Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design Winter 2020

CHEN-WEI WANG

Escape Sequences

Escape sequences are special characters to be placed in your program text.

- In Java, an escape sequence starts with a backward slash \
 e.g., \n for a new line character.
- In Eiffel, an escape sequence starts with a percentage sign % e.g., %N for a new line characgter.

See here for more escape sequences in Eiffel: https://www.eiffel.org/doc/eiffel/Eiffel%20programming%20language%20syntax#Special_characters

Commands, and Queries, and Features

- In a Java class:
 - o Attributes: Data
 - Mutators: Methods that change attributes without returning
 - · Accessors: Methods that access attribute values and returning
- In an Eiffel class:
 - Everything can be called a *feature*.
 - But if you want to be specific:
 - Use attributes for data
 - Use commands for mutators
 - Use *queries* for accessors

3 of 39

Naming Conventions

- Cluster names: all lower-cases separated by underscores
 - e.g., root, model, tests, cluster_number_one
- Classes/Type names: all upper-cases separated by underscores
 - e.g., ACCOUNT, BANK_ACCOUNT_APPLICATION
- Feature names (attributes, commands, and queries): all lower-cases separated by underscores
 - e.g., account_balance, deposit_into, withdraw_from

2 of 39

Class Declarations

In Java:

```
class BankAccount {
  /* attributes and methods */
}
```

In Eiffel:

```
class BANK_ACCOUNT
  /* attributes, commands, and queries */
end
```

5 of 39

Class Constructor Declarations (1)

• In Eiffel, constructors are just commands that have been explicitly declared as **creation features**:

```
class BANK_ACCOUNT
-- List names commands that can be used as constructors
create
  make
feature -- Commands
  make (b: INTEGER)
  do balance := b end
  make2
   do balance := 10 end
end
```

- Only the command make can be used as a constructor.
- Command make2 is not declared explicitly, so it cannot be used as a constructor.

Creations of Objects (1)

- In Java, we use a constructor Account (int b) by:
 - Writing Account acc = new Account (10) to create a named object acc
 - Writing new Account (10) to create an anonymous object
- In Eiffel, we use a creation feature (i.e., a command explicitly declared under create) make (int b) in class ACCOUNT by:
 - Writing create {ACCOUNT} acc.make (10) to create a named object acc
 - Writing create {ACCOUNT}.make (10) to create an anonymous object
- Writing create {ACCOUNT} acc.make (10) is really equivalent to writing

 acc := create {ACCOUNT}.make (10)

7 of 39

Attribute Declarations

- In Java, you write: int i, Account acc
- In Eiffel, you write: i: INTEGER, acc: ACCOUNT
 Think of: as the set membership operator ∈:
 e.g., The declaration acc: ACCOUNT means object acc is a member of all possible instances of ACCOUNT.

Method Declaration

Command

```
deposit (amount: INTEGER)
  do
  balance := balance + amount
  end
```

Notice that you don't use the return type void

Query

```
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
  Result := x + y
end
```

- Input parameters are separated by semicolons;
- Notice that you don't use return; instead assign the return value to the pre-defined variable Result.

9 of 39

Operators: Assignment vs. Equality

- In Java:
 - \circ Equal sign = is for assigning a value expression to some variable. e.g., x = 5 * y changes x's value to 5 * y This is actually controversial, since when we first learned about =, it means the mathematical equality between numbers.
 - Equal-equal == and bang-equal != are used to denote the equality and inequality.
 - e.g., x == 5 * y evaluates to *true* if x's value is equal to the value of 5 * y, or otherwise it evaluates to *false*.
- In Eiffel:
 - Equal = and slash equal /= denote equality and inequality.
 e.g., x = 5 * y evaluates to true if x's value is equal to the value of 5 * y, or otherwise it evaluates to false.
 - We use := to denote variable assignment.
 e.g., x := 5 * y changes x's value to 5 * y
 - $\circ\,$ Also, you are not allowed to write shorthands like x++,

```
iust write x := x + 1.
```

Operators: Division and Modulo

	Division	Modulo (Remainder)
Java	20 / 3 is 6	20 % 3 is 2
Eiffel	20 // 3 is 6	20 \\ 3 is 2

11 of 39

Operators: Logical Operators (1)

- Logical operators (what you learned from EECS1090) are for combining Boolean expressions.
- In Eiffel, we have operators that *EXACTLY* correspond to these logical operators:

	Logic	EIFFEL
Conjunction	٨	and
Disjunction	V	or
Implication	\Rightarrow	implies
Equivalence	=	=

LASSONDE SCHOOL OF ENGINEERING

Operators: Logical Operators (2)

