Abstractions via Mathematical Models

EECS3311 A: Software Design Winter 2020

CHEN-WEI WANG

Motivating Problem: Complete Contracts

- Recall what we learned in the Complete Contracts lecture:
 - In *post-condition*, for *each attribute*, specify the relationship between its *pre-state* value and its *post-state* value.
 - Use the **old** keyword to refer to *post-state* values of expressions.
 - For a *composite*-structured attribute (e.g., arrays, linked-lists, hash-tables, *etc.*), we should specify that after the update:
 - 1. The intended change is present; and
 - **2.** The rest of the structure is unchanged .
- Let's now revisit this technique by specifying a *LIFO stack*.

Motivating Problem: LIFO Stack (1)

· Let's consider three different implementation strategies:

Stack Feature	Array	Linked List		
Slack Feature	Strategy 1	Strategy 2	Strategy 3	
count	imp.count			
top	imp[imp.count]	imp.first	imp.last	
push(g)	imp.force(g, imp.count + 1)	imp.put_front(g)	imp.extend(g)	
рор	imp.list.remove_tail (1)	list.start	imp.finish	
		list.remove	imp.remove	

• Given that all strategies are meant for implementing the *same ADT*, will they have *identical* contracts?

Motivating Problem: LIFO Stack (2.1)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
 imp: ARRAY[G]
feature -- Initialization
 make do create imp.make empty ensure imp.count = 0 end
feature -- Commands
 push(a: G)
  do imp.force(q, imp.count + 1)
  ensure
    changed: imp[count] ~ g
    unchanged: across 1 |... | count - 1 as i all
                 imp[i.item] ~ (old imp.deep_twin) [i.item] end
  end
 pop
  do imp.remove_tail(1)
   ensure
    changed: count = old count - 1
    unchanged: across 1 |... | count as i all
                 imp[i.item] ~ (old imp.deep twin)[i.item] end
  end
```


Motivating Problem: LIFO Stack (2.2)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
 imp: LINKED LIST [G]
feature -- Initialization
 make do create imp.make ensure imp.count = 0 end
feature -- Commands
 push(a: G)
  do imp.put front(q)
  ensure
    changed: imp.first ~ g
    unchanged: across 2 |.. | count as i all
                 imp[i.item] ~ (old imp.deep_twin) [i.item - 1] end
  end
 pop
  do imp.start ; imp.remove
   ensure
    changed: count = old count - 1
    unchanged: across 1 |... | count as i all
                 imp[i.item] ~ (old imp.deep twin) [i.item + 1] end
  end
```


Motivating Problem: LIFO Stack (2.3)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
 imp: LINKED LIST [G]
feature -- Initialization
 make do create imp.make ensure imp.count = 0 end
feature -- Commands
 push(a: G)
  do imp.extend(q)
  ensure
    changed: imp.last ~ g
    unchanged: across 1 |.. | count - 1 as i all
                 imp[i.item] ~ (old imp.deep_twin) [i.item] end
  end
 pop
  do imp.finish ; imp.remove
  ensure
    changed: count = old count - 1
    unchanged: across 1 |... | count as i all
                 imp[i.item] ~ (old imp.deep twin)[i.item] end
  end
```


Design Principles: Information Hiding & Single Choice

- Information Hiding (IH):
 - Hide supplier's *design decisions* that are *likely to change*.
 - Violation of IH means that your design's public API is *unstable*.
 - *Change of supplier's secrets* should not affect clients relying upon the existing API.

• **Single Choice Principle** (SCP):

- When a *change* is needed, there should be *a single place* (or *a minimal number of places*) where you need to make that change.
- Violation of SCP means that your design contains *redundancies*.

Motivating Problem: LIFO Stack (3)

- *Postconditions* of all 3 versions of stack are *complete*.
 i.e., Not only the new item is *pushed/popped*, but also the remaining part of the stack is *unchanged*.
- But they violate the principle of *information hiding*: Changing the *secret*, internal workings of data structures should not affect any existing clients.
- How so?

8 of 41

The private attribute imp is referenced in the *postconditions*, exposing the implementation strategy not relevant to clients:

- Top of stack may be imp[count] , imp.first , or imp.last
- Remaining part of stack may be across 1 |... | count 1 or

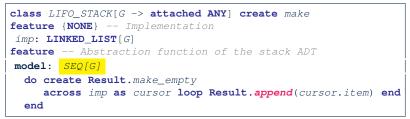
across 2 |... | count

 \Rightarrow Changing the implementation strategy from one to another will also change the contracts for **all** features.

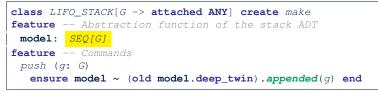
 \Rightarrow This also violates the Single Choice Principle.

Math Models: Command vs Query

- Use MATHMODELS library to create math objects (SET, REL, SEQ).
- State-changing commands: Implement an Abstraction Function



Side-effect-free queries: Write Complete Contracts



Implementing an Abstraction Function (1)


