Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design Winter 2020

CHEN-WEI WANG

Escape Sequences

Escape sequences are special characters to be placed in your program text.

- In Java, an escape sequence starts with a backward slash \
 e.g., \n for a new line character.
- In Eiffel, an escape sequence starts with a percentage sign % e.g., %N for a new line characgter.

See here for more escape sequences in Eiffel: https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters

Commands, and Queries, and Features

- In a Java class:
 - Attributes: Data
 - Mutators: Methods that change attributes without returning
 - · Accessors: Methods that access attribute values and returning
- In an Eiffel class:
 - Everything can be called a feature.
 - But if you want to be specific:
 - · Use attributes for data
 - · Use commands for mutators
 - Use queries for accessors

Naming Conventions

- Cluster names: all lower-cases separated by underscores
 - e.g., root, model, tests, cluster_number_one
- Classes/Type names: all upper-cases separated by underscores
 - e.g., ACCOUNT, BANK_ACCOUNT_APPLICATION
- Feature names (attributes, commands, and queries): all lower-cases separated by underscores
 - e.g., account_balance, deposit_into, withdraw_from

Class Declarations

• In Java:

```
class BankAccount {
  /* attributes and methods */
}
```

• In Eiffel:

```
class BANK_ACCOUNT
  /* attributes, commands, and queries */
end
```


Class Constructor Declarations (1)

 In Eiffel, constructors are just commands that have been explicitly declared as creation features:

```
class BANK_ACCOUNT
    -- List names commands that can be used as constructors
create
    make
feature -- Commands
    make (b: INTEGER)
    do balance := b end
    make2
    do balance := 10 end
end
```

- Only the command make can be used as a constructor.
- Command make2 is not declared explicitly, so it cannot be used as a constructor.

Creations of Objects (1)

- In Java, we use a constructor Accont (int b) by:
 - Writing Account acc = new Account (10) to create a named object acc
 - Writing new Account (10) to create an anonymous object
- In Eiffel, we use a creation feature (i.e., a command explicitly declared under create) make (int b) in class ACCOUNT by:
 - Writing create {ACCOUNT} acc.make (10) to create a named object acc
 - Writing create {ACCOUNT}.make (10) to create an anonymous object
- Writing create {ACCOUNT} acc.make (10) is really equivalent to writing

```
acc := create {ACCOUNT}.make (10)
```

Attribute Declarations

- In Java, you write: int i, Account acc
- In Eiffel, you write: i: INTEGER, acc: ACCOUNT
 Think of: as the set membership operator ∈:
 e.g., The declaration acc: ACCOUNT means object acc is a member of all possible instances of ACCOUNT.

Method Declaration

Command

```
deposit (amount: INTEGER)
  do
    balance := balance + amount
  end
```

Notice that you don't use the return type void

Query

```
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
  Result := x + y
end
```

- Input parameters are separated by semicolons;
- Notice that you don't use return; instead assign the return value to the pre-defined variable Result.

LASSONDE

Operators: Assignment vs. Equality

• In Java:

- Equal sign = is for assigning a value expression to some variable.
 - e.g., x = 5 * y changes x's value to 5 * yThis is actually controversial, since when we first learned about =, it means the mathematical equality between numbers.
- Equal-equal == and bang-equal != are used to denote the equality and inequality.
 - e.g., x == 5 * y evaluates to *true* if x's value is equal to the value of 5 * y, or otherwise it evaluates to *false*.

• In Eiffel:

- \circ Equal = and slash equal /= denote equality and inequality. e.g., x = 5 * y evaluates to *true* if x's value is equal to the value
 - of 5 * y, or otherwise it evaluates to *false*.
- We use := to denote variable assignment.
 e.g., x := 5 * y changes x's value to 5 * y
- Also, you are not allowed to write shorthands like x++,

 $_{10 \text{ of } 39}$ just write $\times := \times + 1$.

Operators: Division and Modulo

	Division	Modulo (Remainder)
Java	20 / 3 is 6	20 % 3 is 2
Eiffel	20 / 3 is 6 20 // 3 is 6	20 \\ 3 is 2

Operators: Logical Operators (1)

- Logical operators (what you learned from EECS1090) are for combining Boolean expressions.
- In Eiffel, we have operators that *EXACTLY* correspond to these logical operators:

	Logic	EIFFEL
Conjunction	٨	and
Disjunction	V	or
Implication	\Rightarrow	implies
Equivalence	=	=

LASSONDE SCHOOL OF ENGINEERING

Operators: Logical Operators (2)

