Design-by-Contract (DbC)

Readings: OOSC2 Chapters 6, 7, 8, 11

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

-
—

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Design by Contract (DbC): Motivation & Terminology

2. Supporting DbC (Java vs. Eiffel):
Preconditions, Postconditions, Class Invariants
3. Runtime Assertion Checking of Contracts

/|

Part 1 IfA%SONDE

Design by Contract (DbC): Motivation & Terminology

Motivation: Catching Defects — When?

* To minimize development costs , minimize software defects.
o Software Development Cycle:

Requirements — Design - Implementation — Release

Q. Design or Implementation Phase?

Catch defects as early as possible .

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* 5X 10X 15X 30X

- The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.

e Discovering defects after release costs up to 30 times more
than catching them in the design phase.

¢ Choice of design language for your project is therefore of

paramount importance.
— Source: IBM Report

ftp://ftp.software.ibm.com/software/rational/info/do-more/RAW14109USEN.pdf

What this Course Is About (1)

Design

Abstract Data types (ADTs)
Cohesion Principle

Single Choice Principle
Open-Closed Principle
Design Document
Justified Design Decisions

Architecture: Client-Supplier Relation
Architecture: Inheritance Relation
Program to Interface,

Not to Implementation
Modularity: Classes
Design Patterns
(Iterator, Singleton, State, Template,
Composite, Visitor, Strategy,
Observer, Event-Driven Design)
Anti-Patterns

Code Reuse via Inheritance
Substitutibility

Design by Contract (DbC):
Class Invariant, Pre-/Post-condition
Information Hiding Principle
Eiffel Testing Framework (ETF)
Abstraction (via Mathematical Models)
Regression Testing
Acceptance Testing
Void Safety
Generics
Multiple Inheritance
Sub-Contracting
Architectural Design Diagrams

Polymorphism (esp. Polymorphic Collections)

Type Casting
Static Typing, Dynamic Binding
Unit Testing

Eiffel

Syntax: Implementation vs. Specification
agent expression, across constructs
expanded types, export status

Runtime Contract Checking

Debugger

Specification: Predicates
Contracts of Loops: Invariant & Variant
Program Correctness
Weakest Precondition (WP)
Hoare Triples
Specification: Higher-Order Functions

Axioms, Lemmas, Theorems
Equational Proofs
Proof by Contradiction (witness)

-
—

What this Course Is About (2) = |lssonns

e Focus is design

o Architecture: (many) inter-related modules
o Specification: precise (functional) interface of each module

¢ For this course, having a prototypical, working implementation

for your design sulffices.
e Alater refinement into more efficient data structures and

algorithms is beyond the scope of this course.
[assumed from EECS2011, EECS3101]

.. Having a suitable language for design matters the most.

Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

/|

Terminology: Contract, Client, Supplier Retoue
e A supplier implements/provides a service (e.g., microwave).

e A client uses a service provided by some supplier.
o The client is required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).

o If instructions are followed, the client would that the
service does what is guaranteed (e.g., a lunch box is heated).

o The client does not care how the supplier implements it.

What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service
There is a contract between two parties, violated if:

o The instructions are not followed. [Client’s fault]
o Instructions followed, but service not satisfactory. [Supplier’s fault]

Client, Supplier, Contract in OOP (1)

class Microwave { f : 1
private boolean on; class MicrowaveUser
;

private boolean locked; public static void main(...) { ‘
void power() {on = true;}

void lock() {locked = true;}
void heat (Object stuff) {

Microwave m = new Microwave();

Object obj = ;

|

| |

‘ m.power(); m.lock();] ‘
el / | m. heat (ob7j) ; |

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call [MicrowaveUser]
o Supplier: type of context object (or call target) m [Microwave]

Client, Supplier, Contract in OOP (2) s

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat (Object stuff) {

class MicrowaveUser {
public static void main(...) {

Microwave m = new Microwave () j

Object obj = ;

1
\
\
m.power(); m.lock(); ‘
m. heat (obj) ; \

\

\

\
*/ ‘
P} }
e The contract is honoured if:

’ Right before the method call ‘:

o State of mis as assumed: m.on==true and m. locked==ture
e The input argument ob 7 is valid (i.e., not explosive).

’ Right after the method call ‘: ob 7 is properly heated.
e If any of these fails, there is a contract violation.

e m.onorm.lockedis false = MicrowaveUser’s fault.
e ob7j is an explosive = MicrowaveUser’s fault.
A fault from the client is identified = Method call will not start.

¢ Method executed but ob j not properly heated = Microwave’s fault

/|

What is a Good Design?

e A “good” design should explicitly and unambiguously describe
the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).

We call such a contractual relation a specification .

e When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
o Instructions to clients should not be unreasonable.
e.g., asking them to assembile internal parts of a microwave
o Working conditions for suppliers should not be unconditional.
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!
o You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]
o Upon contract violation, there should be the fault of only one side.

o This design process is called Design by Contract (DbC) .

Part 2.1 i\gsgmgg

Supporting DbC in Java:
Problem & 15t Attempt (No Contracts)

/|

A Simple Problem: Bank Accounts LASSONDE

Provide an object-oriented solution to the following problem:

: Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

: We may withdraw an integer amount from an account.

[REQ3]: Each bank stores a list of accounts.
: Given a bank, we may add a new account in it.

: Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

: Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on] REQ1 \ and] REQ2 \ in Java.
This may not be as easy as you might think!
[vmw]

Playing the Various Versions in Java

et ae o

e Download the Java project archive (a zip file) here:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

EECS3311/codes/DbCIntro.zip

¢ Follow this tutorial to learn how to import an project archive

into your workspace in Eclipse:

https://voutu.be/h-radOZg2gy

 Follow this tutorial to learn how to enable assertions in Eclipse:

https://voutu.be/OEgRV4a5Dzg

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://youtu.be/h-rgdQZg2qY
https://youtu.be/OEgRV4a5Dzg

V1: An Account Class

/|

1 |public class AccountVl {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }
6 public AccountVI (String owner, int balance)
7 this.owner = owner; this.balance = balance;
8 }

9 public void withdraw(int amount) {
10 this.balance = this.balance - amount;
11 }
12 public String toString() {
13 return owner + "’s current balance is:
14 }
15 |}

{

" + balance;

* Is this a good design? Recall : Each account is
associated with ... an integer balance that is always positive .
e This requirement is not reflected in the above Java code.

V1: Why Not a Good Design? (1)

1
public static void main(String[] args) {
System.out.println("Create an account for Alan with balance -10:V);

AccountV1l alan = new AccountVl ("Alan", -10) ;

T
\public class BankAppV1 {
‘ System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

e Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). = Violation of | REQ1 |

e Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of
AccountV1 does not require that! = A lack of defined contract

e

/|

V1: Why Not a Good Design? (2)

1

ipublic class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:V);
AccountVl mark = new AccountVI ("Mark", 100);
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");
mark. withdraw (-1000000) ;
System.out.println(mark) ;

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

e Mark’s account state is always valid (i.e., 100 and 1000100).
» Withdraw amount is never negative! = Violation of

e Again a lack of contract between BankAppVv1 and AccountV1.
[ixoas]

/|

V1: Why Not a Good Design? (3)

T 1
‘public class BankAppVl { ‘

public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:");
AccountVl tom = new AccountVI("Tom", 100);
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw (150) ;
System.out.println(tom);

Create an account for Tom with balance 100:
Tom’ s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

o Withdrawal was done via an “appropriate” reduction, but the

resulting balance of Tom is invalid. = Violation of | REQ1 |
e Again a lack of contract between BankAppV1 and AccountV1.
EZarz2

Part 2.2

Supporting DbC in Java:
2d Attempt (Method Preconditions)

/|

V1: How Should We Improve it? (1) S

Preconditions of a method specify the precise circumstances
under which that method can be executed.

o Precond. of divide (int x, int y)? [v = 0]
o Precond. of binSearch (int x, int[] xs)? [xsissorted]
o Precond. of topoSort (Graph g)? [gisaDAG]

/|

V1: How Should We Improve it? (2) LASSONDE

¢ The best we can do in Java is to encode the [logical negations
of preconditions as exceptions:
o divide (int x, int vy)
throws DivisionByZeroException wheny == 0.
o binSearch (int x, int[] xs)
throws ArrayNotSortedException when xs is not sorted.
o topoSort (Graph qg)
throws Not DAGException when g is not directed and acyclic.
¢ Design your method by specifying the preconditions (i.e.,
service conditions for valid inputs) it requires, not the
exceptions (i.e., error conditions for invalid inputs) for it to fail.

e Create by adding exceptional conditions (an
approximation of preconditions) to the constructor and
withdraw method of the Account class.

_

/|

V2: Preconditions ~ Exceptions

\n,

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if (balance < 0) { /* negated precond */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 withdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
11 if (amount < 0) { /« ! x/

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /% negated precondition =/
14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

/|

—_

QW oo N O WD =

public class BankAppVz ({
public static void main(String[] args) {

1

System.out.println("Create an account for Alan with balance -10:V);

try {
AccountV2 alan = new AccountV2("Alan", -10) ;
System.out.println(alan);

}

catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");

}

Create an account for Alan with balance -10:
Illegal negative account balance.

L6: When attempting to call the constructor AccountVv2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon
this invalid object.

/|

V2: Why Better than V1? (2.1) LASSONDE

T 1

1 |public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Mark with balance 100:V);
4 try {

5 AccountV2 mark = new AccountV2("Mark", 100);

6 System.out.println(mark) ;

7 System.out.println("Withdraw -1000000 from Mark’s account:");
8 mark. withdraw (-1000000) ;

9 System.out.println(mark) ;

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 ‘ catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

N
V2: Why Better than V1? (2.2)

Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

e L8: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException
(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

* We should observe that adding preconditions to the supplier
BankV2’s code forces the client Bank2Appv2’s code to get
complicated by the t ry-catch statements.

¢ Adding clear contract (preconditions in this case) to the design

should not be at the cost of complicating the client’s code!!

/|

V2: Why Better than V1? (3.1) LASSONDE

T 1
public class BankAppVz ({
public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:");
try {
AccountV2 tom = new AccountV2("Tom", 100);
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw (150) ;
System.out.println(tom);
}
catch (BalanceNegativeException bne) {
System.out.println("Illegal negative account balance.");
}
catch (WithdrawAmountNegativeException wane) {
System.out.println("Illegal negative withdraw amount.");
}
catch (WithdrawAmountTooLargeException wane) {
System.out.println("Illegal too large withdraw amount.");

}

_ o
O©COO NOAPRWN—=-O0OOOWONOOU AWN =

/|

V2: Why Better than V1? (3-2) LASSONDE

Console Output:

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Illegal too large withdraw amount.

e L8: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmountTooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

¢ We should observe that due to the added preconditions to the
supplier BankVv2’s code, the client BankAppVv2’s code is forced
to repeat the long list of the t ry-catch statements.

¢ Indeed, adding clear contract (preconditions in this case)
should not be at the cost of complicating the client’s code!!