```
class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
 imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make_from_arrav (imp)
   ensure
    counts: imp.count = Result.count
    contents: across 1 |... | Result.count as i all
                Result[i.item] ~ imp[i.item]
   end
feature -- Commands
 make do create imp.make_empty ensure model.count = 0 end
 push (q: G) do imp.force(q, imp.count + 1)
  ensure pushed: model ~ (old model.deep_twin).appended(q) end
 pop do imp.remove_tail(1)
  ensure popped: model ~ (old model.deep_twin).front end
end
```


Abstracting ADTs as Math Models (1)

'push(g: G)' feature of LIFO_STACK ADT

public (client's	view)				
old model: SE		l ~ (old moc	lel.deep_twin).appe		SEQ[G]
	rt the current array a math sequence			convert the current array into a math sequence	abstraction function
old imp: ARRA	W[G]	imp.force	(g, imp.count + 1)	imp: A	RRAY[G]
private/hidden	(implementor's	view)			
Strategy 1	Abstracti	on fund	<mark>ction</mark> : Conv	ert the <i>imple</i>	mentati
rray to its o	orrespond	ling <i>mo</i>	del sequen	ice.	
Contract fo	r the put	(q:	G) feature	remains the	same:

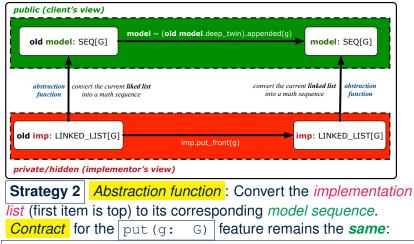
model ~ (old model.deep_twin).appended(g)

Implementing an Abstraction Function (2)


```
class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
 imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make empty
     across imp as cursor loop Result.prepend(cursor.item) end
   ensure
    counts: imp.count = Result.count
    contents: across 1 |... | Result.count as i all
                Result[i.item] ~ imp[count - i.item + 1]
  end
feature -- Commands
 make do create imp.make ensure model.count = 0 end
 push (g: G) do imp.put_front(g)
  ensure pushed: model ~ (old model.deep.twin).appended(q) end
 pop do imp.start ; imp.remove
  ensure popped: model ~ (old model.deep_twin).front end
end
```


Abstracting ADTs as Math Models (2)

'push(g: G)' feature of LIFO_STACK ADT



model ~ (old model.deep_twin).appended(g)

13 of 41

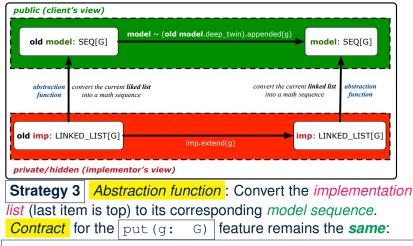
.

Implementing an Abstraction Function (3)


