
Inheritance
Readings: OOSCS2 Chapters 14 – 16

EECS3311 A: Software Design
Winter 2020

CHEN-WEI WANG

Aspects of Inheritance

● Code Reuse
● Substitutability○ Polymorphism and Dynamic Binding

[compile-time type checks]
○ Sub-contracting

[runtime behaviour checks]

2 of 63

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

3 of 63

The COURSE Class

class

COURSE

create -- Declare commands that can be used as constructors
make

feature -- Attributes
title: STRING

fee: REAL

feature -- Commands
make (t: STRING; f: REAL)

-- Initialize a course with title ’t’ and fee ’f’.
do

title := t
fee := f

end

end

4 of 63

No Inheritance: RESIDENT STUDENT Class
class RESIDENT STUDENT
create make
feature -- Attributes
name: STRING

courses: LINKED_LIST[COURSE]

premium rate: REAL
feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set pr (r: REAL) do premium rate := r end
register (c: COURSE) do courses.extend (c) end

feature -- Queries
tuition: REAL

local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end

Result := base * premium rate
end

end

5 of 63

No Inheritance: NON RESIDENT STUDENT Class
class NON RESIDENT STUDENT
create make
feature -- Attributes
name: STRING

courses: LINKED_LIST[COURSE]

discount rate: REAL
feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set dr (r: REAL) do discount rate := r end
register (c: COURSE) do courses.extend (c) end

feature -- Queries
tuition: REAL

local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end

Result := base * discount rate
end

end

6 of 63

No Inheritance: Testing Student Classes
test_students: BOOLEAN

local

c1, c2: COURSE
jim: RESIDENT_STUDENT
jeremy: NON_RESIDENT_STUDENT

do

create c1.make ("EECS2030", 500.0)
create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25)
jim.register (c1)
jim.register (c2)
Result := jim.tuition = 1250
check Result end

create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75)
jeremy.register (c1)
jeremy.register (c2)
Result := jeremy.tuition = 750

end

7 of 63

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.
⇒ This violates the Single Choice Principle :
when a change is needed, there should be a single place (or
a minimal number of places) where you need to make that
change.

8 of 63

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,
register(Course c)
do

if courses.count >= MAX_CAPACITY then

-- Error: maximum capacity reached.
else

courses.extend (c)
end

end

We need to change the register commands in both student
classes!
⇒ Violation of the Single Choice Principle

9 of 63

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?
e.g.,
tuition: REAL

local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end

Result := base * inflation rate * . . .
end

We need to change the tuition query in both student
classes.
⇒ Violation of the Single Choice Principle

10 of 63

No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
rs : LINKED_LIST[RESIDENT STUDENT]
nrs : LINKED_LIST[NON RESIDENT STUDENT]
add_rs (rs: RESIDENT STUDENT) do . . . end

add_nrs (nrs: NON RESIDENT STUDENT) do . . . end

register_all (Course c) -- Register a common course ’c’.
do

across rs as c loop c.item.register (c) end

across nrs as c loop c.item.register (c) end

end

end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the
same manner, separately !

11 of 63

Inheritance Architecture

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

12 of 63

Inheritance: The STUDENT Parent Class

1 class STUDENT
2 create make
3 feature -- Attributes
4 name: STRING

5 courses: LINKED_LIST[COURSE]
6 feature -- Commands that can be used as constructors.
7 make (n: STRING) do name := n ; create courses.make end

8 feature -- Commands
9 register (c: COURSE) do courses.extend (c) end

10 feature -- Queries
11 tuition: REAL

12 local base: REAL

13 do base := 0.0
14 across courses as c loop base := base + c.item.fee end

15 Result := base
16 end

17 end

13 of 63

Inheritance:
The RESIDENT STUDENT Child Class

1 class

2 RESIDENT_STUDENT
3 inherit

4 STUDENT
5 redefine tuition end

6 create make
7 feature -- Attributes

8 premium rate : REAL

9 feature -- Commands
10 set pr (r: REAL) do premium_rate := r end

11 feature -- Queries
12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base * premium rate end

15 end

● L3: RESIDENT STUDENT inherits all features from STUDENT.● There is no need to repeat the register command● L14: Precursor returns the value from query tuition in STUDENT.14 of 63

Inheritance:
The NON RESIDENT STUDENT Child Class

1 class

2 NON_RESIDENT_STUDENT
3 inherit

4 STUDENT
5 redefine tuition end

6 create make
7 feature -- Attributes

8 discount rate : REAL

9 feature -- Commands
10 set dr (r: REAL) do discount_rate := r end

11 feature -- Queries
12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base * discount rate end

15 end

● L3: NON RESIDENT STUDENT inherits all features from STUDENT.● There is no need to repeat the register command● L14: Precursor returns the value from query tuition in STUDENT.
15 of 63

Inheritance Architecture Revisited

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

● The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

● Each “specialized” class is called a child , sub , or
descendent class.