- How about Java?
 - Java does not have an operator for logical implication.
 - The == operator can be used for logical equivalence.
 - The && and || operators only **approximate** conjunction and disjunction, due to the **short-circuit effect** (SCE):
 - When evaluating e1 && e2, if e1 already evaluates to false, then e1 will not be evaluated.
 - e.g., In (y~!=~0)~ && (x~/~y~>~10) , the SCE guards the division against division-by-zero error.
 - When evaluating e1 || e2, if e1 already evaluates to true, then e1 will not be evaluated.
 - e.g., In (y==0) || (x / y > 10), the SCE guards the division against division-by-zero error.
 - However, in math, the order of the two sides should not matter.
- In Eiffel, we also have the version of operators with SCE:

	short-circuit conjunction	short-circuit disjunction
Java Eiffel	& &	
Eiffel	and then	or else

Selections (1)


```
if B_1 then

-- B_1

-- do something

elseif B_2 then

-- B_2 \wedge (\neg B_1)

-- do something else

else

-- (\neg B_1) \wedge (\neg B_2)

-- default action

end
```

Selections (2)

15 of 39

An *if-statement* is considered as:

- An *instruction* if its branches contain *instructions*.
- An expression if its branches contain Boolean expressions.

```
class
 FOO
feature -- Attributes
 X, V: INTEGER
feature -- Commands
command
   -- A command with if-statements in implementation and contracts.
  require
   if x \setminus 2 \neq 0 then True else False end -- Or: x \setminus 2 \neq 0
  do
   if x > 0 then y := 1 elseif x < 0 then y := -1 else y := 0 end
  ensure
   y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end
    -- Or: (old x > 0 implies y = 1)
    -- and (old x < 0 implies v = -1) and (old x = 0 implies v = 0)
  end
end
```

Loops (1)

 In Java, the Boolean conditions in for and while loops are stay conditions.

```
void printStuffs() {
  int i = 0;
  while( i < 10 /* stay condition */) {
    System.out.println(i);
    i = i + 1;
  }
}</pre>
```

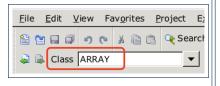
- In the above Java loop, we stay in the loop as long as i < 10 is true.
- In Eiffel, we think the opposite: we exit the loop as soon as i >= 10 is true.

Loops (2)

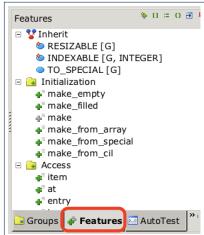
In Eiffel, the Boolean conditions you need to specify for loops are **exit** conditions (logical negations of the stay conditions).

- Don't put () after a command or query with no input parameters.
- Local variables must all be declared in the beginning.

Enter a DS name.



Explore supported features.



Data Structures: Arrays

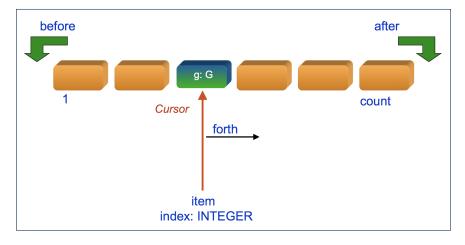
· Creating an empty array:

```
local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty
```

- This creates an array of lower and upper indices 1 and 0.
- Size of array a: a.upper a.lower + 1.
- Typical loop structure to iterate through an array:

```
local
    a: ARRAY[INTEGER]
    i, j: INTEGER
do
    ...
from
    j := a.lower
until
    j > a.upper
do
    i := a [j]
    j := j + 1
end
```


Data Structures: Linked Lists (1)



Data Structures: Linked Lists (2)

· Creating an empty linked list:

```
local
  list: LINKED_LIST[INTEGER]
do
  create {LINKED_LIST[INTEGER]} list.make
```

Typical loop structure to iterate through a linked list:

```
local
  list: LINKED_LIST[INTEGER]
  i: INTEGER

do
   ...
  from
   list.start
  until
   list.after
  do
   i := list.item
   list.forth
  end
```

Iterable Structures

- Eiffel collection types (like in Java) are *iterable*.
- If indices are irrelevant for your application, use:

```
across ... as ... loop ... end e.g.,
```

```
local
  a: ARRAY[INTEGER]
  1: LINKED_LIST[INTEGER]
  sum1, sum2: INTEGER

do
  ...
  across a as cursor loop sum1 := sum1 + cursor.item end
  across 1 as cursor loop sum2 := sum2 + cursor.item end
  ...
end
```


Using across for Quantifications (1.1)

across ... as ... all ... end
 A Boolean expression acting as a universal quantification (∀)

```
local
      allPositive: BOOLEAN
      a: ARRAY [INTEGER]
    do
 5
 6
      Result :=
       across
 8
         a.lower | .. | a.upper as i
9
       all
10
         a [i.item] > 0
11
       end
```

- L8: a.lower |... | a.upper denotes a list of integers.
- L8: as i declares a list cursor for this list.
- L10: i.item denotes the value pointed to by cursor i.
- **L9**: Changing the keyword **all** to **some** makes it act like an existential quantification ∃.