- How about Java?
 - Java does not have an operator for logical implication.
 - The == operator can be used for logical equivalence.
 - The && and | | operators only approximate conjunction and disjunction, due to the short-circuit effect (SCE):
 - When evaluating e1 && e2, if e1 already evaluates to *false*, then e1 will **not** be evaluated.
 - e.g., In (y~!=~0)~ && (x~/~y~>~10) , the SCE guards the division against division-by-zero error.
 - When evaluating e1 || e2, if e1 already evaluates to true, then e1 will not be evaluated.
 - e.g., In (y==0) | | (x / y > 10), the SCE guards the division against division-by-zero error.
 - However, in math, the order of the two sides should not matter.
- In Eiffel, we also have the version of operators with SCE:

	short-circuit conjunction	short-circuit disjunction
Java	& &	
Eiffel	and then	or else

13 of 39

Selections (1)


```
if B_1 then

-- B_1

-- do something

elseif B_2 then

-- B_2 \wedge (\neg B_1)

-- do something else

else

-- (\neg B_1) \wedge (\neg B_2)

-- default action

end
```

14 of 39

Selections (2)

An *if-statement* is considered as:

- An instruction if its branches contain instructions.
- An expression if its branches contain Boolean expressions.

```
class
  FOO
feature --Attributes
  x, y: INTEGER
feature -- Commands
  command
    -- A command with if-statements in implementation and contracts.
  require
    if x \\ 2 /= 0 then True else False end -- Or: x \\ 2 /= 0
    do
    if x > 0 then y := 1 elseif x < 0 then y := -1 else y := 0 end
    ensure
    y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end
    -- Or: (old x > 0 implies y = 1)
    -- and (old x < 0 implies y = -1) and (old x = 0 implies y = 0)
    end
end
i5of39</pre>
```

Loops (1)

• In Java, the Boolean conditions in for and while loops are stay conditions.

- In the above Java loop, we stay in the loop as long as i < 10 is true.
- In Eiffel, we think the opposite: we exit the loop as soon as i >= 10 is true.

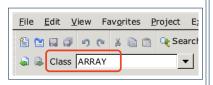
Loops (2)

In Eiffel, the Boolean conditions you need to specify for loops are **exit** conditions (logical negations of the stay conditions).

```
print_stuffs
local
    i: INTEGER

do
    from
    i := 0
    until
    i >= 10 -- exit condition
loop
    print (i)
    i := i + 1
    end -- end loop
end -- end command
```

- o Don't put () after a command or query with no input parameters.
- o Local variables must all be declared in the beginning.


17 of 39

18 of 39

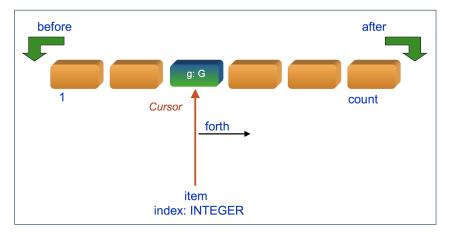
Library Data Structures

Enter a DS name.

Explore supported features.

Data Structures: Arrays

• Creating an empty array:


```
local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty
```

- This creates an array of lower and upper indices 1 and 0.
- Size of array a: a.upper a.lower + 1.
- Typical loop structure to iterate through an array:

```
local
    a: ARRAY[INTEGER]
    i, j: INTEGER
do
    ...
from
    j := a.lower
until
    j > a.upper
do
    i := a [j]
    j := j + 1
```

Data Structures: Linked Lists (1)

Data Structures: Linked Lists (2)

• Creating an empty linked list:

```
local
  list: LINKED_LIST[INTEGER]
do
  create {LINKED_LIST[INTEGER]} list.make
```

• Typical loop structure to iterate through a linked list:

```
local
  list: LINKED_LIST[INTEGER]
  i: INTEGER

do
  ...
from
  list.start
until
  list.after
do
  i := list.item
  list.forth
end
21of 39
```

Iterable Structures

- Eiffel collection types (like in Java) are *iterable*.
- If indices are irrelevant for your application, use:

```
across ... as ... loop ... end e.g.,
```

```
local
a: ARRAY[INTEGER]
1: LINKED_LIST[INTEGER]
sum1, sum2: INTEGER
do
...
across a as cursor loop sum1 := sum1 + cursor.item end
across 1 as cursor loop sum2 := sum2 + cursor.item end
...
end
```

22 of 39

Using across for Quantifications (1.1)

• across ... as ... all ... end

A Boolean expression acting as a universal quantification (∀)

```
1  local
2  allPositive: BOOLEAN
3  a: ARRAY[INTEGER]
4  do
5  ...
6  Result :=
7  across
8  a.lower |..| a.upper as i
9  all
10  a [i.item] > 0
end
```

- L8: a.lower |... | a.upper denotes a list of integers.
- L8: as i declares a list cursor for this list.
- **L10**: i.item denotes the value pointed to by cursor i.
- **L9**: Changing the keyword **all** to **some** makes it act like an existential quantification \exists .

