
1st Design Attempt

Good design?
Judge by CohesionE0

1st Design Attempt
Good design?
Judge by Single Choice Principle
- A new kind is introduced?
- Change on registration policy?E0

1st Design Attempt
Good design?
How do you build a
STUDENT_MANGEMENT_SYSTEM
class accordingly?E0

Q: What if more kinds of students are to be introduced?

Without Inheritance (Design 1) Collection of Students

c: COURSE
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
sms: SMS
create c.make(“3311”)
create sms.make

sms.add_rs(rs)
sms.add_nrs(nrs)
sms.register_all(c)

Clinet’s Code③

get_tuition: REAL
 local
 tuition: REAL
 do
 across courses is c loop
 tuition := tuition + c.fee
 end
 if kind = 1 then
 Result := tuition * premiumRate
 elseif kind = 2 then
 Result := tuition * discountRate
 end
 end

register (c: COURSE)
 local
 max: INTEGER
 do
 if kind = 1 then MAX := 6
 elseif kind = 2 then MAX := 4
 end
 if courses.count = MAX then -- Error
 else courses.extend (c)
 end
 end

Good design?
Judge by Cohesion

class
 STUDENT
create
 make
feature -- attribures
 courses: LINKED_LIST[COURSE]
 kind: INTEGER
 premiumRate: REAL
 discountRate: REAL
feature -- command
 make (kind: INTEGER)
 do
 kind := a_kind
 end
 ...
end

2nd Design Attempt

%

get_tuition: REAL
 local
 tuition: REAL
 do
 across courses is c loop
 tuition := tuition + c.fee
 end
 if kind = 1 then
 Result := tuition * premiumRate
 elseif kind = 2 then
 Result := tuition * discountRate
 end
 end

register (c: COURSE)
 local
 max: INTEGER
 do
 if kind = 1 then MAX := 6
 elseif kind = 2 then MAX := 4
 end
 if courses.count = MAX then -- Error
 else courses.extend (c)
 end
 end

Good design?
Judge by Single Choice Principle
- A new kind is introduced?
- An existing kind is obeselete?

class
 STUDENT
create
 make
feature -- attribures
 courses: LINKED_LIST[COURSE]
 kind: INTEGER
 premiumRate: REAL
 discountRate: REAL
feature -- command
 make (kind: INTEGER)
 do
 kind := a_kind
 end
 ...
end

2nd Design Attempt

get_tuition: REAL
 local
 tuition: REAL
 do
 across courses is c loop
 tuition := tuition + c.fee
 end
 if kind = 1 then
 Result := tuition * premiumRate
 elseif kind = 2 then
 Result := tuition * discountRate
 end
 end

register (c: COURSE)
 local
 max: INTEGER
 do
 if kind = 1 then MAX := 6
 elseif kind = 2 then MAX := 4
 end
 if courses.count = MAX then -- Error
 else courses.extend (c)
 end
 end

Good design?
How do you build a
STUDENT_MANGEMENT_SYSTEM
class accordingly?

class
 STUDENT
create
 make
feature -- attribures
 courses: LINKED_LIST[COURSE]
 kind: INTEGER
 premiumRate: REAL
 discountRate: REAL
feature -- command
 make (kind: INTEGER)
 do
 kind := a_kind
 end
 ...
end

2nd Design Attempt

⑦Do

Without Inheritance (Design 2) Collection of Students

Q: What if more kinds of students are to be introduced?

class
 STUDENT_MANAGEMENT_SYSTEM
feature -- attribures
 students: LINKED_LIST[STUDENT]
feature -- command
 add_student(s: STUDENT)
 do
 students.extend(s)
 end
 register_all (c: COURSE)
 do
 across students is s
 loop
 s.register(c)
 end
 end
end

Clinet’s Code
c: COURSE
rs: STUDENT
nrs: STUDENT
sms: SMS
create c.make(“3311”)
create sms.make

sms.add_student(rs)
sms.add_student(nrs)
sms.register_all(c)

80

Desigh 3:
Inheritance
Code Reuse

 Cohesion?
 Single Choice Principle?
 Collection of Students?

 Cohesion?
 Single Choice Principle?
 Collection of Students?

Desigh 3:
Inheritance
Code Reuse

 Cohesion?
 Single Choice Principle?
 Collection of Students?

Desigh 3:
Inheritance
Code Reuse

With Inheritance (Design 3) Collection of Students

Q: What if more kinds of students are to be introduced?

class
 STUDENT_MANAGEMENT_SYSTEM
feature -- attribures
 students: LINKED_LIST[STUDENT]
feature -- command
 add_student(s: STUDENT)
 do
 students.extend(s)
 end
 register_all (c: COURSE)
 do
 across students is s
 loop
 s.register(c)
 end
 end
end

c: COURSE
rs: STUDENT
nrs: STUDENT
sms: SMS
create c.make(“3311”)
create sms.make

sms.add_student(rs)
sms.add_student(nrs)
sms.register_all(c)

⑦