_

/|

V2: Why Still Not a Good Design? (1)

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 f(balance < 0) { /* ne

6 throw new BalanceNegatlveExceth_on() }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 withdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
11 if (amount < 0) { /* negated precondi x/

12 throw new WlthdrawAmountNegatlveExceptlon() ;o)

13 else if (balance < amount) { /* negated precondition =/
14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

¢ Are all the exception conditions (- preconditions) appropriate?

e What if amount == balance when calling withdraw?

/|

V2: Why Still Not a Good Design? (2.1)

T 1

1 |public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:");
4 try {

5 AccountV2 3jim = new AccountV2("Jim", 100);

6 System.out.println(jim);

7 System.out.println("Withdraw 100 from Jim’s account:");
8 jim. withdraw(100) ;

9 System.out.println(jim);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");
13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");
16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");
19 }

/|

V2: Why Still Not a Good Design? (2.2)

Create an account for Jim with balance 100:
Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount
100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of), there should have
been a precondition violation.

Supplier AccountVv2’s exception condition balance < amount

has a missing case :

¢ Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).
e .. L13 of AccountVv2 should be balance <= amount.

Supporting DbC in Java:
39 Attempt (Class Invariants)

/|

V2: How Should We Improve it? LASSONDE

¢ Even without fixing this insufficient precondition, we could
have avoided the above scenario by checking at the end of
each method that the resulting account is valid.

= We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

e [nvariants of a class specify the precise conditions which all
instances/objects of that class must satisfy.
o Inv. of CSMajoarStudent? [gpa >= 4.5]
o Inv. of BinarySearchTree? [in-order trav. - sorted key seq.]
e The best we can do in Java is encode invariants as assertions:

o CSMajorStudent: assert this.gpa >= 4.5
o BinarySearchTree: assert this.inOrder () is sorted
o Unlike exceptions, assertions are not in the class/method API.

* Create by adding assertions to the end of constructor and

withdraw method of the Account class.
| cEmsavi)

/|

V3: ClaSS |nvariantS ~ Assel‘tlons LASSONDE

\n,

1 |public class AccountV3 {

2 public AccountV3(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if (balance < 0) { /* ne ed p n /.

6 throw new BalanceNegatlveExceptlon() }

7 else { this.owner = owner; this.balance = balance; }

8 ‘ assert this.getBalance() > 0 : "Invariant: positive balance"; ‘
9 }

10 public void withdraw(int amount) throws

11 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptlon {
12 if (amount < 0) { /# negated prec n */

13 throw new WithdrawAmountNegatlveExceptlon() }

14 else if (balance < amount) { /* negate cond */

15 throw new WithdrawAmountTooLargeException(); }

16 else { this.balance = this.balance - amount; }

17 assert this.getBalance() > 0 : "Invariant: positive balance";
18 }

/|

V3: Why Better than V2? LASSONDE

1

public class BankAppV3 {
public static void main(String[] args) {
System.out.println("Create an account for Jim with balance 100:"});
try { AccountV3 3jim = new AccountV3("Jim", 100);

System.out.println(jim);

System.out.println("Withdraw 100 from Jim’s account:");
jim. withdraw (100) ;

System.out.println(jim); }

/ *

QWO N WN =

_

Create an account for Jim with balance 100:
Jim’s current balance is: 100
Withdraw 100 from Jim’s account:
Exception in thread "main"
java.lang.AssertionError: Invariant: positive balance

L8: Upon completion of jim.withdraw(100), Jim has a zero

balance, an assertion failure (i.e., invariant violation) occurs,
mnreventing further operations on this invalid account object.

/|

LASSONDE

V3: Why Still Not a Good Design?

Let’s recall what we have added to the method withdraw:
o From : exceptions encoding negated preconditions
o From : assertions encoding the class invariants

public class AccountV3 {
public void withdraw(int amount) throws

WithdrawAmountNegativeException,

WithdrawAmountTooLargeException {

prec ondition %/

if (amount < 0) { /* n
throw new WlthdrawAmountNegatlveExceptlon(),

egat ed

else if (balance < amount)
throw new WlthdrawAmountTooLargeExceptlon();

}

{ /* negated preconc

}

Jition */

else { this.balance this.balance - amount; }

© ONOO O WN =

positive balance"; h
|

\ assert this.getBalance() > 0 : "Invariant:
L

However, there is no contract in withdraw which specifies:
o Obligations of supplier (AccountV3) if preconditions are met.
o Benefits of client (Bank2AppV3) after meeting preconditions.
= We illustrate how problematic this can be by creating ,
where deliberately mistakenly implement withdraw.

Part 2.4 i\gsgmgg

Supporting DbC in Java:
4" Attempt (Faulty Implementation)

—_

V4: withdraw implemented incorrectly? (1)|[.

/|

LASSONDE

- O VW oOoONOOR~WN =

public class AccountV4 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException,
{ if (amount < 0) { /= precondition x*/
throw new WithdrawAmountNegativeException();

negated

else if (balance < amount) { /* negated precondition x/
throw new WithdrawAmountTooLargeExceptlon(), }
else { /# WRONT IM TION */

this.balance = this.balance + amount; }
assert this.getBalance() > 0

owner + "Invariant:

positive balance";

}

WithdrawAmountTooLargeException

}

o Apparently the implementation at L11 is wrong.

o Adding a positive amount to a valid (positive) account balance
would not result in an invalid (negative) one.
= The class invariant will not catch this flaw.

o When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

/|

V4: withdraw implemented incorrectly? (2)|.assonoe

T
1 ‘public class BankAppV4 {
2 public static void main(String[] args) {
3 System.out.println("Create an account for Jeremy with balance 10
4 try { AccountV4 Jjeremy = new AccountV4("Jeremy", 100);
5 System.out.println(jeremy) ;
6 System.out.println("Withdraw 50 from Jeremy’s account:");
7 jeremy. withdraw (50) ;
8 System.out.println(jeremy); }
9 ’ same as
10 *

1

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. = Violation of
| crasiai)]

o)

Part 2.5

Supporting DbC in Java:
5" Attempt (Method Postconditions)

/|

V4: How Should We Improve it? Retoue

e Postconditions of a method specify the precise conditions
which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

o Postcondition of double divide (int x, int y)?
[Result x y == x]
o Postcondition of boolean binSearch (int x, int[] xs)?
[x e xs < Result]

e The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.
But again, unlike exceptions, these assertions will not be part of
the class/method API.
* Create by adding assertions to the end of withdraw

method of the Account class.

V5: Postconditions ~ Assertions

/|

LASSONDE
1 |public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptign {
4 int oldBalance = this.balance;

5 if (amount < 0) { /* negated precondition */

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /% negated precondition =/

8 throw new WithdrawAmountTooLargeException(); }

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 ‘ assert this.getBalance() == oldBalance - amount ‘

12 ‘ "Postcondition: balance deducted"; }

A postcondition typically relates the pre-execution value and

the post-execution value of each relevant attribute
(e.g.,balance in the case of withdraw).

= Extra code (L4) to capture the pre-execution value of balance for

the comparison at L11.
Efaf72|

/|

V5: Why Better than V4? LASSONDE

T
public class BankAppV5 {
public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 10
try { AccountV5 Jjeremy = new AccountV5("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;
System.out.println(jeremy);

/ *

QWO N WN =

_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw (50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object.

")

-
Part 2-6 IfA%SONDE

Supporting DbC:
Java vs. Eiffel

/|

Evolving from V1 to V5 LASSONDE
| Improvements Made || Design Flaws
Vi - [[Complete lack of Contract
Added exceptions as Preconditions not strong enough (i.e., with missing
V2 e . &=
method preconditions cases) may result in an invalid account state.

Added assertions as

V3 . . -
class invariants

Deliberately changed

V4 | withdraw's implementa-

tion to be incorrect.

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V5 Added assertions as _

method postconditions

® |n Versions 2, 3, 4, 5, preconditions approximated as exceptions.
® These are not preconditions, but their logical negation .

® Client BankApp’s code complicated by repeating the list of t ry-catch statements.
® |n Versions 3, 4, 5, class invariants and postconditions approximated as assertions.

® Unlike exceptions, these assertions will not appear in the API of withdraw.

Potential clients of this method cannot know: 1) what their benefits are; and 2) what

their suppliers’ obligations are.

® For postconditions, exfra code needed to capture pre-execution values of attributes.
EXof72

/|

V5: Contract between Client and Supplier

benefits

obligations

BankAppV5.main

balance deduction

amount non-negative

(CLIENT) positive balance amount not too large
BankV5.withdraw || amount non-negative balance deduction
(SUPPLIER) amount not too large positive balance
benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER

precondition

postcondition & invariant

/|

DbC in Java :Agsgrigg
DbC is possible in Java, but not appropriate for your learning:

» Preconditions of a method:
Supplier
e Encode their logical negations as exceptions.
¢ In the beginning of that method, a list of i £-statements for throwing
the appropriate exceptions.
Client
o Alist of try-catch-statements for handling exceptions.

e Postconditions of a method:
Supplier
e Encoded as a list of assertions, placed at the end of that method.
Client
¢ All such assertions do not appear in the API of that method.

e Invariants of a class:
Supplier
o Encoded as a list of assertions, placed at the end of every method.
Client
¢ All such assertions do not appear in the API of that class.

/|

\n,

DbC in Eiffel: Supplier LASSONDE
DbC is supported natively in Eiffel for supplier:

class ACCOUNT
create
make
feature Attribute
owner : STRING
balance INTEGER
feature Cc I
make (nn: STRING nb INTEGER)
require n
positive balance: nb > 0
do
owner ::= nn
balance := nb
feature —— «
w1thdraw(amount INTEGER)
require &)
non, negative amount: amount > 0
affordable_amount: amount <= balance o) E c,
do
balance := balance - amount
ensure P onditic
balance deducted balance = old balance - amount
end
invariant class inv an
positive balance: balance > 0
end

e

/|

DbC in Eiffel: Contract View of Supplier LASSONDE
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the

contract view (without showing any implementation details):

class ACCOUNT
create
make
feature - Attributes
owner : STRING
balance : INTEGER

feature iy
make(nn STRING nb INTEGER)
require preco.
positive balance nb > 0
end
feature . ands
w1thdraw(amount INTEGER)
require precondition
non_. negatlve amount: amount > 0
affordable_amount: amount <= balance problematic, why?
ensure - postconditio
balance_ deducted balance = old balance - amount
end
invariant —— clas a t
positive_. balance balance > 0
end
[vasas)

DbC in Eiffel: Anatomy of a Class

class SOME_CLASS
create
Expl

feature -

feature -
—— Declare <
feature -
—— Declare
invariant
—-— List of tagged boolean expressions for class ariants
end

e Use feature clauses to group attributes, commands, queries.
» Explicitly declare list of commands under create clause, so
that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]
e The class invariant invariant clause may be omitted:
o There’s no class invariant: any resulting object state is acceptable.
o _The class invariant is equivalent to writing] invariant true\

DbC in Eiffel: Anatomy of a Command

some_command (x: SOME_TYPE_1; y: SOME_TYPE 2)

—— Description of the co nd.
require
List of tagged boolean expressions for pr
local
List of cal riab cclaratior
do
-— List of instructio as
ensure
-— List of tagged boolean expressions for postconditions
end

e The precondition require clause may be omitted:
o There’s no precondition: any starting state is acceptable.

o The precondition is equivalent to writing

e The postcondition ensure clause may be omitted:

o There’s no postcondition: any resulting state is acceptable.

asSps N POStcondition is equivalent to writing

/|

DbC in Eiffel: Anatomy of a Query LASSONDE

some_query (x: SOME_TYPE 1; y: SOME_TYPE_Z2): SOME_RT
—-— Description of the query.
require

,1st of ‘fc‘ggeu boolean expressions Ior preconail tions

local

-— List of local variable declarations
do

-— List of instr tic 1

Result :=
ensure

—-— List of tagged boolean expressions for postconditions
end

e Each query has a predefined variable Result.