Using across for Quantifications (1.2)

Alternatively: across ... is ... all ... end
 A Boolean expression acting as a universal quantification (∀)

```
local
      allPositive: BOOLEAN
      a: ARRAY [INTEGER]
    do
 5
 6
     Result :=
       across
 8
         a.lower | .. | a.upper is i
9
       all
10
        a[i] > 0
11
       end
```

- L8: a.lower |... | a.upper denotes a list of integers.
- L8: is i declares a variable for storing a member of the list.
- L10: i denotes the value itself.
- **L9**: Changing the keyword **all** to **some** makes it act like an existential quantification ∃.

Using across for Quantifications (2)

```
class
 CHECKER
feature -- Attributes
 collection: ITERABLE [INTEGER] -- ARRAY, LIST, HASH TABLE
feature -- Oueries
 is_all_positive: BOOLEAN
    -- Are all items in collection positive?
  do
   ensure
    across
     collection as cursor
    a11
     cursor item > 0
    end
 end
```

- Using all corresponds to a universal quantification (i.e., ∀).
- Using **some** corresponds to an existential quantification (i.e., ∃).

Using across for Quantifications (3)

```
class BANK
 accounts: LIST [ACCOUNT]
 binary_search (acc_id: INTEGER): ACCOUNT
    -- Search on accounts sorted in non-descending order.
   require
     -- \forall i : INTEGER \mid 1 \le i < accounts.count \bullet accounts[i].id \le accounts[i+1].id
    across
     1 | .. | (accounts.count - 1) as cursor
    a11
      accounts [cursor.item].id <= accounts [cursor.item + 1].id
    end
   do
   ensure
    Result.id = acc id
   end
```


Using across for Quantifications (4)

```
class BANK ... accounts: LIST [ACCOUNT] contains_duplicate: BOOLEAN -- Does the account list contain duplicate? do ... ensure \forall i,j: INTEGER \mid 1 \leq i \leq accounts.count \land 1 \leq j \leq accounts.count \bullet accounts[i] \sim accounts[j] \Rightarrow i = j end
```

- Exercise: Convert this mathematical predicate for postcondition into Eiffel.
- Hint: Each across construct can only introduce one dummy variable, but you may nest as many across constructs as necessary.

Equality

- To compare references between two objects, use =.
- To compare "contents" between two objects of the same type, use the redefined version of is_equal feature.
- You may also use the binary operator ~
 - o1 ~ o2 evaluates to:
 - o true
 - false
 - o ol.is_equal(o2)

if both $\circ 1$ and $\circ 2$ are void if one is void but not the other if both are <u>not</u> void


```
class
     RANK
    feature -- Attribute
     accounts: ARRAY [ACCOUNT]
    feature -- Oueries
     get account (id: STRING): detachable ACCOUNT
         -- Account object with 'id'.
       do
         across
10
          accounts as cursor
11
        loop
12
          if cursor, item ~ id then
13
            Result := cursor item
14
          end
15
         end
16
       end
17
    end
```

L15 should be: cursor.item.id ~ id

LASSONDE SCHOOL OF PHISINERING

Review of Propositional Logic (1)

- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - Binary logical operators: conjunction (\land), disjunction (\lor), implication (\Rightarrow), and equivalence (a.k.a if-and-only-if \iff)

р	q	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \iff q$
true	true	true	true	true	true
true	false	false	true	false	false
false	true	false	true	true	false
false	false	false	false	true	true

Unary logical operator: negation (¬)

р	$\neg p$
true	false
false	true

Review of Propositional Logic: Implication

- Written as $p \Rightarrow q$
- Pronounced as "p implies q"
- We call *p* the antecedent, assumption, or premise.
- We call *q* the consequence or conclusion.
- ∘ Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*: $p \approx$ promised terms; and $q \approx$ obligations.
- When the promised terms are met, then:
 - The contract is honoured if the obligations are fulfilled.
 - The contract is <u>breached</u> if the obligations are not fulfilled.
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not $(\neg q)$ does *not breach* the contract.

p	q	$p \Rightarrow q$
true	true	true
true	false	false
false	true	true
false	false	true

Review of Propositional Logic (2)

• **Axiom**: Definition of ⇒

$$p \Rightarrow q \equiv \neg p \lor q$$

• **Theorem**: Identity of ⇒

$$true \Rightarrow p \equiv p$$

• **Theorem**: Zero of ⇒

$$false \Rightarrow p \equiv true$$

• Axiom: De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Review of Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using *variables*, each of which declared with some *range* of values.
- We use the following symbols for common numerical ranges:
 - $\circ \mathbb{Z}$: the set of integers
 - \circ N: the set of natural numbers
- Variable(s) in a predicate may be quantified:
 - Universal quantification:
 All values that a variable may take satisfy certain property.
 e.g., Given that i is a natural number, i is always non-negative.
 - Existential quantification:
 Some value that a variable may take satisfies certain property.
 e.g., Given that i is an integer, i can be negative.