16 of 63

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:○ Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class○ Define an “specialized” version of the class which:
● inherits definitions of all attributes, commands, and queries

e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition

This means code reuse and elimination of code duplicates!
● defines new features if necessary

e.g., set pr for RESIDENT STUDENT
e.g., set dr for NON RESIDENT STUDENT● redefines features if necessary
e.g., compounded tuition for RESIDENT STUDENT
e.g., discounted tuition for NON RESIDENT STUDENT

17 of 63

Testing the Two Student Sub-Classes
test_students: BOOLEAN

local

c1, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT
do

create c1.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25) ; jim.register (c1); jim.register (c2)
Result := jim.tuition = 1250
check Result end

create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75); jeremy.register (c1); jeremy.register (c2)
Result := jeremy.tuition = 750
end

● The software can be used in exactly the same way as before
(because we did not modify feature signatures).● But now the internal structure of code has been made
maintainable using inheritance .

18 of 63

Static Type vs. Dynamic Type
● In object orientation , an entity has two kinds of types:○ static type is declared at compile time [unchangeable]

An entity’s ST determines what features may be called upon it.○ dynamic type is changeable at runtime● In Java:
Student s = new Student("Alan");
Student rs = new ResidentStudent("Mark");

● In Eiffel:
local s: STUDENT

rs: STUDENT
do create {STUDENT} s.make ("Alan")

create {RESIDENT STUDENT} rs.make ("Mark")

○ In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:
local s: STUDENT
do create s.make ("Alan")

19 of 63

Inheritance Architecture Revisited

NON_RESIDENT_STUDENT

STUDENT

RESIDENT_STUDENT

name: STRING
courses: LINKED_LIST[COUNRSE]

register (Course c)
tuition: REAL

/* new features */
premium_rate: REAL
set_pr (r: REAL)
/* redefined features */
tuition: REAL

/* new features */
discount_rate: REAL
set_dr (r: REAL)
/* redefined features */
tuition: REAL

s1,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON RESIDENT STUDENT
create {STUDENT} s1.make ("S1")
create {RESIDENT STUDENT} s2.make ("S2")
create {NON RESIDENT STUDENT} s3.make ("S3")
create {RESIDENT STUDENT} rs.make ("RS")
create {NON RESIDENT STUDENT} nrs.make ("NRS")

name courses reg tuition pr set pr dr set dr

s1. ✓ ×
s2. ✓ ×
s3. ✓ ×
rs. ✓ ✓ ×
nrs. ✓ × ✓

20 of 63

Polymorphism: Intuition (1)

1 local

2 s: STUDENT
3 rs: RESIDENT_STUDENT
4 do

5 create s.make ("Stella")
6 create rs.make ("Rachael")
7 rs.set_pr (1.25)
8 s := rs /* Is this valid? */
9 rs := s /* Is this valid? */

● Which one of L8 and L9 is valid? Which one is invalid?○ L8: What kind of address can s store? [STUDENT]
∴ The context object s is expected to be used as:
● s.register(eecs3311) and s.tuition○ L9: What kind of address can rs store? [RESIDENT STUDENT]
∴ The context object rs is expected to be used as:
● rs.register(eecs3311) and rs.tuition● rs.set pr (1.50) [increase premium rate]

21 of 63

Polymorphism: Intuition (2)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */● rs := s (L6) should be invalid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● rs declared of type RESIDENT STUDENT∴ calling rs.set pr(1.50) can be expected.● rs is now pointing to a STUDENT object.● Then, what would happen to rs.set pr(1.50)?
CRASH ∵ rs.premium rate is undefined !!

22 of 63

Polymorphism: Intuition (3)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */● s := rs (L5) should be valid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● Since s is declared of type STUDENT, a subsequent call
s.set pr(1.50) is never expected.● s is now pointing to a RESIDENT STUDENT object.● Then, what would happen to s.tuition?