```
class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
 imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make empty
     across imp as cursor loop Result.append(cursor.item) end
   ensure
    counts: imp.count = Result.count
    contents: across 1 |... | Result.count as i all
                Result [i.item] ~ imp[i.item]
  end
feature -- Commands
 make do create imp.make ensure model.count = 0 end
 push (g: G) do imp.extend(g)
  ensure pushed: model ~ (old model.deep.twin).appended(q) end
 pop do imp.finish ; imp.remove
  ensure popped: model ~ (old model.deep_twin).front end
end
```


Abstracting ADTs as Math Models (3)

'push(g: G)' feature of LIFO_STACK ADT



model ~ (old model.deep_twin).appended(g)

Solution: Abstracting ADTs as Math Models

- Writing contracts in terms of *implementation attributes* (arrays, LL's, hash tables, *etc.*) violates *information hiding* principle.
- Instead:
 - For each ADT, create an *abstraction* via a *mathematical model*. e.g., Abstract a LIFO_STACK as a mathematical sequence.
 - For each ADT, define an *abstraction function* (i.e., a query) whose return type is a kind of *mathematical model*.
 e.g., Convert *implementation array* to *mathematical sequence*
 - Write contracts in terms of the *abstract math model*.
 e.g., When pushing an item *g* onto the stack, specify it as appending *g* into its model sequence.
 - Upon changing the implementation:
 - No change on <u>what</u> the abstraction is, hence no change on contracts.
 - **Only** change <u>how</u> the abstraction is constructed, hence *changes on the body of the abstraction function.*

e.g., Convert implementation linked-list to mathematical sequence

 \Rightarrow The *Single Choice Principle* is obeyed.

Math Review: Set Definitions and Membershipsone

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - Order in which elements are arranged does not matter.
 - An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set. e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.

e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$

- An empty set (denoted as $\{\}$ or $\varnothing)$ has no members.
- We may check if an element is a *member* of a set:
 e.g., 5 ∈ {1,3,5,7,9}
 e.g., 4 ∉ {x | x ≤ 1 ≤ 10, x is an odd number}
- The number of elements in a set is called its *cardinality*. e.g., $|\emptyset| = 0$, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

[true]

[true]

Math Review: Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S_1 \Rightarrow x \in S_2)$$

• S₁ and S₂ are equal iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

Math Review: Set Operations

Given two sets S_1 and S_2 :

• Union of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• Intersection of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• *Difference* of *S*₁ and *S*₂ is a set whose members are in *S*₁ but not *S*₂.

$$S_1 \smallsetminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

The *power set* of a set *S* is a *set* of all *S*' *subsets*.

 $\mathbb{P}(S) = \{s \mid s \subseteq S\}$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1, 2, 3\})$ is a set of sets, where each member set *s* has cardinality 0, 1, 2, or 3:

$$\left\{ \begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array} \right\}$$

Math Review: Set of Tuples

Given *n* sets S_1, S_2, \ldots, S_n , a cross product of theses sets is a set of *n*-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples:

$$\{a,b\} \times \{2,4\} \times \{\$,\&\}$$

$$= \{(e_1,e_2,e_3) \mid e_1 \in \{a,b\} \land e_2 \in \{2,4\} \land e_3 \in \{\$,\&\}\}$$

$$= \{(a,2,\$), (a,2,\&), (a,4,\$), (a,4,\&), (b,2,\$), (b,2,\&), (b,4,\$), (b,4,\&)\}$$

Math Models: Relations (1)

- A *relation* is a collection of mappings, each being an *ordered pair* that maps a member of set *S* to a member of set *T*. e.g., Say *S* = {1,2,3} and *T* = {*a*,*b*}
 - $\circ \ \varnothing$ is an empty relation.
 - $S \times T$ is a relation (say r_1) that maps from each member of S to each member in T: {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
 - $\{(x, y) : S \times T \mid x \neq 1\}$ is a relation (say r_2) that maps only some members in S to every member in $T: \{(2, a), (2, b), (3, a), (3, b)\}$.
