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Q: What if more kinds of students are to be introduced?

Without Inheritance (Design 1) Collection of Students

c: COURSE
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
sms: SMS
create c.make(“3311”)
create sms.make

sms.add_rs(rs)
sms.add_nrs(nrs)
sms.register_all(c)

Clinet’s Code③



get_tuition: REAL
   local
      tuition: REAL
   do
      across courses is c loop 
         tuition := tuition + c.fee
      end
      if kind = 1 then
         Result := tuition * premiumRate
      elseif kind = 2 then
         Result := tuition * discountRate
      end
   end

register (c: COURSE)
   local
      max: INTEGER
   do
      if kind = 1 then MAX := 6
      elseif kind = 2 then MAX := 4 
      end
      if courses.count = MAX then -- Error
      else courses.extend (c)
      end
   end

Good design?
Judge by Cohesion

class 
   STUDENT
create
   make
feature -- attribures
   courses: LINKED_LIST[COURSE]
   kind: INTEGER
   premiumRate: REAL
   discountRate: REAL
feature -- command
   make (kind: INTEGER)
     do
       kind := a_kind
     end
   ...
end
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Without Inheritance (Design 2) Collection of Students

Q: What if more kinds of students are to be introduced?

class 
   STUDENT_MANAGEMENT_SYSTEM
feature -- attribures
   students: LINKED_LIST[STUDENT]
feature -- command
   add_student(s: STUDENT) 
      do 
         students.extend(s)
      end
   register_all (c: COURSE)
     do
       across students is s 
          loop
             s.register(c)
          end
     end
end

Clinet’s Code
c: COURSE
rs: STUDENT
nrs: STUDENT
sms: SMS
create c.make(“3311”)
create sms.make

sms.add_student(rs)
sms.add_student(nrs)
sms.register_all(c)
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With Inheritance (Design 3) Collection of Students

Q: What if more kinds of students are to be introduced?

class 
   STUDENT_MANAGEMENT_SYSTEM
feature -- attribures
   students: LINKED_LIST[STUDENT]
feature -- command
   add_student(s: STUDENT) 
      do 
         students.extend(s)
      end
   register_all (c: COURSE)
     do
       across students is s 
          loop
             s.register(c)
          end
     end
end

c: COURSE
rs: STUDENT
nrs: STUDENT
sms: SMS
create c.make(“3311”)
create sms.make

sms.add_student(rs)
sms.add_student(nrs)
sms.register_all(c)

⑦