OK ∵ s.premium rate is just never used !!
23 of 63

Dynamic Binding: Intuition (1)
1 local c : COURSE ; s : STUDENT
2 do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make("Nancy")
5 rs.set_pr(1.25); rs.register(c)
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end

8 s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points to a RESIDENT STUDENT object.⇒ Calling s .tuition applies the premium rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT

courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

24 of 63

Dynamic Binding: Intuition (2)
1 local c : COURSE ; s : STUDENT
2 do crate c.make ("EECS3311", 100.0)
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make("Nancy")
5 rs.set_pr(1.25); rs.register(c)
6 nrs.set_dr(0.75); nrs.register(c)
7 s := rs; ; check s .tuition = 125.0 end

8 s := nrs; ; check s .tuition = 75.0 end

After s:=nrs (L8), s points to a NON RESIDENT STUDENT object.⇒ Calling s .tuition applies the discount rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT

courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

25 of 63

DbC: Contract View of Supplier
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):
class ACCOUNT
create

make
feature -- Attributes

owner : STRING

balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive balance: nb > 0

end

feature -- Commands
withdraw(amount: INTEGER)

require -- precondition
non negative amount: amount > 0
affordable amount: amount <= balance -- problematic, why?

ensure -- postcondition
balance deducted: balance = old balance - amount

end

invariant -- class invariant
positive balance: balance > 0

end

26 of 63

ES TEST: Expecting to Fail Postcondition (1)

WesWs

7E67BACC28N7
feaWXUe ­­ TeVW CRPPaQdV fRU CRQWUacW VLROaWLRQV
 WeVW_ZLWKdUaZ_SRVWcRQdLWLRQ_YLROaWLRQ
 lRcal
 acc: BAD_ACCOUNT_WITHDRAW
 dR
 cUeaWe acc.PaNH ("AOaQ", 100)
 ­­ VLROaWLRQ Rf PRVWcRQdLWLRQ
 ­­ ZLWK WaJ "baOaQce_dedXced" e[SecWed
 acc.ZiWhdUaZ (50)
 end

acc

BADBACC28N7B:I7HD5A:
feaWXUe ­­ RedefLQed CRPPaQdV
 ZiWhdUaZ (aPRXQW: INTEGER) ++
 dR
 PUecXUVRU (aPRXQW)
 ­­ WURQJ IPSOePeQWaWLRQ
 baOaQcH := baOaQcH + 2 * aPRXQW
 end

ACC28N7
feaWXUe ­­ CRPPaQdV
 ZLWKGUaZ (aPRXQW: INTEGER)
 UeTXiUe
 QRQ_QeJaWLYe_aPRXQW: aPRXQW > 0
 affRUdabOe_aPRXQW: aPRXQW � baOaQcH
 dR
 baOaQcH := baOaQcH ­ aPRXQW
 enVXUe
 baOaQce_dedXced: baOaQcH = Rld baOaQcH ­ aPRXQW
 end

mRdel

27 of 63

ES TEST: Expecting to Fail Postcondition (2.1)
1 class

2 BAD_ACCOUNT_WITHDRAW
3 inherit

4 ACCOUNT
5 redefine withdraw end

6 create

7 make
8 feature -- redefined commands
9 withdraw(amount: INTEGER)

10 do

11 Precursor(amount)
12 -- Wrong implementation
13 balance := balance + 2 * amount
14 end

15 end

○ L3–5: BAD ACCOUNT WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.○ L11 calls correct implementation from parent class ACCOUNT.○ L13 makes overall implementation incorrect .

28 of 63

ES TEST: Expecting to Fail Postcondition (2.2)
1 class TEST_ACCOUNT
2 inherit ES TEST
3 create make
4 feature -- Constructor for adding tests
5 make
6 do

7 add violation case with tag ("balance_deducted",
8 agent test_withdraw_postcondition_violation)
9 end

10 feature -- Test commands (test to fail)
11 test_withdraw_postcondition_violation
12 local

13 acc: BAD_ACCOUNT_WITHDRAW
14 do

15 comment ("test: expected postcondition violation of withdraw")
16 create acc.make ("Alan", 100)
17 -- Postcondition Violation with tag "balance_deduced" to occur.
18 acc.withdraw (50)
19 end

20 end

●29 of 63

Exercise
Recall from the “Writing Complete Postconditions” lecture:
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do . . . -- Put Correct Implementation Here.
ensure

