ can be proved **TRUE**.

 Any precondition that is *weaker than* the *wp* (*n* > 4) will result in an incorrect program.

e.g., $\{n > 3\}n := n + 9\{n > 13\}$ <u>cannot</u> be proved **TRUE**. Counterexample: n = 4 satisfies precondition n > 3 but the output n = 13 fails postcondition n > 13.

11 of 48

Proof of Hoare Triple using wp

 $\{Q\} \in \{R\} \equiv Q \Rightarrow wp(S, R)$

- wp(S, R) is the weakest precondition for S to establish R
- S can be:
 - Assignments (x := y)
 - Alternations (if ... then ... else ... end)
 - \circ Sequential compositions (S_1 ; S_2)
 - Loops (from ... until ... loop ... end)
- We will learn how to calculate the *wp* for the above programming constructs.

Denoting New and Old Values

- We write x_0 to denote its *pre-state (old)* value.
- We write x to denote its *post-state (new)* value.
 Implicitly, in the *precondition*, all program variables have their *pre-state* values.

e.g., $\{b_0 > a\}$ b := b - a $\{b = b_0 - a\}$

- Notice that:
 - We may choose to write "b" rather than " b_0 " in preconditions \therefore All variables are pre-state values in preconditions
 - We don't write "b₀" in program
 ∴ there might be *multiple intermediate values* of a variable due to
 - : there might be *multiple intermediate values* of a variable due to sequential composition

wp Rule: Assignments (1)

postcondition **R** by expression e.

LASSONDE

LASSONDE

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

 $\{??\} \times := x + 1 \{x > x_0\}$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x > x_0).$

 $wp(x := x + 1, x > x_0)$

- $= \{ Replacing \ x \ by \ x_0 + 1 \} \\ x_0 + 1 > x_0$
- = {1>0 always true} True

Any precondition is OK.

False is valid but not useful.

15 of 48

wp Rule: Assignments (2)

Recall:

13 of 48

$$\{\mathbf{Q}\} \le \{\mathbf{R}\} \equiv \mathbf{Q} \Rightarrow wp(\mathbf{S}, \mathbf{R})$$

 $Wp(x := e, \mathbf{R}) = \mathbf{R}[x := e]$

R[x := e] means to substitute all *free occurrences* of variable x in

How do we prove $\{Q\} \times := e \{R\}$?

$$\{\mathbf{Q}\} \times := e \{\mathbf{R}\} \iff \mathbf{Q} \Rightarrow \underbrace{\mathbf{R}[x := e]}_{wp(x := e, \mathbf{R})}$$

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

$$\{??\} \times := \times + 1 \{x = 23\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x = 23).$

wp(x := x + 1, x = 23)

= {Rule of wp: Assignments} x = 23[x := x₀ + 1]

= {Replacing X by
$$x_0 + 1$$
}
 $x_0 + 1 = 23$

Any precondition weaker than x = 22 is not OK.

wp Rule: Alternations (1)

17 of 48

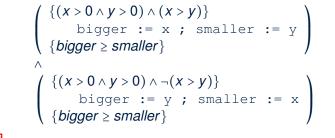
18 of 48

The wp of an alternation is such that all branches are able to establish the postcondition **R**.

wp Rule: Alternations (3) Exercise

Is this program correct?

```
\{x > 0 \land y > 0\}
if x > y then
bigger := x ; smaller := y
else
 bigger := y ; smaller := x
end
{bigger \geq smaller}
```



19 of 48

$$\{Q\} \text{ if } \begin{array}{c} B \\ \end{array} \text{ then } S_1 \text{ else } S_2 \text{ end } \{R\} \\ \Leftrightarrow \left(\begin{array}{c} \{ \ Q \land \ B \ \} \ S_1 \ \{ \ R \ \} \\ \land \\ \{ \ Q \land \neg \ B \ \} \ S_2 \ \{ \ R \ \} \end{array} \right) \iff \left(\begin{array}{c} (Q \land \ B \) \Rightarrow wp(S_1, \ R) \\ \land \\ (Q \land \neg \ B \) \Rightarrow wp(S_2, \ R) \end{array} \right)$$

wp Rule: Sequential Composition (1)

 $wp(S_1 ; S_2, \mathbf{R}) = wp(S_1, wp(S_2, \mathbf{R}))$

The *wp* of a sequential composition is such that the first phase establishes the wp for the second phase to establish the postcondition **R**.

wp Rule: Sequential Composition (2)

Recall:

$$\{Q\} \in \{R\} \equiv Q \Rightarrow wp(S, R)$$

How do we prove $\{Q\} S_1$; $S_2 \{R\}$?

$$\{\mathbf{Q}\} S_1 ; S_2 \{\mathbf{R}\} \iff \mathbf{Q} \Rightarrow \underbrace{wp(S_1, wp(S_2, \mathbf{R}))}_{wp(S_1; S_2, \mathbf{R})}$$