¢ Implicitly, you may think of:
o First line of the query declares |[Result: SOME_RT|
o Last line of the query return the value of Result.

= Manipulate Result so that its last value is the desired result.

/|

Part 3 i\gsonos

DbC in Eiffel: Runtime Checking

Runtime Monitoring of Contracts (1)

LASSONDE

In the specific case of ACCOUNT class with creation procedure
make and command withdraw:

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner

STATE:
balance
owner

not (account_inv) not (precond_withdraw) |

not (postcond_withdraw) .
v ¥

v

Precondition
Violation

A A

not (precond_make) not (postcond_make)

call

precond_make: execute
create {ACCOUNT} acc.make(a, n) _

a>0 ,--. create {ACCOUNT} acc.make(a, n)
>

postcond_make:
acc.balance = a and acc.owner = n

Postcondition
Violation

Runtime Monitoring of Contracts (2) LASSONDE

In general, class C with creation procedure cp and any feature £:

postcond_f:
Qf
execute .
af(.. .
attributes of [N .(. . 2 [
class A el
not Qf .
v
Claf“ Precondition Postcondition
Invariant ,A . 2 .
e Violation Violation
Violation
A
. notQm
not Pm; @ H
call + precond_make: execute :
create {A} a.make(...) -=. Pm --. create {A} a.make(...) .-,
—_— S e R Aty >

postcond_make:
Qm

/|

Runtime Monitoring of Contracts (3)

e All contracts are specified as Boolean expressions.

* Right a feature call (e.g., acc.withdraw(10)):
o The current state of acc is called the pre-state.

o Evaluate feature withdraw’s pre-condition using current values
of attributes and queries.

o Cache values (implicitly) of all expressions involving the old
keyword in the post-condition .

e.g., cache the value of o/d balance via] old_balance := balance \

* Right the feature call:

o The current state of acc is called the post-state.

o Evaluate class ACCOUNT’s invariant using current values of
attributes and queries.

o Evaluate feature withdraw’s post-condition using both current

and “cached” values of attributes and queries.

/|

Experimenting Contract Violations in Eiffel |.ssono:

* Download the Eiffel project archive (a zip file) here:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

EECS3311/codes/DbCIntroEiffel.zip

» Unzip and compile the project in Eiffel Studio.

¢ Follow the in-code comments to re-produce the various
contract violations and understand from the stack trace how
they occur.

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntroEiffel.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntroEiffel.zip

/|

DbC in Eiffel: Precondition Violation (1.1) |cassonoe
The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature - Initialization
make
Run application.
local
alan: ACCOUNT

"

A p1 on violation with tag "positive_ balance
create {ACCOUNT} alan.make ("Alan", -10)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance").

_

/|

DbC in Eiffel: Precondition Violation (1.2) |.assonoe

[|o APPLICATION 53| @ ACCOUNT g0 BEEECK

Status = Implicit exception pending

£ bank ACCOUNT make < & % O %
eature E}o<wrwv97ba\;nr9: PRECONDITION_VIOLATION rmed)

P[F s 0 (el ziel AY A2

[. ; InFesture |InClass |FromClass | @
“lat view of feature “make' of class ACCOUNT > ke . ACCOUNT o \T
make 5 APPLICATION A N1

make (nn: STRING_8; nb: INTEGER_32)

w

2 owner
g2 balance :
2 end

/|

DbC in Eiffel: Precondition Violation (2.1) |.assonoe

The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature Initialization
make
—-— Run application.
local
mark: ACCOUNT
do
create {ACCOUNT} mark.make ("Mark", 100)
A precc on violation with tag "
mark.withdraw(-=1000000)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non_negative_amount").

_

DbC in Eiffel: Precondition Violation (2.2)

/|

LASSONDE

B |O APPLICATION 33| @ ACCOUNT

&0 ECEECCEER

Feature
IR IS A
“lat view of feature ~withdraw’ of class ACCOUNT

withdraw (amount: INTEGER_32)

require
h_negat‘\vefamount: amount >= 0
e affordable_amount: amount <= balance
do
P balance := balance - amount

ensure
balance = old balance - amount

(¢)

5 end

Status = _Implicit exception pending
{non_negative_amount: PRECONDITION_VIOLATION raised)

bank ACCOUNT withdraw < » % O %

InFeature |InClass | FromClass | @
B withdraw < ACCOUNT ACCOUNT 1
make s APPLICATION APPLICATION 2

DbC in Eiffel: Precondition Violation (3.1)

/|

LASSONDE

The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature Initialization
make
—-— Run application.
local
tom: ACCOUNT
do
create {ACCOUNT} tom.make (“Tom" 100)
A precondition violation with tag "affordable_a it
tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (precondition violation with tag
"affordable_amount").

_

/|

DbC in Eiffel: Precondition Violation (3.2) |.assonoe

] |® APPLICATION 53| @ ACCOUNT 0 call stack Faoseva
bank ACCOUNT withdraw < 5 ¥ 5 5] Status = Implicit exception pending
(affordable_amount: PRECONDITION_VIOLATION raised
£ e R GG PR 2 3 S | InFeature [InClass |Fromclass | @
Flat view of feature * withdraw’ of class ACCOUNT I withdraw < /ACCOUNT |ACCOUNT 2
= - make < APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)
require
© non_negative_amount: amount >= 0
© affordable_amount: amount <= ba\ance)
do
© balance := balance - amount B
ensure
8 balance = old balance - amount

end -

/|

DbC in Eiffel: Class Invariant Violation (4.1) |.assonoe
The client need not handle all possible contract violations:

class BANK_APP

inherit
ARGUMENTS

create
make

feature Initialization
make

-— Run application.

local
jim: ACCOUNT

do
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)

A Class 1nvariant violation witn tag

"rsositive balance
positive_palance

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance™").

_

/|

\n,

DbC in Eiffel: Class Invariant Violation (4.2)

LASSONDE

() I @ APPLICATION

‘0 ACCOUNT |
o bank ACCOUNT _invariant < b # O i3 oratus = Implicit exception pendi
positive_balance: INVARIANT_VIOLATION raised &
H[B[e= ezt KV AR # f f
Flat view of feature _invariant' of class ACCOUNT

Tn Feature [TnCass — [From Class | @ ‘

> _invariant s ACCOUNT A T
positive_balance: balance > 0

withdraw s ACCOUNT coul
make - APPLICATION CAT]

o0 ICEECEEEREEES

DbC in Eiffel: Postcondition Violation (5.1) |.assonoe

The client need not handle all possible contract violations:

class BANK_APP
inherit ARGUMENTS
create make

feature Initialization
make
Run applica
local
jeremy: ACCOUNT
do

w in ACCOUNT:

create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy w1thdraw(150)

+ Jition violation with taao "balance dediicted"
A postcondition violation with tag "balance_deducted

end
end

By executing the above code, the runtime monitor of Eiffel Studio

will report a contract violation (postcondition violation with tag
" Dalance deducted").

_

/|

DbC in Eiffel: Postcondition Violation (5.2) |.assonoe

Bl Cail stack Feowewa

IOLATION raised

B | @ APPLICATION @ ACCOUNT |

bank ACCOUNT withdraw < & % 0 3%

jeducted: POSTCONDITIO

Feature
balan
= PR e 212 5
LEIERROCE L CR AL # N Feature |InCass |FromClass | @
PenlolfestheRW v o el GGOUNTY) > vithdraw - ACCOUNT oUNT 14
affordable_amount: amount <= balance make . APPLICATION o2

do
g balance := balance + amount

ensure

(ba\anceﬁdeducted: balance = old balance - amount)
end

o®

/|

Beyond this lecture...

1.
2.

Review your Lab0 tutorial about how DbC is supported in Eiffel.
Explore in Eclipse how contract checks are manually-coded:
https://www.eecs.yorku.ca/~jackie/teaching/lectures/
2020/F/EECS3311/codes/DbCIntro.zip

Recall the 4th requirement of the bank problem (see |here):

: Given a bank, we may add a new account in it.

Design the header of this add method, implement it, and
encode proper pre-condition and post-condition for it.

Q. What postcondition can you think of? Does it require any
skill from EECS10907 What attribute value(s) do you need to
manually store in the pre-state?

4. 3 short courses which will help your labs and project:

o Eiffel Syntax: here.
o Common Syntax/Type Errors in Eiffel: here.
o Drawing Design Diagrams: here.

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.1-Eiffel-vs-Java.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.2-Eiffel-Common-Errors.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.3-Design-Diagrams.pdf

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

Partil

[Motivation: Catching Defects — When?|
|What this Course Is About (1)

|What this Course Is About (2)
[Terminology: Contract, Client, Supplier|

ient, Supplier, Contract in

ient, Supplier, Contract in
[What is a Good Design?|
Parf 2.1

IA Simple Problem: Bank Accounts|

Index (2) :A§SCE>MI&BNE

[Playing with the Various Versions in Java
V1 An Account Classl

\V1: Why Not a Good Design? (1)

[Vi: Why Not a Good Design? (2)

[V1: ' Why Not a Good Design? (3)

Parf 2.2
\V1: How Should We Improve it? (1)
: How Shou e Improve it?

IV2: Preconditions ~ Exceptions)
V2:"Why Better than V17? (1)
V2: Why Better than V1? (2.7)

Index (3) :Agsgurgig“s

[V2: Why Better than V1? (2.2)]

[V2: Why Better than V17 (3.1)

[V2: Why Better than V17 (3.2)]
[V2:"Why Still Not a Good Design? (1)
[V2: Why Siill Not a Good Design? (2.1)
[V2:'Why Still Not a Good Design? (2.2)
Part 2.3

IV2: How Should We Improve it?)|

KT I Anis < fions

[V3: Why Betier than V27|

: Why Still Not a Good Design?

Index (4) :A§SCE>MI&BNE

Parf 2.4

\V4: withdraw implemented incorrectly? (1)

|V4: withdraw implemented incorrectly? (2)
Part 2.5

|V4: How Should We Improve it?|

V& Posi i 7 fions

[V5: Why Better than V47|

Part 2.6

[Evolving from V1 to V5|

|V5: Contract between Client and Supplier

DbC In_Javal
X as]

Index (5) :A§SCE>MI&BNE

IDbC in Eiffel: Supplier
IDbC in Eiffel: Contract View of Supplied
in Eiffel: Anatomy of a Class

IDbC in Eiffel: Anatomy of a Command|
IDbC in Eiffel: Anatomy of a Query|
Part 3

[Runtime Monitoring of Contracts (1)

[Runtime Monitoring of Contracts (2)

[Runtime Monitoring of Contracts (3)

Experlmentlng Contract Violations in Eiftel|

in Eiffel: Precondition Violation (1.
[ansas]

Index (6) :Agsgurgig“s

in Eiffel: Precondition Violation (1.

in Eiffel: Precondition Violation (2.1
IDbC in Eiffel: Precondition Violation (2.2)
Db C in Eiffel: Precondition Violation (3.1)

in Eiffel: Precondition Violation (3.
IDbC in Eiffel: Class Invariant Violation (4.7)

in Eiffel: Class Invariant Violation (4.

in Eiffel: Postcondition Violation (5.

in Eiffel: Postcondition Violation (5.