Using across for Quantifications (1.2)

• Alternatively: across ... is ... all ... end
A Boolean expression acting as a universal quantification (∀)

```
1  local
2  allPositive: BOOLEAN
3  a: ARRAY[INTEGER]
4  do
5  ...
6  Result :=
7  across
8  a.lower |..| a.upper is i
9  all
10  a [i] > 0
end
```

- L8: a.lower |..| a.upper denotes a list of integers.
- L8: is i declares a variable for storing a member of the list.
- **L10**: i denotes the value itself.
- **L9**: Changing the keyword **all** to **some** makes it act like an existential quantification ∃.

Using across for Quantifications (2)

- Using **all** corresponds to a universal quantification (i.e., ∀).
- Using **some** corresponds to an existential quantification (i.e., ∃).

25 of 39

Using across for Quantifications (3)

```
class BANK
...
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT
    -- Search on accounts sorted in non-descending order.
require
    -- ∀i: INTEGER | 1 ≤ i < accounts.count • accounts[i].id ≤ accounts[i+1].id
    across
    1 | .. | (accounts.count - 1) as cursor
    all
        accounts [cursor.item].id <= accounts [cursor.item + 1].id
    end
    do
        ...
ensure
    Result.id = acc_id
end</pre>
```


Using across for Quantifications (4)


```
class BANK
...

accounts: LIST [ACCOUNT]

contains_duplicate: BOOLEAN

-- Does the account list contain duplicate?

do

...

ensure

\forall i,j: INTEGER \mid

1 \le i \le accounts.count \land 1 \le j \le accounts.count \bullet

accounts[i] \sim accounts[j] \Rightarrow i = j

end
```

- Exercise: Convert this mathematical predicate for postcondition into Eiffel.
- Hint: Each across construct can only introduce one dummy variable, but you may nest as many across constructs as necessary.

27 of 39

Equality

- To compare references between two objects, use =.
- To compare "contents" between two objects of the same type, use the redefined version of is_equal feature.
- You may also use the binary operator ~

```
o1 ~ o2 evaluates to:

o true

if both o1 and o2 are void

o false

o o1.is_equal(o2)

if one is void but not the other

if both are not void
```

Use of ~: Caution


```
class
2
     BANK
    feature -- Attribute
     accounts: ARRAY [ACCOUNT]
5
    feature -- Oueries
6
     get_account (id: STRING): detachable ACCOUNT
7
        -- Account object with 'id'.
8
      do
9
        across
10
         accounts as cursor
11
12
          if cursor.item ~ id then
13
           Result := cursor.item
14
          end
15
        end
16
       end
17
    end
```

L15 should be: cursor.item.id ~ id

29 of 39

Review of Propositional Logic (1)

- A proposition is a statement of claim that must be of either true or false, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - Binary logical operators: conjunction (∧), disjunction (∨),
 implication (⇒), and equivalence (a.k.a if-and-only-if ⇔)

р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$
true	true	true	true	true	true
true	false	false	true	false	false
false	true	false	true	true	false
false	false	false	false	true	true

 $\circ~$ Unary logical operator: negation (\neg)

р	$\neg p$
true	false
false	true

30 of 39

Review of Propositional Logic: Implication

- Written as $p \Rightarrow q$
- Pronounced as "p implies q"
- We call p the antecedent, assumption, or premise.
- We call *q* the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*: $p \approx p$ romised terms; and $q \approx obligations$.
- When the promised terms are met, then:
 - The contract is honoured if the obligations are fulfilled.
 - The contract is *breached* if the obligations are not fulfilled.
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not $(\neg q)$ does *not breach* the contract.

p	q	$p \Rightarrow q$
true	true	true
true	false	false
false	true	true
false	false	true

31 of 39

Review of Propositional Logic (2)

• **Axiom**: Definition of ⇒

$$p \Rightarrow q \equiv \neg p \lor q$$

• **Theorem**: Identity of ⇒

$$true \Rightarrow p \equiv p$$

• **Theorem**: Zero of ⇒

$$false \Rightarrow p \equiv true$$

• Axiom: De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

• Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

LASSONDE SCHOOL OF ENGINEERING

Review of Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using *variables*, each of which declared with some *range* of values.
- We use the following symbols for common numerical ranges:
 - $\circ \mathbb{Z}$: the set of integers
 - N: the set of natural numbers
- Variable(s) in a predicate may be *quantified*:
 - Universal quantification :
 - *All* values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.
 - Existential quantification:
 - *Some* value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i* can be negative.