- Given a relation r:
 - Domain of r is the set of S members that r maps from.

 $\operatorname{dom}(r) = \{ \boldsymbol{s} : \boldsymbol{S} \mid (\exists t \bullet (\boldsymbol{s}, t) \in r) \}$

e.g., dom $(r_1) = \{1, 2, 3\}$, dom $(r_2) = \{2, 3\}$

• *Range* of *r* is the set of *T* members that *r* maps to.

 $\operatorname{ran}(r) = \{t : T \mid (\exists s \bullet (s, t) \in r)\}$

e.g., $ran(r_1) = \{a, b\} = ran(r_2)$

Math Models: Relations (2)

• We use the power set operator to express the set of *all possible relations* on *S* and *T*:

 $\mathbb{P}(S \times T)$

• To declare a relation variable *r*, we use the colon (:) symbol to mean *set membership*:

$$r:\mathbb{P}(S \times T)$$

• Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- r.*domain*: set of first-elements from r
 - $\circ r. \mathbf{domain} = \{ d \mid (d, r) \in r \}$
 - e.g., r.**domain** = {*a*, *b*, *c*, *d*, *e*, *f*}
- r.range: set of second-elements from r

- e.g., r.**range** = $\{1, 2, 3, 4, 5, 6\}$
- r.*inverse*: a relation like *r* except elements are in reverse order

• r.**inverse** =
$$\{ (r, d) | (d, r) \in r \}$$

• e.g., r.inverse = $\{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$

Math Models: Relations (3.2)

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- r.*domain_restricted*(ds) : sub-relation of *r* with domain *ds*.
 - r.domain_restricted(ds) = { $(d, r) | (d, r) \in r \land d \in ds$ }
 - $\circ e.g., r.domain_restricted(\{a, b\}) = \{(a, 1), (b, 2), (a, 4), (b, 5)\}$
- $r.domain_subtracted(ds)$: sub-relation of r with domain <u>not</u> ds.
 - r.domain_subtracted(ds) = { $(d, r) | (d, r) \in r \land d \notin ds$ }
 - ∘ e.g., r.domain_subtracted($\{a, b\}$) = $\{(c, 6), (d, 1), (e, 2), (f, 3)\}$
- r.*range_restricted*(rs) : sub-relation of *r* with range *rs*.
 - r.range_restricted(rs) = { $(d, r) | (d, r) \in r \land r \in rs$ }
 - e.g., r.range_restricted($\{1, 2\}$) = $\{(a, 1), (b, 2), (d, 1), (e, 2)\}$
- $| r.range_subtracted(ds) |$: sub-relation of *r* with range <u>not</u> *ds*.

• r.range_subtracted(rs) = { $(d, r) | (d, r) \in r \land r \notin rs$ }

• e.g., r.range_subtracted($\{1, 2\}$) = $\{(c, 3), (a, 4), (b, 5), (c, 6)\}$

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

r.overridden(t): a relation which agrees on *r* outside domain of *t.domain*, and agrees on *t* within domain of *t.domain* r.overridden(t) = t ∪ r.domain_subtracted(t.domain)

$$= \underbrace{\{(a,3), (c,4)\}}_{t} \cup \underbrace{\{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{t} \cup \underbrace{\{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{(a,c)}$$
$$= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$

0

A *function* f on sets S and T is a *specialized form* of relation: it is forbidden for a member of S to map to more than one members of T.

$$\forall s: S; t_1: T; t_2: T \bullet (s, t_1) \in f \land (s, t_2) \in f \Rightarrow t_1 = t_2$$

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$, which of the following relations are also functions?

Math Review: Functions (2)

• We use *set comprehension* to express the set of all possible functions on *S* and *T* as those relations that satisfy the *functional property*:

$$\{ r : S \leftrightarrow T \mid \\ (\forall s : S; t_1 : T; t_2 : T \bullet (s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2) \}$$

- This set (of possible functions) is a subset of the set (of possible relations): P(S × T) and S ↔ T.
- We abbreviate this set of possible functions as *S* → *T* and use it to declare a function variable *f*:

$$f:S\to T$$

Math Review: Functions (3.1)

Given a function $f: S \rightarrow T$:

- *f* is *injective* (or an injection) if *f* does not map a member of *S* to more than one members of *T*.
 - $\begin{array}{l} f \text{ is injective } &\longleftrightarrow \\ (\forall s_1 : S; s_2 : S; t : T \bullet (s_1, t) \in r \land (s_2, t) \in r \Rightarrow s_1 = s_2) \end{array}$

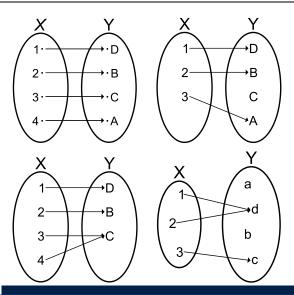
e.g., Considering an array as a function from integers to objects, being injective means that the array does not contain any duplicates.

• f is surjective (or a surjection) if f maps to all members of T.