[Beyond this Tecture...

Modularity
Abstract Data Types (ADTSs)

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Criterion of Modularity , Modular Design

2. Abstract Data Types (ADTs)

Modularity (1): Childhood Activity

et ae o

2xP-0.2mm
=15.8 mm

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.organd https://www.wish.com

https://commons.wikimedia.org
https://www.wish.com

Modularity (2): Daily Construction
T)

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Source: https://usermanual .wiki/
Exiid

https://usermanual.wiki/

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUSs).

Superlo
Rear Fan DIMM DDR2 Cphip 24-pin ATX
Connector Memory Slots (x2) Power Connector

Addr_0 \
CPU Fan CPU Socket Ny Floppy Connector
@_» Clock_In Connector (LGAT775) \ IDE Connector (x1)
L 16-Bit 4-pin . Chasis Fan
= Add B ATX Connector o - X Connector
oy ress Bus N . SATA
Switch_1 By, Connectors (x4)
—

ResetWDT
Control Addr_15

Data_0|

Panel Header
USB Headers
Southbridge
(without heatsink)
Northbridge Chipset
CMOS Battery

PCI Slots (x2)

/0 Panel
8-Bit Connectors

Data Bus

Serial [~ [Recv Data_7| Integrated Ethernet
Port |<e—{xmit chip
Road PCI Express x16

Slot

Writet— | Control Front Audio
Power Supply —|Pwr.
PEY ChipSelect 0— [Lines PCI Express x1 Header
Gnd ChipSelect 11— Slot Integrated HD-Audio
I codec chip

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: www.embeddedlinux.org.cnandhttps://en.wikipedia.org

www.embeddedlinux.org.cn
https://en.wikipedia.org

/|

-
—

Modularity (4): System Development LASSONDE

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.

(* DECLARATION *)
Fommmmmo + (+ Function block body in FED language *)
| nIMITS_ | HIGH_ALARM
| ALARM | b
HYSTERESIS
REAL-- |H QH|--BOOL X) [o
REAL--|X Q|--BOOL |
XIN2 |
REAL--|L QL | --BOOL i
REAL-- |EPS | |
mmmm———— + EPS | 4= +
x 4mmmmmmm e b aen| >=1
FUNCTION_BLOCK LIMITS_ALARM | |--0
VAR_INPUT " ‘QH=1(TRUE) LOW_ALARM =
H : REAL; (+ High limit o) 7 X P [— 4
X : REAL; (iable value +) HEPS2E | NC(No change)| HYSTERESIS |
L : REAL;) HEPS / \
! = XIN1 e L
e -) /Qnrmnsm Q 0]
AR
VAR ouTPUT [P — QL-0FALSE) XIN2
QH : BOOL; (+ High flag *) Legps2)- | NC(Nochange) |
© : BOOL; (x Alarm output *) / \
OL : BOOL; (x Low flag *) L X PO +
END_VAR aL=1TRUE)
v

END_FUNCTION_BLOCK

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3

https://plcopen.org/iec-61131-3

Modularity (5): Software Design

\n,

LASSONDE

Software systems are composed of well-specified classes.

SORTED_MAP_ADT [K, V]*

ITERATION_CURSOR [G]*

item*: G
forth*
afier*: BOOLEAN

feature - model
model: FUNIK. V]
sorted_keys: ARRAY [K]

feature - commands
extend (key: K; val: V
eauire s (key)

remove (key: K)
require has (key)

feature - qu
item(key K
has (key 0 BooLEAN

invariant
Wi €1, model.count)
sorted._keysi] < sorted_keys[i+1]

model.count

sorted_keys.count

Vk € model domain : k € sorted_keys

implementarion

implementation

implementaiion

sorted-collections

SORTED_ADT [K, V]*

Feature - model

feature - com:

invariant

model: SEQ [KV_PAIR[K.V]]
extend (a_item. TorLE [key: K; value: V1))
require —has (a_item.key)

remove ey: K)
require has (a_key)

as_armay: ARRAY[KV_PAIR[K,V]]

Vi & (1, model.count):
modelfi]key < model[i+1] key

Vi & (1, model.count)
as_armayli] ~ modelfi]

implementation

SORTED,
BSTIK.V

/|

Design Principle: Modularity LASSONDE

e Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.
2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
e The UNIX principle: Each command does one thing and does it well.
¢ In objected-oriented design (OOD), each class serves as a module.
3. Congquer original problem by assembling sub-solutions.
e In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.
e A modular design satisfies the criterion of modularity and is:
o Maintainable: fix issues by changing the relevant modules only.
o Extensible: introduce new functionalities by adding new modules.
o Reusable: a module may be used in different compositions

. Og)posite of modularity: A superman module doing everything.

.
Abstract Data Types (ADTS)

e Given a problem, decompose its solution into modules .

Each module implements an abstract data type (ADT) :

o filters out irrelevant details

o contains a list of declared data and well-specified operations
ADT

Interface |_ request
Data add() :>
Structure remove() result
find()

Supplier’s Obligations:

o Implement all operations

o Choose the “right” data structure (DS)
Client’'s Benefits:

o Correct output

o Efficient performance

e The internal details of an implemented ADT should be hidden.
ot

Building ADTs for Reusability

e ADTs are reusable software components
e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
e An ADT, once thoroughly tested, can be reused by:
o Suppliers of other ADTs
o Clients of Applications
¢ As a supplier, you are obliged to:
o Implement given ADTs using other ADTs (e.g., arrays, linked lists,
hash tables, etc.)
o Design algorithms that make use of standard ADTs
e For each ADT that you build, you ought to be clear about:
o The list of supported operations (i.e., interface)

e The interface of an ADT should be more than method signatures and
natural language descriptions:

e How are clients supposed to use these methods? [preconditions]
e What are the services provided by suppliers? [postconditions]
o Time (and sometimes space) complexity of each operation

Why Java Interfaces Unacceptable ADTs (1)

et ae o

Interface List<E>

‘E - the type of elements in this List'

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Implementing Classes:

RoleUnresolvedList, Stack, Vector

AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArrayList, LinkedList, RoleList,

public interface List<E>
extends Collection<E>

'An ordered collection (also known as a sequence).' he user of this interface has precise control over where in the list each element is
inserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of

elements are parameterized as E.
¢ A reasonably intuitive overview of the ADT.

lava 8 | 1st API

| ENaEL

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTs (2)

Methods described in a natural language can be ambiguous:

E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation)A)

Parameters:

index - index of the element to replace

element - element to be stored at the specified position

Returns:

the element previously at the specified position

Throws:

UnsupportedOperationException - if the set operation is not supported by this list

ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBoundsExceptlon - if the index is out of range (index < @ || index >= slze()))

| vaSEL

Why Eiffel Contract Views are ADTs (1)

LASSONDE

class interface ARRAYED_CONTAINER
feature Co
assign_at (i: INTEGER s: STRING)

require
valid index: 1 <= 1 and 1 <= count
ensure
size_unchanged:
imp.count = (old imp.twin) .count
item_assigned:
imp [1i] ~ s
others_unchanged:
across
1 |..| imp.count as j
all
j.item /= i implies imp [j.item] ~ (old imp.twin)
end
count: INTEGER
invariant
consistency: imp.count = count
end —— class ARI CON R

[j.item]

/|

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

(ARRAYED CONTAINER R

feature -- Commands
assign_at (i: INTEGER; s: STRING)
-- Change the value at position 'i'to 's'.

require
valid_index
ensure

size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[il =5
othersfunchanged(Vj : 1 <j=<imp.count: j#i=-impl[j] ~ (old imp.twin) Li])

feature -- { NONE }
-- Implementation of an arrayed-container
imp: ARRAY[STRING]

invariant
consistency: imp.count = count

/|

Beyond this lecture...

1.

2.

Q. Can you think of more real-life examples of leveraging the

power of modularity?

Visit the Java API page:
https://docs.oracle.com/javase/8/docs/api

Visit collection classes which you used in EECS2030 (e.g.,

ArraylList, HashMap) and EECS2011.

Q. Can you identify/justify some example methods which
illustrate that these Java collection classes are not true ADTs
(i.e., ones with well-specified interfaces)?

. Constrast with the corresponding library classes and features in

EiffelStudio (e.g., ARRAYED_LIST, HASH_TABLE).

Q. Are these Eiffel features better specified w.r.t.
obligations/benefits of clients/suppliers?

| LraEL

https://docs.oracle.com/javase/8/docs/api

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

[Modularity (1): Chil[dhood Activity|
[Modularity (2): Daily Construction|
[Modularity (3): Computer Architecturel

[Modularity (4): System Development]

[Modularity (5): Software Design|
Ee5|gn Principle: Modularity|
[Abstract Data Types (ADTs)

uilding s for Reusabilit

IWhy Java Interfaces Unacceptable ADTs (1)|

IWhy Java Interfaces Unacceptable ADTs (2)|
EEGA

-
—

Index (2) LASSONDE
y Eiffel Contract Views are S
y Eiffel Contract Views are S

IBeyond this lecture...|

Copying Objects
Writing Complete Postconditions

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:

1. 3 Levels of Copying Objects:
Reference vs. Shallow vs. Deep

2. Use of the o1d keyword in Postconditions

3. Writing Complete Postconditions using logical quantifications:
Universal (V) vs. Existential (3)

/|

Part 1 i\gsonos

Copying Objects

Copying Objects

Say variables c1 and c2 are both declared of type C. [c1, c2: ¢]
e There is only one attribute a declared in class C.
e cl.aandc2.a are references to objects.

_—

cl

—

c2

Copying Objects: Reference Copy

Reference Copy cl := c2

o Copy the address stored in variable c2 and store it in c1.
= Both c1 and c2 point to the same object.

= Updates performed via c1 also visible to c2. [aliasing]
C
@k’ -
QA
C
C B
c2

Copying Objects: Shallow Copy LASSONDE

Shallow Copy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
cl

c3

i

o

S — (-]

c2

/|

Copying Objects: Deep Copy LASSONDE

Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c¢3 as follows:

Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin
o Make a reference copy of c3: cl := c3

= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

-
—

‘73 w

-
—

et ae o

Copying Objects

a
® [
= Initial situation: name | ‘Almaviva”
landlord —:l
loved_one _l 03
02 “Figaro” “Susanna”
= Result of:
bi=a]
04 Almaviva”
Cc := a.twin ®

d := a.deep_twin ©) name |__“Almaviva” :|05

landlord

|

oved_one . _l o7
06 r=m— 7 .