23 of 48

• A loop is a way to compute a certain result by *successive approximations*.

e.g. computing the maximum value of an array of integers

- Loops are needed and powerful
- But loops *very hard* to get right:
 - Infinite loops
 - ∘ "off-by-one" error
 - Improper handling of borderline cases
 - Not establishing the desired condition

[termination]

- [partial correctness] [partial correctness]
- [partial correctness]

21 of 48

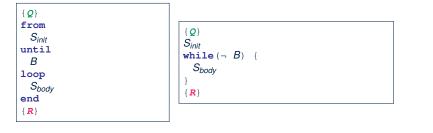
wp Rule: Sequential Composition (3) Exercise SONDE Is { *True* } tmp := x; x := y; y := tmp { x > y } correct? If and only if True \Rightarrow wp(tmp := x ; x := y ; y := tmp, x > y) wp(tmp := x ; x := y ; y := tmp, x > y) = {wp rule for seq. comp.} wp(tmp := x, wp(x := y ; y := tmp, x > y))= {wp rule for seq. comp.} wp(tmp := x, wp(x := y, wp(y := tmp, x > y)))= {*wp* rule for assignment} wp(tmp := x, wp(x := y, x > tmp))= {wp rule for assignment} wp(tmp := x, y > |tmp|)= {wp rule for assignment} y > x:: **True** \Rightarrow *y* > *x* does not hold in general. .: The above program is not correct. 22 of 48

Loops: Bii	nary Search	LASSONDE
BS1 from i := 1; j := n until $i = j \log p$ m := (i + j) / 2 if $t \oplus m <= x$ then i := m end end $Result := (x = t \oplus i)$	BS2 from <i>l</i> := <i>1</i> ; <i>j</i> := <i>n</i> ; found := false until := <i>j</i> and not found loop <i>m</i> := (<i>i</i> + <i>j</i>) // 2 if <i>i</i> @ <i>m</i> < <i>x</i> then <i>l</i> := <i>m</i> + <i>1</i> elseif <i>i</i> @ <i>m</i> = <i>x</i> then <i>found</i> := true else <i>j</i> := <i>m</i> - <i>1</i> end end end	4 implementations for binary search: published, but <i>wrong</i> !
BS3	BS4	
from i := 0; j := n until $i = j$ loop m := (i + j + i) // 2 if $i \oplus m < x$ then i := m + 1 else j := m end	from i := 0; j := n + 1 until $i = j \operatorname{loop}$ m := (i + j) / 2 if $i \notin m \ll x$ then i := m + 1 else j := m end	
end if <i>i</i> >= 1 and <i>i</i> <= <i>n</i> then <i>Result</i> := (<i>x</i> = <i>t</i> @ <i>i</i>) else <i>Result</i> := false end	end if $l >= l$ and $l <= n$ then Result := (x = t @ l) else Result := false end	See page 381 in Object Oriented Software Construction

Correctness of Loops

LASSONDE

How do we prove that the following loops are correct?



- In case of C/Java, $|\neg B|$ denotes the *stay condition*.
- In case of Eiffel, B denotes the *exit condition*.
 There is native, syntactic support for checking/proving the

total correctness of loops.

25 of 48

Contracts for Loops

- Use of loop invariants (LI) and loop variants (LV).
 - Invariants: Boolean expressions for partial correctness.
 - Typically a special case of the postcondition.
 - e.g., Given postcondition "*Result is maximum of the array*":
 - LI can be "Result is maximum of the part of array scanned so far".
 - Established before the very first iteration.
 - Maintained TRUE after each iteration.
 - Variants: Integer expressions for termination
 - Denotes the *number of iterations remaining*
 - Decreased at the end of each subsequent iteration
 - Maintained *non-negative* at the end of each iteration.
 - As soon as value of *LV* reaches *zero*, meaning that no more iterations remaining, the loop must exit.
- Remember:

total correctness = **partial** correctness + **termination**

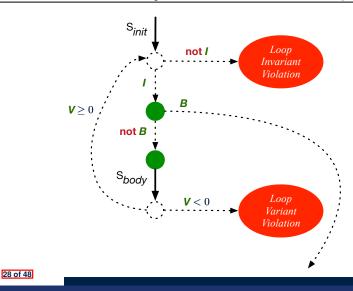
27 of 48

Contracts for Loops: Syntax

from S _{init}
<pre>invariant invariant_tag: 1 Boolean expression for partial correctness</pre>
until B
loop S _{body}
<pre>variant variant_tag: V Integer expression for termination</pre>
end

Contracts for Loops: Runtime Checks (1)