```
f is surjective \iff \operatorname{ran}(f) = T
```

• *f* is *bijective* (or a bijection) if *f* is both injective and surjective.

Math Review: Functions (3.2)



Math Models: Command-Query Separation

Command	Query
domain_restrict	domain_restrict ed
domain_restrict_by	domain_restrict ed_ by
domain_subtract	domain_subtract ed
domain_subtract_by	domain_subtract ed _by
range_restrict	range_restrict ed
range_restrict_by	range_restrict ed _by
range_subtract	range_subtract ed
range_subtract_by	range_subtract ed_ by
override	overrid den
override_by	overrid den _by

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

• Commands modify the context relation objects.

r.*domain_restrict* ({a}) changes r to $\{(a, 1), (a, 4)\}$

• *Queries* return new relations without modifying context objects.

r.*domain_restricted*($\{a\}$) returns $\{(a,1), (a,4)\}$ with *r* untouched

Math Models: Example Test


```
test rel: BOOLEAN
 local
  r, t: REL[STRING, INTEGER]
  ds: SET[STRING]
 do
   create r.make from tuple array (
    <<["a", 1], ["b", 2], ["c", 3],
      ["a", 4], ["b", 5], ["c", 6],
      ["d", 1], ["e", 2], ["f", 3]>>)
   create ds.make from arrav (<<"a">>>)
   -- r is not changed by the guery 'domain subtracted'
   t := r.domain_subtracted (ds)
  Result :=
    t /~ r and not t.domain.has ("a") and r.domain.has ("a")
   check Result end
   -- r is changed by the command 'domain subtract'
   r.domain_subtract (ds)
  Result :=
    t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
 end
```

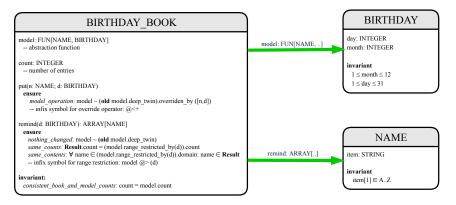
Case Study: A Birthday Book

- A birthday book stores a collection of entries, where each entry is a pair of a person's name and their birthday.
- No two entries stored in the book are allowed to have the same name.
- Each birthday is characterized by a month and a day.
- A birthday book is first created to contain an empty collection of entires.
- Given a birthday book, we may:
 - · Inquire about the number of entries currently stored in the book
 - Add a new entry by supplying its name and the associated birthday
 - Remove the entry associated with a particular person
 - Find the birthday of a particular person
 - Get a reminder list of names of people who share a given birthday

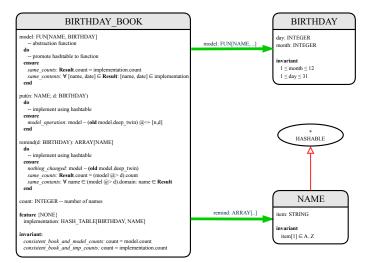
Birthday Book: Decisions

 Design Decision Classes Client Supplier vs. Inheritance Mathematical Model? Contracts 	[e.g., REL or FUN]				
Implementation Decision					
 Two linear structures (e.g., arrays, lists) A balanced search tree (e.g., AVL tree) A hash table 	[O(<i>n</i>)] [O(<i>log</i> · <i>n</i>)] [O(1)]				
• Implement an <i>abstract function</i> that mathemath model.	aps implementation to				

Birthday Book: Design



Birthday Book: Implementation



Beyond this lecture

- Familiarize yourself with the features of classes SEQ, REL, FUN, and SET for the lab test.
- Play with the source code of the Birthday Book example: https://www.eecs.yorku.ca/~jackie/teaching/lectures/ 2020/W/EECS3311/codes/birthday-book.zip.

• Exercise:

- Consider an alternative implementation using two linear structures (e.g., here in Java).
- Implement the design of birthday book covered in lectures.
- Create another LINEAR_BIRTHDAY_BOOK class and modify the implementation of abstraction function accordingly. Do all contracts still pass? What should change? What remain unchanged?

Index (1)

Motivating Problem: Complete Contracts Motivating Problem: LIFO Stack (1) Motivating Problem: LIFO Stack (2.1) Motivating Problem: LIFO Stack (2.2) Motivating Problem: LIFO Stack (2.3) **Design Principles:** Information Hiding & Single Choice Motivating Problem: LIFO Stack (3) Math Models: Command vs Query Implementing an Abstraction Function (1) Abstracting ADTs as Math Models (1)

Index (2)

Implementing an Abstraction Function (2) Abstracting ADTs as Math Models (2) Implementing an Abstraction Function (3) Abstracting ADTs as Math Models (3) Solution: Abstracting ADTs as Math Models Math Review: Set Definitions and Membership Math Review: Set Relations Math Review: Set Operations Math Review: Power Sets Math Review: Set of Tuples Math Models: Relations (1) 39 of 41

Index (3)

- Math Models: Relations (2)
- Math Models: Relations (3.1)
- Math Models: Relations (3.2)
- Math Models: Relations (3.3)
- Math Review: Functions (1)
- Math Review: Functions (2)
- Math Review: Functions (3.1)
- Math Review: Functions (3.2)
- Math Models: Command-Query Separation
- Math Models: Example Test
- Case Study: A Birthday Book

Index (4)

Birthday Book: Decisions Birthday Book: Design Birthday Book: Implementation Beyond this lecture ...