Figaro Susanna

/|

Example: Collection Objects (1)

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).

o Assume the following variables of the same type:

local
imp : ARRAY[STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force ("Tom", 3)

o Before we undergo a change on imp, we “ copy " itto old_imp.

o After the change is completed, we compare imp vs. old_imp.

e Can a change always be visible between “old” and “new” imp?
Eofzd

Example: Collection Objects (2)

e Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

h ARRAY[STRING]
[y |

imp
imp[1] imp[2] M

STRING STRING STRING
value value value

22

old imp

Reference Copy of Collection Object

NOoO M WN =

T
‘ old.imp := imp

Result := old _imp = imp Result
imp[2] := "Jim"
Result :=

across 1 |..| imp.count is j

all imp [j] ~ old_imp [7]

end —— Result = true

Before Executing L3

After Executing L3

(\ ARRAY[STRING]

imp (
STRING STRING STRING
[vatue [RAENA [vatue [RUERE [vatue JRCTE

Lo Ip [=]

old_imp

imp
STRING STRING STRING

STRING

/|

Shallow Copy of Collection Object (1)

T

1 ‘ old.imp := imp.twin ‘
2 |Result := old _imp = imp Result false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 | all imp [j] ~ old_imp [j]
7 end - Result = false
Before Executing L3 After Executing L3
ARRAY[STRING] ARRAY[STRING] STRING
/ ‘ ‘ / ‘ ‘ value
inp / \\ \ imp / X \
STRING STRING STRING STRING STRING STRING
m m value value value value
old_im / / / old_im / / /
NG A — ’ T
ARRAY[STRING] ARRAY[STRING]
EZotad

Shallow Copy of Collection Object (2)

LASSONDE

T

1 ‘ old.imp := imp.twin

2 |Result := old_imp = imp —— Resul
3 | imp[2] .append ("+xx")

4 |Result :=

5 across 1 |..| imp.count is j

6 all imp [j] ~ old_imp [j]

7 end —— Result = true

t = false

Before Executing L3

ARRAY[STRING]

e

old_imp

‘ -

ARRAY[STRING]

After Executing L3

ARRAY[STRING]

[N\~

STRING STRING
value value

STRING
value

old_imp

/ ‘Mark*

ARRAY[STRING]

oz

Deep Copy of Collection Object (1)

oo ON =

T

‘ old.imp := imp.deep-twin
Result := old_imp = imp -
imp[2] := "Jim"
Result :=
across 1 |..| imp.count is j
all imp [j] ~ old_imp [j] end —— Res = false

Before Executing L3

After Executing L3

ARRAV[STRING]

nnn
STR!NG STRING STR!NG
“Alan” “Mark”

STRING STRING STRING

ARRAY[STRING]

ARRAY| m STRING
/ m “Jim”
imp

STRING STRING STRING
STRING STRING STRING

old_imp

N 171

Deep Copy of Collection Object (2)

et ae o

imp.deep_twin

imp.count is j
~ old_imp [j] end

O hWN =

all imp [7]

= false

1

Before Executing L3

After Executing L3

nnn
STRING STRING STRING
“Alan” “Mark”

/ PEENEN

ARRAV[STRING]

STRING STRING STRING
“Alan” Szrk”

“Mark***"

STRING STRING STRING

old_imp

Experiment: Copying Objects

e Download the Eiffel project archive (a zip file) here:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

EECS3311/codes/copving objects.zilp

e Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip

/|

Part 2 IfA%SONDE

Writing Complete Postconditions

/|

How are contracts checked at runtime?
o All contracts are specified as Boolean expressions.
o Right before a feature call (e.g., acc.withdraw (10)):
o The current state of acc is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.
e Cache values, via E], of old expressions in the post-condition .

eg. [old-accounts.i-id = accounts[il.id |
e.g., [old_accounts._i := accounts]i]]
e.g., ’ (old accounts|i].twin) .id ‘ [old_accounts._i_twin := accounts|i].twin]
eg., [old-accounts := accounts]
e.g.,| (old accounts.twin)[i].id ‘ [old_accounts_twin := accounts.twin]
e.g.,| (old Current).accounts[i].id ‘ [old_current := Current]
e.g.,’ (old Current.twin).accounts[i].id ‘ [old_current_twin := Current.twin |

o Right after the feature call:
o The current state of acc is called its post-state.

o Evaluate post-condition using both current values and “cached”

values of attributes and queries.
marag © Evaluate invariant using current values of attributes and queries.

/|

When are contracts complete?

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.

o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:

1. The intended change is present; and

2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |

/|

Accou nt LASSONDE

\n,

class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Att te: is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Comn s and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end

/|

\n,

Bank LASSONDE

class BANK

create make

feature
accounts: ARRAY [ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT

require - the input
existing: across accounts is acc some acc.owner ~ n end
-1 (across accounts is all acc >r /~ n
do ... ensure Result owner ~ n end
add (n: STRING)
require —- the not exist

u ame does
non_existing: across accounts is acc all acc.owner /~ n end

nts 1is

account 1 acc.owr

(across
local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end
end

e

/|

Roadmap of lllustrations

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

Object Structure for lllustration

We will test each version by starting with the same runtime object

structure:

b.accounts

accounts

ACCOUNT

owner

balance

“Bill”

ACCOUNT
owner “Steve”

balance

Version 1:

class BANK
deposit_on_vl

LASSONDE
Incomplete Contracts, Correct Implementation

(n: STRING; a: INTEGER)

require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do

from 1 accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:

Current.account_of(n) .balance

end

old Current.account_of(n) .balance + a
end

/|

\n,

Test of Version 1 LASSONDE

class TEST_ BANK
test_bank_deposit_correct_imp_incomplete_ contract: BOOLEAN

local
b: BANK
do

comment ("tl: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars K
b.deposit_on_-vl ("Steve"”", 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

_

Test of Version 1: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

PASSED (1 out of 1)

Violation

Boolean 1 1
[ALL Cases

TEST_BANK

‘PASSED ‘ NONE |t1: test deposit_on with correct imp and incomplete contract

Version 2: e sous
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

[my

1y of version 1, followed by a deposit into 1st accoun
accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n) .balance + a
end
end

Current postconditions lack a check that accounts other than n
are unchanged.

/|

Test of Version 2 LASSONDE

\n,

class TEST_ BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")
deposit 100 dol

b.deposit_on_.v2 ("Steve"”, 100)

7 s to Steve’s
1 s to Steve’s

acc

Result :=
b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end
end

Test of Version 2: Result

\n,

LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (1 failed & 1 passed out of 2)

violationl o [W
Boolean 1 2

A1l Cases 1 2

Test Name

Testl

PASSED

NONE

TEST_BANK

tl: test deposit_on with correct imp and incomplete contract

FAILED

Check assertion violated.

t2: test deposit_on with wrong imp but incomplete contract

Version 3: e sous
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

lowed by a

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n).balance + a
others_unchanged :
across old accounts is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end

— oA

/|

\n,

Test of Version 3 LASSONDE

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local
b: BANK
do

comment ("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars K
b.deposit_on.v3 ("Steve"”, 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

e

/|

Test of Version 3: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (2 failed & 1 passed out of 3)

Cose Type] _____Passed | Total

Violation 0 4
Boolean 1 3
All Cases 1

3
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated.

t3: test deposit_on with wrong imp, complete contract with reference copy

Version 4: e sous
Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

lowed by a

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n).balance + a
others_unchanged :
across old accounts.twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end

— B

/|

Test of Version 4 LASSONDE

\n,

class TEST_ BANK JN
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")
dep 100 dollars to
b.deposit_on.v4 ("Steve"”, 100)
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

Test of Version 4: Result

LASS

ONDE

APPLICATION

Note:

* indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Total
Violation] 0

Boolean 1 4
A1l Cases 1

PASSED

Contract Viola

4
TEST_BANK

NONE t1l: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with

wrong imp, complete contract with shallow object copy

Version 5: e sous
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

lowed by a

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n).balance + a
others_unchanged :
across old accounts.deep_-twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end

— At

/|

\n,

Test of Version 5 LASSONDE

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK
do

comment ("t5: wrong imp and complete contract with deep copy")
create b.make

b.add ("Bill")

b.add ("Steve")

dep
b.depos
Result :=
b.account_of("Bill") .balance = 0
and b.account_of ("Steve") .balance = 100
check Result end
end
end

e

Test of Version 5: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)
Total
Violation 0 0
‘ Boolean 1 5
\All Cases 1

5
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. |[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
‘FAILED Check assertion violated. [t4: test deposit_on with wrong imp, complete contract with shallow object copy
‘FAILED Postcondition violuted) t5: test deposit_on with wrong imp, complete contract with deep object copy

Experiment: Complete Postconditions

e Download the Eiffel project archive (a zip file) here:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

EECS3311/codes/arrayv_math contract.zip
e Unzip and compile the project in Eiffel Studio.
¢ Reproduce the illustrations explained in lectures.

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/array_math_contract.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/array_math_contract.zip

/|

Beyond this lecture

e Consider the query account_of (n: STRING) of BANK.

e How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o

o

° ’accounts old accounts ‘ [x]
° ’accounts old accounts .twin‘ [x]
° ’ accounts old accounts .deep,twin‘ [%]
accounts old accounts ‘ [x]
accounts old accounts .twin‘ [%]
S ’accounts old accounts .deep,twin‘ [v]

e Which equality of the above is appropriate for the

postcondition?

e Why is each one of the other equalities not appropriate?

Index (1) %

[Cearning Objectives|
Parf 1l

Eogying Objects|

[Copying Objects: Reference Copyl

Eogylng Objects: Shallow Copy|
[Copying Objects: Deep Copy|

[Example: Copying Objects

[Example: Collection Objects (1)

[Example: Collection Objects (2)

[Reference Copy of Collection Object

IShallow Copy of Collection Object (1)
Eforzd

Index (2) :A§SCE>MI&BNE

allow Copy of Collection ject

Deep Copy of Collection Object (1)

Deep Copy of Collection Object (2)|

[Experiment: Copying Objects|
How are contracts checked at runtime?|
|When are contracts complete?|

[Bccounf

Bank

[Roadmap of lMustrations]

[Object Structure for IMustration|
Bzt

Index (3) :A§SCE>MF\ABNE

WVersion 1: |
Incomplete Contracts, Correct Implementation|
lLest of Version 1|

[Test of Version 1: Resulfl

WVersion 2: |
Incomplete Contracts, Wrong Implementation|
lLest of Version 2|

[Test of Version 2: Resulfl

WVersion 3:]
[Complete Contracts with Reference Copy|

llest of Version 3

[Test of Version 3: Resulil

Index (4) :Agsgurgig“s

Version 4]
[Complete Contracts with Shallow Object Copy|

[Test of Version 4

[Test of Version 4: Besulil

WVersion 5: |
[Complete Contracts with Deep Object Copy|

lLest of Version 3

[Test of Version 5: Resulfl

[Experiment: Complete Postconditions
[Beyond this lecturel

Use of Generics

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. How to write a generic class (as a supplier)
2. How to use a generic class (as a client)

Generic Collection Class: Motivation (1)

class STRING _STACK
feature {NONE} - I ent
imp: ARRAY[STRING] ; 1
feature - Queries
count : INTEGER do Result := i end

ctack
stack.

top:
—-— Ret
feature s
push (v: STRING) do imp[i] := v; i := 1 + 1 end
—— Add ’v’ to top of stack.