. . .

others unchanged :

across old accounts.deep twin as cursor
all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end

How do you create a “bad” descendant of BANK that violates
this postcondition?
class BAD_BANK_DEPOSIT
inherit BANK redefine deposit end

feature -- redefined feature
deposit_on_v5 (n: STRING; a: INTEGER)
do Precursor (n, a)

accounts[accounts.lower].deposit(a)
end

end

30 of 63

Multi-Level Inheritance Architecture (1)

DOMESTIC_RESIDENT_STUDENT DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

DOMESTIC_STUDENT FOREIGN_STUDENT

STUDENT

31 of 63

Multi-Level Inheritance Architecture (2)

IPHONE_XS_MAX IPHONE_11_PRO HUAWEI SAMSUNG

IOS ANDROID

SMART_PHONE

HUAWEI_P30_PRO HUAWEI_MATE_20_PRO GALAXY_S10 GALAXY_S10_PLUS

dial -- basic feature
surf_web -- basic feature

surf_web -- redefined using safari
facetime -- new feature

surf_web -- redefined using firefox
skype -- new feature

side_sync quick_take

zoomage

32 of 63

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.○ Every class can be used as a type: the set of runtime objects.● Use of inheritance creates a hierarchy of classes:○ (Implicit) Root of the hierarchy is ANY.○ Each inherit declaration corresponds to an upward arrow.○ The inherit relationship is transitive: when A inherits B and B

inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.● Ancestor vs. Descendant classes:○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, inherits.● A inherits all features from its ancestor classes.∴ A’s instances have a wider range of expected usages (i.e.,

attributes, queries, commands) than instances of its ancestor classes.○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.● Code defined in A is inherited to all its descendant classes.

33 of 63

Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:○ A descendant class inherits all code from its ancestor classes.○ A descendant class may also:● Declare new attributes.● Define new queries or commands.
● Redefine inherited queries or commands.● Consequently:○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).○ When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.○ e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT STUDENT or a NON RESIDENT STUDENT object.○ Justification: A descendant class contains at least as many
features as defined in its ancestor classes (but not vice versa!).

34 of 63

Substitutions via Assignments
● By declaring v1:C1 , reference variable v1 will store the

address of an object of class C1 at runtime.● By declaring v2:C2 , reference variable v2 will store the
address of an object of class C2 at runtime.● Assignment v1:=v2 copies the address stored in v2 into v1.
○ v1 will instead point to wherever v2 is pointing to. [object alias]

……

C1v1

……

C2v2

● In such assignment v1:=v2 , we say that we substitute an
object of type C1 with an object of type C2.● Substitutions are subject to rules!

35 of 63

Rules of Substitution
Given an inheritance hierarchy:
1. When expecting an object of class A, it is safe to substitute it

with an object of any descendant class of A (including A).○ e.g., When expecting an IOS phone, you can substitute it with
either an IPHONE XS MAX or IPHONE 11 PRO.○ ∵ Each descendant class of A is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.○ ∴ All features defined in A are guaranteed to be available in the
new substitute.

2. When expecting an object of class A, it is unsafe to substitute
it with an object of any ancestor class of A’s parent .○ e.g., When expecting an IOS phone, you cannot substitute it with

just a SMART PHONE, because the facetime feature is not
supported in an ANDROID phone.○ ∵ Class A may have defined new features that do not exist in any
of its parent’s ancestor classes .

36 of 63

Reference Variable: Static Type
● A reference variable’s static type is what we declare it to be.○ e.g., jim:STUDENT declares jim’s static type as STUDENT.
○ e.g., my phone:SMART PHONE

declares a variable my phone of static type SmartPhone.○ The static type of a reference variable never changes.● For a reference variable v , its static type C defines the
expected usages of v as a context object .

● A feature call v.m(. . .) is compilable if m is defined in C .
○ e.g., After declaring jim:STUDENT , we
● may call register and tuition on jim● may not call set pr (specific to a resident student) or set dr

(specific to a non-resident student) on jim○ e.g., After declaring my phone:SMART PHONE , we
● may call dial and surf web on my phone● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on my phone
37 of 63

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.○ There are two ways to re-assigning a reference variable.

38 of 63

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.○ e.g., Given the declaration jim:STUDENT :

● create {RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to RESIDENT STUDENT.
● create {NON RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to NON RESIDENT STUDENT.
○ e.g., Given an alternative declaration jim:RESIDENT STUDENT :

● e.g., create {STUDENT} jim.make("Jim") is illegal
because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT STUDENT).