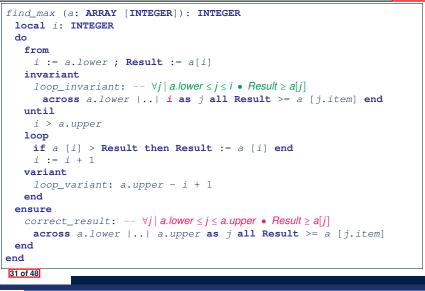
LASSONDE

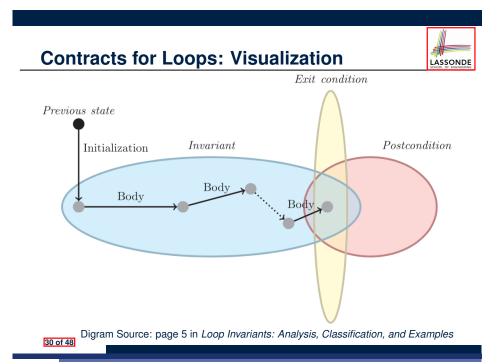


Contracts for Loops: Runtime Checks (2)

1	test
2	local
3	i: INTEGER
4	do
5	from
6	<i>i</i> := 1
7	invariant
8	$1 \le i \text{ and } i \le 6$
9	until
10	<i>i</i> > 5
11	loop
12	<pre>io.put_string ("iteration " + i.out + "%N")</pre>
13	i := i + 1
14	variant
15	6 - i
16	end
17	end
	L8: Change to 1 <= i and i <= 5 for a <i>Loop Invariant Violation</i> .
	L10 : Change to $i > 0$ to bypass the body of loop.
	L15: Change to 5 - i for a Loop Variant Violation.
	29 of 48

Contracts for Loops: Example 1.1





Contracts for Loops: Example 1.2

LASSONDE

Consider the feature call find_max($\langle (20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a$.lower $\leq j \leq i$ Result $\geq a[j]$
- Loop Variant: a.upper i + 1

AFTER ITERATION	i	Result	LI	EXIT (<i>i</i> > <i>a.upper</i>)?	LV
Initialization	1	20	\checkmark	×	_
1st	2	20	\checkmark	×	3
2nd	3	20	×	_	_

Loop invariant violation at the end of the 2nd iteration:

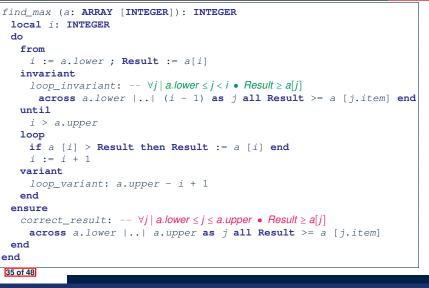
 $\forall j \mid a.lower \leq j \leq 3 \bullet 20 \geq a[j]$

evaluates to *false* $\cdot \cdot 20 \nleq a[3] = 40$

Contracts for Loops: Example 2.1

<pre>find_max (a: ARRAY [INTEGER]): INTEGER</pre>
local <i>i</i> : INTEGER
do
from
i := a.lower; Result $:= a[i]$
invariant
$loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]$
across a.lower $ $ $(i - 1)$ as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i := i + 1
variant
loop_variant: a.upper - i
end
ensure
correct_result: $-\forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]$
across a.lower a.upper as j all Result >= a [j.item]
end
end
33 of 48

Contracts for Loops: Example 3.1



Contracts for Loops: Example 2.2

LASSONDE

Consider the feature call find_max($\langle (20, 10, 40, 30 \rangle)$, given:

- Loop Invariant: $\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]$
- Loop Variant: a.upper i

AFTER ITERATION	i	Result	LI	EXIT (<i>i</i> > <i>a.upper</i>)?	LV
Initialization	1	20	\checkmark	×	_
1st	2	20	\checkmark	×	2
2nd	3	20	\checkmark	×	1
3rd	4	40	\checkmark	×	0
4th	5	40	\checkmark	\checkmark	-1

Loop variant violation at the end of the 2nd iteration \therefore *a.upper* – *i* = 4 – 5 evaluates to *non-zero*.

Contracts for Loops: Example 3.2

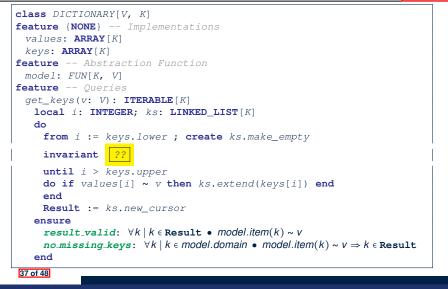
LASSONDE

Consider the feature call find_max($\langle (20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a$. lower $\leq j < i$ Result $\geq a[j]$
- Loop Variant: a.upper i + 1
- **Postcondition**: $\forall j \mid a.lower \leq j \leq a.upper$ **Result** $\geq a[j]$