- 1 end

imp [i] end

pop do 1

end

o Does how we implement string stack operations (e.g., top, push,
pop) depends on features specific to element type STRING (e.g.,
at, append)? [NO!]

o How would you implement another class ACCOUNT_STACK?

B3

Generic Collection Class: Motivation (2)

class ACCOUNT _STACK
feature {NONE} - Imj m
imp: ARRAY[ACCOUNT] ;

feature - Queries

count: INTEGER do Result := i end

top: [i] end

1CK .

feature - C s

push (v: ACCOUNT) do imp[i] := v; 1 := 1 + 1 end

Add v’ to top of stack.
pop do 1
—— Remove

end

o Does how we implement account stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)? [NO!]

o A collection (e.g., table, tree, graph) is meant for the storage and
retrieval of elements, not how those elements are manipulated.

/|

Generic Collection Class: Supplier

* Your design “smells” if you have to create an almost identlcal
new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).

¢ Instead, as supplier, use G to parameterize element type:

class STACK [G]
feature {NONE} - Implementation
imp: ARRAY [G] ; i: INTEGER

feature - Queri
count: INTEGER do Result :

push (v: G) do imp[i] := v; 1 := 1 + 1 end
Add v’ to top of stack.

pop do i - 1 end

Y

end

/|

Generic Collection Class: Client (1.1)

As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

T 1
class STACK [f STRING]
feature {NONE }

imp: ARRAY|[ﬁ STRING] ; i: INTEGER

feature Queries
count: INTEGER do Result := i end
Number of items on stack.
to ﬁ STRING do Result := imp [i] end
Re t of stack.
feature ——

push (v: % STRING) do imp[i] := v; 1 := 1 + 1 end

AAA T Fo o)
—-— Add 1% to top of stack

pop do i := i - 1 end
—— Remove top of stack.

end

/|

Generic Collection Class: Client (1.2)

As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

T 1
class STACK [f ACCOUNT]
feature {NONE }

imp: ARRAY|[ﬁ ACCOUNT] ; 1i: INTEGER

feature Queries
count: INTEGER do Result := i end
Number of items on stack.
to ﬁ ACCOUNT do Result := imp [i] end
Re t of stack.
feature ——

push (v: ﬁ ACCOUNT) do imp[i] := v; 1 := 1 + 1 end
—-— Add v’ to top of stack.
pop do i := i - 1 end

Ramntve o of stack
Remove top of stack.

end

Generic Collection Class: Client (2)

/|

As client, instantiate the type of G to be the one needed.

test_stacks: BOOLEAN
local
ss: STACK[STRING] ; sa: STACK[ACCOUNT]
s: STRING ; a: ACCOUNT
do
ss.push("A")
ss.push (create {ACCOUNT}.make ("Mark", 200))
s := ss.top
a := ss.top
10 sa.push (create {ACCOUNT}.make ("Alan", 100))
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

O©CoOo~NOOAWN =

e L3 commits that ss stores STRING objects only.
o L8 and L10 valid; L9 and L11 invalid.

e L4 commits that sa stores ACCOUNT objects only.
o L12 and L14 valid; L13 and L15 invalid.

Index (1)

[Cearning Objectives|

[Generic Collection Class:

Motivation (1)

[Generic Collection Class:

Motivation (2)|

[Generic Collection Class:

Supplier

[Generic Collection Class:

Client (1.1)|

[Generic Collection Class:

Client (1.2)

[Generic Collection Class:

Client (2)|

Abstractions via Mathematical Models

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

-
—

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:

1. Creating a mathematical abstraction for alternative
implementations

2. Two design principles: Information Hiding and Single Choice

3. Review of the basic discrete math (self-guided)

/|

Motivating Problem: Complete Contracts |asono:

¢ Recall what we learned in the Complete Coniracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.
o Use the old keyword to refer to posi-state values of expressions.
o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etfc.), we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

e Let’s now revisit this technique by specifying a L/IFO stack.

Motivating Problem: LIFO Stack (1)

et ae o

e Let’s consider three different implementation strategies:

Array Linked List
Stack Feature
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_front(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .
list.remove imp.remove

e Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?

/|

Motivating Problem: LIFO Stack (2.1)

class LIFO_STACK[G] create make
feature {NONE} - S 1
imp: ARRAY[G]

array

feature -)
make do create 1mp make_empty ensure imp.count = 0 end
feature C
push(g: G)
do imp.force(g, imp.count + 1)
ensure

changed: imp[count] ~ g
unchanged: across 1 |..| count - 1 as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop

do imp.remove tail(l)
ensure

changed: count = old count - 1

unchanged: across 1 |..| count as i all

imp[i.item] ~ (old imp.deep_twin) [i.item] end

end

/|

Motivating Problem: LIFO Stack (2.2) LASSONDE

class LIFO_STACK[G] create make
feature {NONE} - S tegy 2: linked-1ist as top
imp: LINKED_LIST[G]
feature -)
make do create imp.make ensure imp.count = 0 end
feature C IS
push(g: G)
do imp.put_front(g)
ensure
changed: imp.first ~ g
unchanged: across 2 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item - 1] end
end
pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item + 1] end
end

/|

Motivating Problem: LIFO Stack (2.3)

class LIFO_STACK[G] create make
feature {NONE} - S 3 1ir
imp: LINKED_LIST[G]

feature -)
make do create imp.make ensure imp.count = 0 end
feature C IS
push(g: G)
do imp.extend(q)
ensure

changed: imp.last ~ g
unchanged: across 1 |..| count - 1 as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end

end
pop

do imp.finish ; imp.remove
ensure

changed: count = old count - 1

unchanged: across 1 |..| count as i all

imp[i.item] ~ (old imp.deep_twin) [i.item] end

end

Design Principles: ‘i’ésgsom

Information Hiding & Single Choice

e Information Hiding (IH):

o Hide supplier's design decisions that are likely to change.

o Violation of IH means that your design’s public APl is unstable.

o Change of supplier’s secrets should not affect clients relying upon
the existing API.

e Single Choice Principle (SCP):

o When a change is needed, there should be a single place (or a
minimal number of places) where you need to make that change.
o Violation of SCP means that your design contains redundancies.

N
Motivating Problem: LIFO Stack (3)

e Postconditions of all 3 versions of stack are complete .
i.e., Not only the new item is pushed/popped, but also the
remaining part of the stack is unchanged.

e But they violate the principle of information hiding :
Changing the secret, internal workings of data structures

should not affect any existing clients.
e How so0?
The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:
« Top of stack may be ’ imp [count] ‘ ’ imp.first ‘ or’ imp.last ‘

¢ Remaining part of stack may be’across 1 |..| count - 1 ‘or

’across 2 |..| count ‘
= Changing the implementation strategy from one to another will
also change the contracts for all features .

= This also violates the Single Choice Principle .

/|

Math Models: Command vs Query

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} —— I .
imp: LINKED_LIST

[G]
feature —- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_ empty
across imp as cursor loop Result.append(cursor.item) end
end

o Side-effect-free queries: Write Complete Contracts

class LIFO _STACK[G —> attached ANY] create make

feature Abstraction function of the stack ADT
model: SEQ[G]
feature - C nds

push (g: G)
ensure model ~ (old model.deep_twin) .appended(g) end

Implementing an Abstraction Function (1) |.assonoe

class LIFO_STACK[G —-> attached ANY]
feature {NONE} —— menta
imp: ARRAY[G]
feature Abstraction
model: SEQ[G]
do create Result.make_from.array (imp)

ensure
counts: Imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Co
make do create imp.make_empty ensure model.count = 0 end

push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ~ (old model.deep_twin).appended(g) end
pop do imp.remove_tail (1)

ensure popped: model ~ (old model.deep_twin).front end

Abstracting ADTs as Math Models (1)

'‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current array
into a math sequence

abstraction
Sfunction

abstraction | convert the current array
Sfunction into a math sequence

old imp: ARRAY[G] imp: ARRAY[G]
imp.force(g, imp.count + 1)

private/hidden (implementor’s view)
L

J

e |Strategy 1| Abstraction function : Convert the implementation
array to its corresponding model sequence.
* Contract forthe |put (g: G) |feature remains the same:

’ model ~ (old model.deep_twin) .appended(qg) ‘
2ofia

Implementing an Abstraction Function (2) |.

LASSONDE

class LIFO STACK[G
feature {NONE} -
imp: LINKED_LIST[G]
feature - Abstraction
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

> attached ANY] create make

y 2 (first as top)

ensure
counts: Imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ impl[count - i.item + 1]
end
feature - C
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)

ensure pushed: model ~ (old model.deep-twin) .appended(g) end
pop do imp.start ; imp.remove

ensure popped: model ~ (old model.deep-twin).front end

Abstracting ADTs as Math Models (2)

'push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction
into a math sequence Sfunction

abstraction | convert the current liked list
Sfunction into a math sequence

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
imp.put_front(g)

prlvate/h:dden (implementor’s view)

e |Strategy 2| Abstraction function : Convert the /mplemenz‘at/on

list (first item is top) to its corresponding model sequence.
e Contract for the\put (g: G) \feature remains the same:

’ model ~ (old model.deep_twin) .appended(q) ‘
[iressc)

Implementing an Abstraction Function (3) |.assonoe

class LIFO STACK[G
feature {NONE} ——
imp: LINKED_LIST[G]
feature - Abstraction
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

ensure
counts: Imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - C
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)

‘ ensure pushed: model ~ (old model.deep-twin) .appended(g) end ‘
‘ pop do imp.finish ; imp.remove ‘
‘ ensure popped: model ~ (old model.deep-twin).front end

’end ‘
[LaEL)

Abstracting ADTs as Math Models (3)

'‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction
into a math sequence function

abstraction | convert the current liked list
Sfunction into a math sequence

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
imp.extend(g)

private/ hidden (implementor’s view)

J

Strategy 3| Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.
. Contract for the |put (g: G) |feature remains the same:

’ model ~ (old model.deep_twin) .appended(q) ‘
HBofid

/|

Solution: Abstracting ADTs as Math Models|.assono:

e Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

e Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LTFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
¢ Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
= The Single Choice Principle is obeyed.

ot

/|

Beyond this lecture . ..

e Familiarize yourself with the features of class SEQ.

Index (1) :Agsgurgig“s

[Cearning Objectives|

[Motivating Problem: Complete Contracts|

[Motivating Problem: LIFO Stack (1)
[Motivating Problem: LIFO Stack (2.7)]
[Motivating Problem: LIFO Stack (2.2)|

[Motivating Problem: LIFO Stack (2.3)
Design Principles: |

information Hiding & Single Choice|
[Motivating Problem: LIFO Stack (3)
[Math Models: Command vs Query]

Implementing an Abstraction Function (1)
s

Index (2)
IKBstractlng ADTs as Math Models i II

Iimplementing an Abstraction Function (2)

stracting s as Mat odels

implementing an Abstraction Function (3)|

[Abstracting ADTs as Math Models (3}
[Solution: Abstracting ADTs as Math Models|

Beyond this lecture .. |

Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Purpose of a Design Diagram: an Abstraction of Your Design
Architectural Relation: Client-Supplier vs. Inheritance
Presenting a class: Compact vs. Detailed

Denoting a Class or Feature: Deferred vs. Effective

P of 28

/|

Why a Design Diagram? LASSONDE

e SOURCE CODE is not an appropriate form for communication.

e Use a DESIGN DIAGRAM showing selective sets of important:
o clusters (i.e., packages)
o classes

[deferred vs. effective]
[generic vs. non-generic]
o architectural relations
[client-supplier vs. inheritance]
o routines (queries and commands)
[deferred vs. effective vs. redefined]
o contracts
[precondition vs. postcondition vs. class invariant]

* Your design diagram is called an abstraction of your system:

o Being selective on what to show, filtering out irrelevant details
o Presenting contractual specification in a mathematical form
(e.g., ¥ instead of across ... all ... end).