39 of 63

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.○ e.g.,
jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON RESIDENT STUDENT
create {STUDENT} jim.make (. . .)
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.make (. . .)

● rs := jim ×● nrs := jim ×● jim := rs ✓
changes the dynamic type of jim to the dynamic type of rs● jim := nrs ✓
changes the dynamic type of jim to the dynamic type of nrs

40 of 63

Polymorphism and Dynamic Binding (1)
● Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).○ Consequently, there are multiple possible versions of each feature
that may be called.● e.g., 3 possibilities of tuition on a STUDENT reference variable:

In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium rate
In NON RESIDENT STUDENT: base amount with discount rate● Dynamic binding : When a feature m is called on an object

variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
jim: STUDENT; rs: RESIDENT STUDENT; nrs: NON STUDENT
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.nrs (. . .)
jim := rs

jim.tuitoion; /* version in RESIDENT STUDENT */
jim := nrs

jim.tuition; /* version in NON RESIDENT STUDENT */
41 of 63

Polymorphism and Dynamic Binding (2.1)
1 test_polymorphism_students
2 local

3 jim: STUDENT
4 rs: RESIDENT STUDENT
5 nrs: NON RESIDENT STUDENT
6 do

7 create {STUDENT} jim.make ("J. Davis")
8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")

10 jim := rs ✓
11 rs := jim ×
12 jim := nrs ✓
13 rs := jim ×
14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT , so we may abbreviate:
L7: create jim.make ("J. Davis")

L8: create rs.make ("J. Davis")

L9: create nrs.make ("J. Davis")
42 of 63

Polymorphism and Dynamic Binding (2.2)
test_dynamic_binding_students: BOOLEAN

local

jim: STUDENT
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE

do

create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs
Result := jim.tuition = 750.0
check Result end

create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)
nrs.set_dr (0.5)

jim := nrs
Result := jim.tuition = 250.0

end
43 of 63

Reference Type Casting: Motivation
1 local jim: STUDENT; rs: RESIDENT STUDENT
2 do create {RESIDENT STUDENT} jim.make ("J. Davis")
3 rs := jim
4 rs.setPremiumRate(1.5)

● Line 2 is legal : RESIDENT_STUDENT is a descendant class of the
static type of jim (i.e., STUDENT).● Line 3 is illegal : jim’s static type (i.e., STUDENT) is not a
descendant class of rs’s static type (i.e., RESIDENT_STUDENT).● Eiffel compiler is unable to infer that jim’s dynamic type in
Line 4 is RESIDENT_STUDENT. [Undecidable]● Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):
check attached {RESIDENT STUDENT} jim as rs_jim then

rs := rs_jim
rs.set_pr (1.5)

end

44 of 63

Reference Type Casting: Syntax
1 check attached {RESIDENT STUDENT} jim as rs_jim then

2 rs := rs_jim
3 rs.set_pr (1.5)
4 end

L1 is an assertion:○ attached RESIDENT STUDENT jim is a Boolean expression

that is to be evaluated at runtime .
● If it evaluates to true, then the as rs jim expression has the effect

of assigning “the cast version” of jim to a new variable rs jim.● If it evaluates to false, then a runtime assertion violation occurs.○ Dynamic Binding : Line 4 executes the correct version of set pr.● It is approximately the same as following Java code:
if(jim instanceof ResidentStudent) {
ResidentStudent rs = (ResidentStudent) jim;
rs.set_pr(1.5);

}
else { throw new Exception("Cast Not Done."); }

45 of 63

Notes on Type Cast (1)

● check attached {C} y then . . . end always compiles
● What if C is not an ancestor of y’s DT ?
⇒ A runtime assertion violation occurs!
∵ y’s DT cannot fulfill the expectation of C.