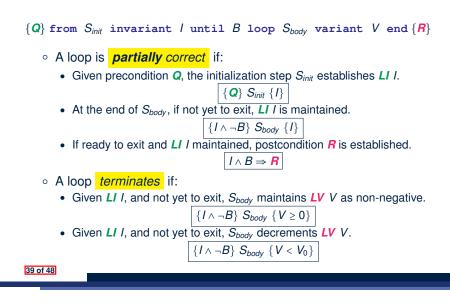
AFTER ITERATION	i	Result	LI	EXIT (<i>i</i> > <i>a.upper</i>)?	LV
Initialization	1	20	\checkmark	×	_
1st	2	20	\checkmark	×	3
2nd	3	20	\checkmark	×	2
3rd	4	40	\checkmark	×	1
4th	5	40	\checkmark	\checkmark	0

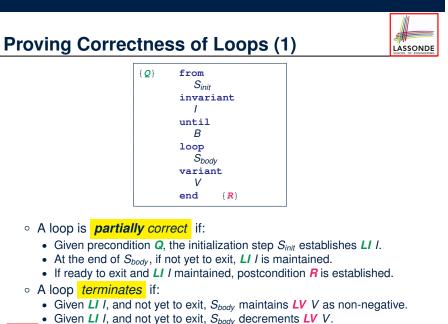
Contracts for Loops: Exercise



LASSONDE

Proving Correctness of Loops (2)





Proving Correctness of Loops: Exercise (1. UssonDe

Prove that the following program is correct:

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
     i := a.lower ; Result := a[i]
   invariant
     loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
   until
     i > a.upper
   100p
     if a [i] > Result then Result := a [i] end
     i := i + 1
   variant
     loop_variant: a.upper - i + 1
   end
 ensure
   correct_result: \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
 end
end
40 of 48
```

Proving Correctness of Loops: Exercise (1.2)

Prove that each of the following *Hoare Triples* is TRUE.

1. Establishment of Loop Invariant:

```
{ True }

i := a.lower

Result := a[i]

{ \forall j \mid a.lower \le j < i \bullet Result \ge a[j] }
```

2. Maintenance of Loop Invariant:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \le j < i \bullet \textit{Result} \ge a[j]) \land \neg(i > a.upper) \end{array} \right\} \\ \textbf{if} a [i] > \textbf{Result} \textbf{then} \textbf{Result} := a [i] \textbf{end} \\ i := i + 1 \\ \left\{ \begin{array}{l} (\forall j \mid a.lower \le j < i \bullet \textit{Result} \ge a[j]) \end{array} \right\} \end{array}
```

3. Establishment of Postcondition upon Termination:

$$(\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land i > a.upper$$

 $\Rightarrow \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]$

41 of 48

Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following *Hoare Triples* is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right\} \\ \texttt{if} a [i] > \texttt{Result then Result} := a [i] \texttt{ end } \\ i := i + 1 \\ \left\{ \begin{array}{l} a.upper - i + 1 \geq 0 \end{array} \right\} \end{array}
```

5. Loop Variant Keeps Decrementing before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right\}  if a \ [i] > Result then Result := a \ [i] end i \ := \ i \ + \ 1   \left\{ \begin{array}{l} a.upper - i + 1 < (a.upper - i + 1)_0 \end{array} \right\}
```

```
where (a.upper - i + 1)_0 \equiv a.upper_0 - i_0 + 1
```


LASSONDE

$$\{Q\} \mathrel{\texttt{S}} \{R\} \Rightarrow \{Q \land P\} \mathrel{\texttt{S}} \{R\}$$

In order to prove $\{Q \land P\} \le \{R\}$, it is sufficient to prove a version with a *weaker* precondition: $\{Q\} \le \{R\}$.

Proof:

0	Assume: { <i>Q</i> } S { <i>R</i> }	
	It's equivalent to assuming: $Q \Rightarrow wp(S, R)$	(A1)
0	To prove: $\{Q \land P\} \ \ S \ \{R\}$	
	• It's equivalent to proving: $Q \land P \Rightarrow wp(S, R)$	
	Accume: Q & R which implies Q	

Assume: Q ∧ P, which implies Q
According to (A1), we have wp(s, R).

43 of 48

When calculating wp(S, R), if either program S or postcondition R involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

 $wp(S, a.lower \le i \le a.upper \land a[i] > 0)$

e.g., Before calculating wp(x := a[i], R), augment it as

 $wp(x := a[i], a.lower \le i \le a.upper \land R)$

Index (1)

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Hoare Logic: A Simple Example

Denoting New and Old Values

Index (3)

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1

Contracts for Loops: Example 2.2

47 of 48

Index (2)

wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise

Loops

46 of 48

Index (4)

- Contracts for Loops: Example 3.1
- Contracts for Loops: Example 3.2
- Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)