3 of 28

Classes: ‘fiéésésom

Detailed View vs. Compact View (1)

¢ | Detailed view | shows a selection of:

o features (queries and/or commands)

o contracts (class invariant and feature pre-post-conditions)

o Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

e |Compact view ‘ shows only the class name.
o Use the compact view if readers should not be bothered with

such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH TABLE)

4 of 28

Classes:

Detailed View vs. Compact View (2)

Detailed View I Compact View

()
FOO

feature - { A,B,C }
-- features exported to classes A, B, and C
feature -- { NONE }
-- private features
invariant
inv_1: 0 <balance < 1,000,000
_ J

b.ot 28

/|

Contracts: Mathematical vs. Programming |.assonoe
o When presenting the detailed view of a class, you should include

contracts of features which you judge as important.
o Consider an array-based linear container:

Vs

ARRAYED CONTAINER+
feature - Queries
count+: INTEGER

-- Number of items stored in the container

feature -- Commands

assign_at+ (i: INTEGER; s: STRING)

-- Change the value at position 'i'to 's'.
require

valid_index: 1 <i < count
ensure

size_unchanged: imp.count = (old imp.twin).count
item_assigned: impl[i] ~ s
others_unchanged: /i : 1 <j < imp.count : j # i =impl[j] ~ (old imp.twin) [j]
feature - { NONE }
imp+: ARRAY[STRING]
-- Implementation of an arrayed-container

invariant

__ consistency: imp.count = count

J
¢ A tag should be included for each contract.

e Use mathematical symbols (e.g., V, 3, <) instead of programming
symbols (e.g., across all

.. ...,across ... some ..., <=).

Classes: Generic vs. Non-Generic

e Aclassis generic if it declares at least one type parameters.

o Collection classes are generic: ARRAY [G], HASH_TABLE[G, H], elcC.
o Type parameter(s) of a class may or may not be instantiated:

HASH_TABLE[G, H] MY_TABLE_I[STRING, INTEGER] MY_TABLE_2[PERSON, INTEGER]

o If necessary, present a generic class in the detailed form:

(DATABASE[G]+) f MY_DB_I[STRING]+\ f MY_DB_2[PERSON]+\

feature

-- some public features here
feature - { NONE }

- imp: ARRAY[PERSON]
invariant
-- some class invariant here

feature

feature
-- some public features here
feature - { NONE }

- some public features here
feature -- { NONE }

- imp: ARRAY[STRING]
invariant
- some class invariant here

- imp: ARRAY[G]
invariant
-- some class invariant here

e Aclassis non-generic if it declares no type parameters.

_

/|

Deferred vs. Effective LASSONDE

means unimplemented (~ abstract in Java)
Effective | means implemented

8 of 26

N
y

Classes: Deferred vs. Effective LASSONDE

e A deferred class has at least one feature unimplemented.

o A deferred class may only be used as a static type (for

declaration), but cannot be used as a dynamic type.
o e.g., Bydeclaring 1ist: LIST[INTEGER] (where LISTis a

deferred class), it is invalid to write:
e create list.make
e create {LIST[INTEGER]} list.make
e An effective class has all features implemented.

o An effective class may be used as both static and dynamic types.
o e.g., Bydeclaring 1ist: LIST[INTEGER],itis valid to write:

e create {LINKED LIST[INTEGER]} list.make
e create {ARRAYED_ LIST[INTEGER]} list.make

where LINKED_LIST and ARRAYED_LIST are both effective
descendants of LIST.

0 of 28

/|

Features: Deferred, Effective, Redefined (1) |isson:

A deferred feature is declared with its header only
(i.e., name, parameters, return type).

o The word “deferred” means a descendant class would later
implement this feature.
o The resident class of the deferred feature must also be deferred.

deferred class
DATABASE[G]
feature Queries
search (g: G): BOOLEAN
—-— Does item ‘g' exist 1in database?
deferred end
end

/|

Features: Deferred, Effective, Redefined (2) |issono:

e An effective feature implements some inherited deferred
feature.

class

DATABASE_VI1|[G]
inherit

DATABASE[G]
feature - Queries

search (g: G): BOOLEAN

—— Perform a linear search on the database.
do end

end

* A descendant class may still later re-implement this feature.

/|

Features: Deferred, Effective, Redefined (3) |issono:

e A redefined feature re-implements some inherited effective
feature.

class
DATABASE_V2[G]
inherit
DATABASE_VI1|[G]
redefine search end

feature - Queries
search (g: G): BOOLEAN
—-— Perform a binary search on the database.
do end

* A descendant class may still later re-implement this feature.

Classes: Deferred vs. Effective (2.1)

et ae o

Append a star * to the name of a deferred class or feature.

Append a plus + to the name of an effective class or feature.

Append two pluses ++ to the name of a redefined feature.
» Deferred or effective classes may be in the compact form:

LIST[LIST[PERSON]]*

ARRAYED LIST[G]+

ARRAYED_LIST[G]+

DATABASE[G]* DATABASE V1[Gl+ DATABASE_V2[Gl+

/|

Classes: Deferred vs. Effective (2.2)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

o Deferred or effective classes may be in the detailed form:

(N (

DATABASE[G]* DATABASE VI1[G}+ | [DATABASE V2[Gl+)
feature {NONE} - Implementation feature {NONE} - Implementation feature {NONE} - Implementation
data: ARRAY[G] data: ARRAY([G] data: ARRAY[G]
feature -- Commands feature -- Commands feature -- Commands
add_item* (g: G) add_item+ (g: G) add_item++ (g: G)
TAdd new item g’ into database. " Append new item *g’ into end of *data’ Insert new item "g" into the right slot of ‘data’.
require
non_existing_item: — exists (g) feature -- Queries feature -- Queries
ensure count+: INTEGER count+: INTEGER
size_incremented: count = old count + 1 -- Number of items stored in database -- Number of items stored in database
item_added: exists (g)
exists+ (: G): BOOLEAN exists+ (g: G): BOOLEAN
feature -- Queries __ -~ Perform a lincar search on data’ array. _J - Perform a binary search on data’ array.
count+: INTEGER
-- Number of items stored in database invariant
ensure sorted data: Vi:1<i< count: data[i] < datali + 1]

correct_result: Result = data.count

exists* (g: G): BOOLEAN
-- Does item g’ exist in database?
ensure
correct_result: Result = (3i : 1 <i < count : data[i] ~ g)

£ 26

Class Relations: Inheritance (1)

* An inheritance hierarchy is formed using red arrows.
o Arrow’s origin indicates the child/descendant class.
o Arrow’s destination indicates the parent/ancestor class.
¢ You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

A

(MY_LIST_INTERFACE[G]*)

feature
-- some public features here
feature -- { NONE }
-- some implementation features here
invariant
-- some class invariant here

/|

Class Relations: Inheritance (2)

More examples (emphasizing different aspects of DATABASE):
Inheritance Hierarchy || Features being (Re-)implemented

BASE[G]*
DATABASE[G]*
DATABASE VI1[G]+

DATABASE V2[G]+

/|

Class Relations: Client-Supplier (1)

e A ’ client-supplier (CS) relation ‘ exists between two classes:

one (the client) uses the service of another (the supplier).

e Programmatically, there is CS relation if in class CLIENT there
is a variable declaration [s1: SUPPLIER].
o A variable may be an attribute, a parameter, or a local variable.

e A green arrow is drawn between the two classes.
o Arrow’s origin indicates the client class.
o Arrow’s destination indicates the supplier class.
o Above the arrow there should be a /abel indicating the supplier
name (i.e., variable name).
o In the case where supplier is a routine, indicate after the label
name if it is deferred (%), effective (+), or redefined (++).

Class Relations: Client-Supplier (2.1)

/|

LASSONDE

class DATABASE

data:
feature - Cor
add_name (nn:

require ...

name_exists (n:
require ...
local

u: UTILITIES
do ..

invariant

end

feature {NONE} —- implemer
ARRAY[STRING]

STRING)

do ...

. ensure ...

STRING) :

end

ensure ...
BOOLEAN

end

class UTILITIES
feature u

search (a: ARRAY[STRING], n
require ... do ...
end

ensure ...

: STRING) :

end

BOOLEAN

o Query]data: ARRAY [STRING] |indicates two suppliers:

STRING and ARRAY.

o Parameters nn and n may have an arrow with label ,

pointing to the STRING class.
o Local variable u may have an arrow with label , pointing to the
UTILITIES class.

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is] data: ARRAY[...]

’

where ... denotes the supplier class STRING being pointed to.

DATABASE+

data+: ARRAY]...]

feature
add_name+ (nn: STRING)
-- Add name “nn" into database.
require

ensure
name_exists+ (n: STRING): BOOLEAN
-- Does name "n" exist?
require

ensure

invariant

n, nn

_ J

(UTILITIES+)

feature
search+ (a: ARRAY[STRING]; n: STRING): BOOLEAN
- Does name 'n’ exist in array ‘a"?
require

ensure

/|

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is [data |
The supplier's name should be complete: ARRAY [STRING]

DATABASE+

feature
add_name+ (nn: STRING) data+

S +
-- Add name “nn’ into dc

ARRAY[STRING]

require

ensure

require

ensure u

n, nn
name_exists+ (n: STRING): BOOLEAN
-- Does name "n" exist?

invariant

_ Y,

/|

Class Relations: Client-Supplier (3.1) LASSONDE

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED _LIST).
e DESIGN ONE:

class DATABASE V1

feature {NONE} —— nplementation
imp: ARRAYED LIST[PERSON]

— mo bre features and contracts

end

e DESIGN TwoO:

class DATABASE_ V2
feature {NONE} - implementation
imp: LIST[PERSON]

. —— more features and contracts

end

Question: Which design is better? [DESIGN TwO]
Rationale: Program to the interface, not the implementation.

_

Class Relations: Client-Supplier (3.2.1) LASSONDE

/|

We may focus on the PERSON supplier class, which may not
help judge which design is better.

(DATABASE V1+

feature

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

imp+: ARRAYED_LIST]...]

(DATABASE v+

feature

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

J

imp+: LIST[...] -

/|

Class Relations: Client-Supplier (3.2.2) LASSONDE

Alternatively, we may focus on the LIST supplier class, which in
this case helps us judge which design is better.