46 of 63

Notes on Type Cast (2)
● Given v of static type ST , it is violation-free to cast v to C , as

long as C is a descendant or ancestor class of ST .● Why Cast?○ Without cast, we can only call features defined in ST on v.○ By casting v to C , we create an alias of the object pointed by v,
with the new static type C .
⇒ All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 11 PRO} my_phone.make
-- can only call features defined in IOS on myPhone
-- dial, surf_web, facetime ✓ quick_take, skype, side_sync, zoomage ×

check attached {SMART PHONE} my_phone as sp then

-- can now call features defined in SMART_PHONE on sp
-- dial, surf_web ✓ facetime, quick_take, skype, side_sync, zoomage ×

end

check attached {IPHONE 11 PRO} my_phone as ip11_pro then

-- can now call features defined in IPHONE_11_PRO on ip11_pro
-- dial, surf_web, facetime, quick_take ✓ skype, side_sync, zoomage ×

end

47 of 63

Notes on Type Cast (3)

A cast check attached {C} v as ... triggers an assertion
violation if C is not along the ancestor path of v’s DT .

test_smart_phone_type_cast_violation
local mine: ANDROID
do create {HUAWEI} mine.make

-- ST of mine is ANDROID; DT of mine is HUAWEI
check attached {SMART PHONE} mine as sp then ... end

-- ST of sp is SMART_PHONE; DT of sp is HUAWEI
check attached {HUAWEI} mine as huawei then ... end

-- ST of huawei is HUAWEI; DT of huawei is HUAWEI
check attached {SAMSUNG} mine as samsung then ... end

-- Assertion violation
-- ∵ SAMSUNG is not ancestor of mine’s DT (HUAWEI)
check attached {HUAWEI P30 PRO} mine as p30_pro then ... end

-- Assertion violation
-- ∵ HUAWEI_P30_PRO is not ancestor of mine’s DT (HUAWEI)

end

48 of 63

Polymorphism: Feature Call Arguments (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss : ARRAY[STUDENT] -- ss[i] has static type Student
3 add_s (s: STUDENT) do ss[0] := s end

4 add_rs (rs: RESIDENT STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON RESIDENT STUDENT) do ss[0] := nrs end

● L4: ss[0]:=rs is valid. ∵ RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.● Say we have a STUDENT MANAGEMENT SYSETM object sms:○ ∵ call by value , sms.add rs(o) attempts the following

assignment (i.e., replace parameter rs by a copy of argument o):
rs := o

○ Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class C, then we may call feature m by passing objects whose
static types are C’s descendants.

49 of 63

Polymorphism: Feature Call Arguments (2)

test_polymorphism_feature_arguments
local

s1, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON RESIDENT STUDENT
sms: STUDENT_MANAGEMENT_SYSTEM

do

create sms.make
create {STUDENT} s1.make ("s1")
create {RESIDENT_STUDENT} s2.make ("s2")
create {NON_RESIDENT_STUDENT} s3.make ("s3")
create {RESIDENT_STUDENT} rs.make ("rs")
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (s1) ✓ sms.add_s (s2) ✓ sms.add_s (s3) ✓
sms.add_s (rs) ✓ sms.add_s (nrs) ✓
sms.add_rs (s1) × sms.add_rs (s2) × sms.add_rs (s3) ×
sms.add_rs (rs) ✓ sms.add_rs (nrs) ×
sms.add_nrs (s1) × sms.add_nrs (s2) × sms.add_nrs (s3) ×
sms.add_nrs (rs) × sms.add_nrs (nrs) ✓

end

50 of 63

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT MANAGEMENT SYSETM
that contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST[STUDENT]
add_student(s: STUDENT)
do

students.extend (s)
end

registerAll (c: COURSE)
do

across

students as s
loop

s.item.register (c)
end

end

end

51 of 63

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

test_sms_polymorphism: BOOLEAN

local

rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE
sms: STUDENT_MANAGEMENT_SYSTEM

do

create rs.make ("Jim")
rs.set_pr (1.5)
create nrs.make ("Jeremy")
nrs.set_dr (0.5)
create sms.make
sms.add_s (rs)
sms.add_s (nrs)
create c.make ("EECS3311", 500)
sms.register_all (c)
Result := sms.ss[1].tuition = 750 and sms.ss[2].tuition = 250

end

52 of 63

Polymorphism: Return Values (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss: LINKED_LIST[STUDENT]
3 add_s (s: STUDENT)
4 do

5 ss.extend (s)
6 end

7 get_student(i: INTEGER): STUDENT
8 require 1 <= i and i <= ss.count
9 do

10 Result := ss[i]
11 end

12 end

● L2: ST of each stored item (ss[i]) in the list: [STUDENT]● L3: ST of input parameter s: [STUDENT]● L7: ST of return value (Result) of get student: [STUDENT]● L11: ss[i]’s ST is descendant of Result’ ST .
Question: What can be the dynamic type of s after Line 11?
Answer: All descendant classes of Student.