33 of 39

true

Review of Predicate Logic (2.1)

- A *universal quantification* has the form $(\forall X \mid R \bullet P)$
 - X is a list of variable declarations
 - R is a constraint on ranges of declared variables
 - P is a property
 - $\circ \ \, (\forall X \mid R \bullet P) \equiv (\forall X \bullet R \Rightarrow P) \\ \text{e.g., } (\forall X \mid \mathit{True} \bullet P) \equiv (\forall X \bullet \mathit{True} \Rightarrow P) \equiv (\forall X \bullet P)$

e.g., $(\forall X \mid False \bullet P) \equiv (\forall X \bullet False \Rightarrow P) \equiv (\forall X \bullet True) \equiv True$

• *For all* (combinations of) values of variables declared in *X* that satisfies *R*, it is the case that *P* is satisfied.

- $\begin{array}{ll}
 \circ \ \forall i \mid i \in \mathbb{N} \bullet i \geq 0 \\
 \circ \ \forall i \mid i \in \mathbb{Z} \bullet i > 0
 \end{array}$
- The range constraint of a variable may be moved to where the variable is declared.
 - $\circ \forall i : \mathbb{N} \bullet i \geq 0$
 - $\circ \forall i : \mathbb{Z} \bullet i \geq 0$
- $\circ \forall i, j : \mathbb{Z} \bullet i < j \lor i > j$

34 of 39

Review of Predicate Logic (2.2)

- An existential quantification has the form $(\exists X \mid R \bullet P)$
 - X is a list of variable declarations
 - R is a constraint on ranges of declared variables
 - P is a property
 - $(\exists X \mid R \bullet P) = (\exists X \bullet R \land P)$ e.g., $(\exists X \mid True \bullet P) = (\exists X \bullet True \land P) = (\forall X \bullet P)$ e.g., $(\exists X \mid False \bullet P) = (\exists X \bullet False \land P) = (\exists X \bullet False) = False$
- *There exists* a combination of values of variables declared in *X* that satisfies *R* and *P*.
 - $\circ \exists i \mid i \in \mathbb{N} \bullet i \geq 0$

[true]

 $\circ \exists i \mid i \in \mathbb{Z} \bullet i > 0$

[true]

 $\circ \exists i, j \mid i \in \mathbb{Z} \land j \in \mathbb{Z} \bullet i < j \lor i > j$

[true]

- The range constraint of a variable may be moved to where the variable is declared.
 - $\circ \exists i : \mathbb{N} \bullet i > 0$
 - $\circ \exists i : \mathbb{Z} \bullet i \geq 0$
- $\circ \exists i, j : \mathbb{Z} \bullet i < j \lor i > j$

35 of 39

Predicate Logic (3)

Conversion between ∀ and ∃

$$(\forall X \mid R \bullet P) \iff \neg(\exists X \bullet R \Rightarrow \neg P)$$
$$(\exists X \mid R \bullet P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

Range Elimination

$$(\forall X \mid R \bullet P) \iff (\forall X \bullet R \Rightarrow P)$$
$$(\exists X \mid R \bullet P) \iff (\exists X \bullet R \land P)$$

Index (1)

Escape Sequences

Commands, Queries, and Features

Naming Conventions

Class Declarations

Class Constructor Declarations (1)

Creations of Objects (1)

Attribute Declarations

Method Declaration

Operators: Assignment vs. Equality

Operators: Division and Modulo

Operators: Logical Operators (1)

Operators: Logical Operators (2)

Selections (1)
Selections (2)

Index (2)

Loops (1)

Loops (2)

Library Data Structures

Data Structures: Arrays

Data Structures: Linked Lists (1)

Data Structures: Linked Lists (2)

Iterable Data Structures

Using across for Quantifications (1.1)

Using across for Quantifications (1.2)

Using across for Quantifications (2)

Using across for Quantifications (3)

Using across for Quantifications (4)

Equality

Use of ~: Caution

Index (3)

Review of Propositional Logic (1)

Review of Propositional Logic: Implication

Review of Propositional Logic (2)

Review of Predicate Logic (1)

Review of Predicate Logic (2.1)

Review of Predicate Logic (2.2)

Predicate Logic (3)