Review of Predicate Logic (2.1)

- A *universal quantification* has the form $(\forall X \mid R \bullet P)$
 - X is a list of variable declarations
 - R is a constraint on ranges of declared variables
 - *P* is a *property*

$$\begin{array}{l} \circ \ \, (\forall X \mid R \bullet P) \equiv (\forall X \bullet R \Rightarrow P) \\ \text{e.g., } (\forall X \mid \textit{True} \bullet P) \equiv (\forall X \bullet \textit{True} \Rightarrow P) \equiv (\forall X \bullet P) \\ \text{e.g., } (\forall X \mid \textit{False} \bullet P) \equiv (\forall X \bullet \textit{False} \Rightarrow P) \equiv (\forall X \bullet \textit{True}) \equiv \textit{True} \end{array}$$

• For all (combinations of) values of variables declared in X that satisfies R, it is the case that P is satisfied.

$$\circ \forall i \mid i \in \mathbb{N} \bullet i \geq 0$$

[true]

$$\circ \forall i \mid i \in \mathbb{Z} \bullet i \geq 0$$

[false]

$$\circ \ \forall i,j \mid i \in \mathbb{Z} \land j \in \mathbb{Z} \bullet \ i < j \lor i > j$$

[false]

 The range constraint of a variable may be moved to where the variable is declared.

$$\circ \forall i : \mathbb{N} \bullet i > 0$$

$$\circ \forall i : \mathbb{Z} \bullet i \geq 0$$

$$\circ \forall i, j : \mathbb{Z} \bullet i < j \lor i > j$$

Review of Predicate Logic (2.2)

- An existential quantification has the form $(\exists X \mid R \bullet P)$
 - X is a list of variable declarations
 - R is a constraint on ranges of declared variables
 - *P* is a *property*
 - $\circ \ (\exists X \mid R \bullet P) \equiv (\exists X \bullet R \land P) \\ \text{e.g.,} \ (\exists X \mid \textit{True} \bullet P) \equiv (\exists X \bullet \textit{True} \land P) \equiv (\forall X \bullet P) \\ \text{e.g.,} \ (\exists X \mid \textit{False} \bullet P) \equiv (\exists X \bullet \textit{False} \land P) \equiv (\exists X \bullet \textit{False}) \equiv \textit{False}$
- There exists a combination of values of variables declared in X that satisfies R and P.
 - $\circ \exists i \mid i \in \mathbb{N} \bullet i \geq 0$

[true]

 $\circ \exists i \mid i \in \mathbb{Z} \bullet i \geq 0$

[true]

 $\circ \ \exists i,j \mid i \in \mathbb{Z} \land j \in \mathbb{Z} \bullet \ i < j \lor i > j$

- [true]
- The range constraint of a variable may be moved to where the variable is declared.
 - $\circ \exists i : \mathbb{N} \bullet i \geq 0$
 - $\circ \exists i : \mathbb{Z} \bullet i \geq 0$
 - $\circ \exists i, j : \mathbb{Z} \bullet i < j \lor i > j$

Predicate Logic (3)

Conversion between ∀ and ∃

$$(\forall X \mid R \bullet P) \iff \neg(\exists X \bullet R \Rightarrow \neg P)$$
$$(\exists X \mid R \bullet P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

• Range Elimination

$$(\forall X \mid R \bullet P) \iff (\forall X \bullet R \Rightarrow P)$$
$$(\exists X \mid R \bullet P) \iff (\exists X \bullet R \land P)$$

Index (1)

Escape Sequences

Commands, Queries, and Features

Naming Conventions

Class Declarations

Class Constructor Declarations (1)

Creations of Objects (1)

Attribute Declarations

Method Declaration

Operators: Assignment vs. Equality

Operators: Division and Modulo Operators: Logical Operators (1)

Operators: Logical Operators (2)

Selections (1) Selections (2)

Index (2)

Loops (1)

Loops (2)

Library Data Structures

Data Structures: Arrays

Data Structures: Linked Lists (1)

Data Structures: Linked Lists (2)

Iterable Data Structures

Using across for Quantifications (1.1)

Using across for Quantifications (1.2)

Using across for Quantifications (2)

Using across for Quantifications (3)

Using across for Quantifications (4)

Equality

Use of ~: Caution

Index (3)

Review of Propositional Logic (1)

Review of Propositional Logic: Implication

Review of Propositional Logic (2)

Review of Predicate Logic (1)

Review of Predicate Logic (2.1)

Review of Predicate Logic (2.2)

Predicate Logic (3)