53 of 63

Polymorphism: Return Values (2)
1 test_sms_polymorphism: BOOLEAN

2 local

3 rs: RESIDENT_STUDENT ; nrs: NON_RESIDENT_STUDENT
4 c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM
5 do

6 create rs.make ("Jim") ; rs.set_pr (1.5)
7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
9 create c.make ("EECS3311", 500) ; sms.register_all (c)

10 Result :=
11 get_student(1).tuition = 750
12 and get_student(2).tuition = 250
13 end

● L11: get student(1)’s dynamic type? [RESIDENT_STUDENT]
● L11: Version of tuition? [RESIDENT_STUDENT]
● L12: get student(2)’s dynamic type? [NON_RESIDENT_STUDENT]
● L12: Version of tuition? [NON_RESIDENT_STUDENT]
54 of 63

Design Principle: Polymorphism
● When declaring an attribute a: T⇒ Choose static type T which “accumulates” all features that

you predict you will want to call on a.
e.g., Choose s: STUDENT if you do not intend to be specific about
which kind of student s might be.⇒ Let dynamic binding determine at runtime which version of
tuition will be called.● What if after declaring s: STUDENT you find yourself often

needing to cast s to RESIDENT STUDENT in order to access
premium rate?
check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(. . .) end

⇒ Your design decision should have been: s:RESIDENT_STUDENT● Same design principle applies to:○ Type of feature parameters: f(a: T)○ Type of queries: q(...): T
55 of 63

Static Type vs. Dynamic Type:
When to consider which?

● Whether or not an OOP code compiles depends only on the
static types of relevant variables.
∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Eiffel code being executed at runtime
e.g., which version of method is called
e.g., if a check attached {. . .} as . . . then . . . end

assertion error will occur
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

56 of 63

Summary: Type Checking Rules

CODE CONDITION TO BE TYPE CORRECT

x := y y’s ST a descendant of x’s ST

x.f(y)
Feature f defined in x’s ST
y’s ST a descendant of f’s parameter’s ST

z := x.f(y)
Feature f defined in x’s ST
y’s ST a descendant of f’s parameter’s ST
ST of m’s return value a descendant of z’s ST

check attached {C} y Always compiles
check attached {C} y as temp C a descendant of x’s ST
then x := temp end

check attached {C} y as temp Feature f defined in x’s ST
then x.f(temp) end C a descendant of f’s parameter’s ST

Even if check attached {C} y then . . . end always compiles,

a runtime assertion error occurs if C is not an ancestor of y’s DT!

57 of 63

Index (1)

Aspects of Inheritance

Why Inheritance: A Motivating Example

The COURSE Class

No Inheritance: RESIDENT STUDENT Class

No Inheritance: NON RESIDENT STUDENT Class

No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

58 of 63

Index (2)
No Inheritance:
A Collection of Various Kinds of Students

Inheritance Architecture

Inheritance: The STUDENT Parent Class
Inheritance:
The RESIDENT STUDENT Child Class
Inheritance:
The NON RESIDENT STUDENT Child Class

Inheritance Architecture Revisited

Using Inheritance for Code Reuse

Testing the Two Student Sub-Classes

Static Type vs. Dynamic Type
59 of 63

Index (3)
Inheritance Architecture Revisited

Polymorphism: Intuition (1)

Polymorphism: Intuition (2)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2)

DbC: Contract View of Supplier

ES TEST: Expecting to Fail Postcondition (1)

ES TEST: Expecting to Fail Postcondition (2.1)

ES TEST: Expecting to Fail Postcondition (2.2)

Exercise
60 of 63

Index (4)
Multi-Level Inheritance Architecture (1)

Multi-Level Inheritance Architecture (2)

Inheritance Forms a Type Hierarchy

Inheritance Accumulates Code for Reuse

Substitutions via Assignments

Rules of Substitution

Reference Variable: Static Type

Reference Variable: Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)

61 of 63

Index (5)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.1)

Polymorphism and Dynamic Binding (2.2)

Reference Type Casting: Motivation

Reference Type Casting: Syntax

Notes on Type Cast (1)

Notes on Type Cast (2)

Notes on Type Cast (3)

Polymorphism: Feature Call Arguments (1)

Polymorphism: Feature Call Arguments (2)

62 of 63

Index (6)
Why Inheritance:
A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)

Design Principle: Polymorphism
Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

63 of 63