(DATABASE Vi+

feature imp+ N
- some public features here .
feature -- { NONE } ARRAYED_LIST[PERSON]

-- some implementation features here
invariant
-- some class invariant here

J

[DATABASE va+
feature imp+

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant
-- some class invariant here

N
LINKED_LIST[PERSON]

+
ARRAYED_LIST[PERSON]

\n,

Clusters: Grouping Classes

Use clusters to group classes into logical units.

model

DATABASE[G]+

ature -- Commands
tem++ (g: G)
sert new item g into the right slot of 'data’.

imp

base-library

*

feature - Queries
count+: INTEGER
-~ Number of items stored in database

exisist (g: G): BOOLEAN
- Perform a binary search on "data’ array.

invariant

_ sorted_data: Vi1 << count : datafi] < datali + 11}

LIST[G]

/|

Beyond this lecture

e Your Lab0 introductory tutorial series contains the following
classes:

BIRTHDAY

BIRTHDAY_BOOK

TEST_BIRTHDAY

TEST_BIRTHDAY_BOOK

TEST_LIBRARY

BAD BIRTHDAY VIOLATING.DAY_SET

BIRTHDAY_BOOK_VIOLATING_NAME_ADDED_TO_END

Draw a design diagram showing the architectural relations
among the above classes.

O O O 0O O o o

Index (1) :A§SCE>MF\ABNE

[Cearning Objectives|

[Why a Design Diagram

[Classes: |
Detailed View vs. Compact View (1)

[Classes: |
Detailed View vs. Compact View (2)

[Contracts: Mathematical vs. Programming
ol e . Non-G i
Deferred vs. Effectivel

[Classes: Deferred vs. Effectivel

[Features: Deferred, Effective, Redefined (1)

Index (2) :Agsgurgig“s

[Features: Deferred, Effective, Redefined (2)

[Features: Deferred, Effective, Redefined (3)

[Classes: Deferred vs. Effective (2.1)

[Classes: Deferred vs. Effective (2.2)

[Class Relations: Inheritance (1)

[CTass Relations: Inheritance (2)|

[CTass Relations: Client-Supplier (1)

[CTass Relations: Client-Supplier (2.7)

ass Relations: Client-Supplier (2.2.

ass Relations: Client-Supplier (2.2.

ass Relations: Client-Supplier (3.

e
Index (3) ngsgNrgigNE
ass Relations: Client-Supplier (3.2.

ass Relations: Client-Supplier (3.2.
[Clusters: Grouping Classes|

iBeyond this lecture|

Case Study: Abstraction of a Birthday Book

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Asserting Set Equality in Postconditions (Exercise)
2. The basics of discrete math (Self-Guided Study)
FUN is a REL, but not vice versa.
3. Creating a mathematical abstraction for a birthday book
4. Using commands and queries from two mathmodels classes:
REL and FUN

P ot 24

Math Review: Set Definitions and Members

e A set is a collection of objects.
o Objects in a set are called its elements or members.
o Order in which elements are arranged does not matter.
o An element can appear at most once in the set.
We may define a set using:
o Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}
o Set Comprehension: Implicitly specify the condition that all

members satisfy.
eg., {x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

The number of elements in a set is called its cardinality.

e.g.,]9/=0,{x|x<1<10,x is an odd number}|=5

/|

Math Review: Set Relations

Given two sets Sy and S:
e S;is a subset of S, if every member of S; is a member of S,.

5:1cS — (VXOX€S1:>X€SQ)

e Sy and S, are equal iff they are the subset of each other.

S51=5 «— S5,cSHAScS

e S is a proper subset of S, if it is a strictly smaller subset.

SicS, « S;cS,n|S1<|S2

4 of 24

/|

Math Review: Set Operations

Given two sets Sy and S,:
e Unionof Sy and S, is a set whose members are in either.

S1U82={X‘XES1\/XESQ}

e Intersection of Sy and S, is a set whose members are in both.

SinSo={x|xeSiArxeS}

o Difference of S; and S, is a set whose members are in Sy but
not So.
S1 \Sg={X|X€S1/\X¢82}

b.of 24

/|

Math Review: Power Sets LASSONDE

The power set of aset Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0, 1, 2, ..., |S].

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

a,
{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

b.0f 24

/|

Math Review: Set of Tuples

Given nsets Sy, Sy, ..., Sp, a cross product of theses sets is
a set of n-tuples.

Each n-tuple (eq, e, ..., en) contains n elements, each of
which a member of the corresponding set.

SixSyx---x8Sp={(ey,6,...,en) | €eSinl1<i<n}

e.g., {a, b} x{2,4} x {$,&} is a set of triples:

{a,b} x{2,4} x {$,&}
{(e1,e2,e3) | e1e{a,bfrneec{2,4} ne3e{$,&} }
{(a’27$)7(a727&)7(a747$)7(a747&)7
(b,2,%),(b,2,&),(b,4,$),(b,4,&)}

Lot 24

/|

Math Models: Relations (1)

e A relation is a collection of mappings, each being an ordered

pair that maps a member of set S to a member of set T.

e.g.,Say S={1,2,3} and T = {a, b}

o ¢ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT]|x=+1}is arelation (say r.) that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

» Given a relation r:
o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}
e.g., dom(ry) = {1,2,3}, dom(r2) = {2,3}
o Range of ris the set of T members that r maps to.
ran(r)={t: T|(3se (s, t)er)}
e.g., ran(ry) = {a, b} =ran(rz)

/|

Math Models: Relations (2)

* We use the power set operator to express the set of all possible
relations on S and T:
P(SxT)

* To declare a relation variable r, we use the colon (:) symbol to

mean set membership:

r:P(SxT)

e Or alternatively, we write:
r:S< T

where the set S < T is synonymous to the set P(Sx T)

/|

Math Models: Relations (3.1)

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}

« [r.domain|: set of first-elements from r
o rdomain={d|(d,r)er}
o e.g., r.domain = {a,b,c,d,e,f}

. : set of second-elements from r

orrange={r|(d,r)er}
o e.g., rrange = {1,2,3,4,5,6}

o [rinverse|: a relation like r except elements are in reverse order
o rinverse={ (r,d)|(d,r)er}

o e.g., r.inverse = {(1,a),(2,b), (3,¢), (4,a), (5,b), (6,¢), (1,d),(2,e),(3,1)}

e
Math Models: Relations (3.2)

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
J ’ r.domain_restricted(ds) ‘ sub-relation of r with domain ds.
o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}
o e.g., rdomain_restricted({a, b}) = {(a,1),(b,2),(a,4),(b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}
o e.g., rdomain_subtracted({a, b}) =
{(c,3),(c.6),(d, 1), (e,2),(f,3)}
. ’ r.range_restricted(rs) ‘ sub-relation of r with range rs.
o r.range_restricted(rs) = { (d,r) | (d, r) ErAnrers}
o e.g., rrange. restrlcted({1 2}) ={(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) ‘ sub-relation of r with range not ds.
o rrange_subtracted(rs) = { (d,r) | (d,r)ernré¢rs}
o e.g., r.range_subtracted({1, 2}) =

{{(¢,3).(a,4),(b,5),(c,6),(f,3)}}

S
Math Models: Relations (3.3)

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
r.overridden(t) ‘: a relation which agrees on r outside domain of
t.domain, and agrees on t within domain of t.domain

o r.overridden(t) = t u r.domain_subtracted(t.domain)
(o}

r.overridden({(a,3),(c,4)})

{(a,3),(c,4)}u {(07«5)7 (b,5),(d,1),(e;2),(,3)}

t r.domain_subtracted ({.domain)
—_——
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)}

/|

Math Review: Functions (1) LASSONDE

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

Vs:S;t1: T, b:Te(s,ty)efa(s,b)ef=t =0

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥)eSxTarx=1} [No]
° {(1,a).(2,b),(3,a)} [Yes]
o {(1,a),(2,b)} [Yes]

/|

Math Review: Functions (2) LASSONDE

o We use set comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

{r:S<T|
(Vs:S;t4: T, to:Te(s,) ern(s,b)er=t==t)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T)and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S—>T

/|

Math Review: Functions (3.1) LASSONDE

Given a function f: S— T:
e fis injective (or an injection) if f does not map two members of
S to the same member of T.
f is injective «<—
(VS1:S;8,:S;t: Te(sq,t)ern(se,t)er=54=5)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.

Math Review: Functions (3.2)

et ae o

<

X Y X

O @ U)<

Math Models: Command-Query Separation |ssono:

/|

Command

I

Query

domain_restrict
domain_restrict by

domain_subtract
domain_subtract_ by

domain_restricted
domain_restricted by

domain_subtracted
domain_subtracted by

range_restrict
range_restrict_by

range_subtract
range_subtract._by

range_restricted
range_restricted._by

range_subtracted
range_subtracted._by

override
override_by

overridden
overridden_by

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}

e Commands modify the context relation objects.
’ r.domain restrict ({a}) ‘ ChangeS r to {(a, 1), (3,4)}

e Queries return new relations without modifying context objects.
| r.domain restricted ({a}) |returns {(a,1),(a,4)} with r untouched

/|

\n,

Math Models: Example Test

LASSONDE

test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make from tuple_array (
<<[nan, l], ["b", 2]’ ["C", 3],
["a", 41, [("b", 51, ["c", 6],
["d", l}, ["en, 2], [ufu, 3]>>)
create ds.make_from _array (<<"a">>)

t

ged by the ery ao

t = r.domain,suétracted (ds)
Result :=

t /~ r and not t.domain.has ("a")

and r.domain.has ("a")
check Result end

r 1s

r is a d by t

r.domain_subtract (ds)
Result

t ~ r and not t.domain.has ("a")

and not r.domain.has ("a")
end

N
Case Study: A Birthday Book

A birthday book stores a collection of entries, where each entry
is a pair of a person’s name and their birthday.

No two entries stored in the book are allowed to have the same
name.

Each birthday is characterized by a month and a day.

A birthday book is first created to contain an empty collection of
entires.

Given a birthday book, we may:

o Inquire about the number of entries currently stored in the book

o Add a new entry by supplying its name and the associated birthday
o Remove the entry associated with a particular person

o Find the birthday of a particular person

o Get a reminder list of names of people who share a given birthday

Birthday Book: Decisions

e Design Decision

o Classes
o Client Supplier vs. Inheritance
o Mathematical Model? [e.g., REL Or FUN]

o Contracts
e Implementation Decision

o Two linear structures (e.g., arrays, lists) [O(n)]
o A balanced search tree (e.g., AVL tree) [O(log-n)]
o A hash table [O(1)]

e Implement an abstraction function that maps implementation
to the math model.

_

/|

\n,

Birthday Book: Design

[BIRTHDAY_BOOK) ' BIRTHDAY .

model: FUN[NAME, BIRTHDAY] . R day: INTEGER
- abstraction function model: FUNINAME. -] month: INTEGER

count: INTEGER
-- number of entries

invariant
1 <month <12
I <day<31

put(n: NAME; d: BIRTHDAY)
ensure
model_operation: model ~ (old model.deep_twin).overriden_by ([n,d])
- infix symbol for override operator: @<+

remind(d: BIRTHDAY): ARRAY[NAME]

ensure (‘]
nothing_changed: model ~ (old model.deep_twin) NAME

same_counts: Result.count = (model.range_restricted_by(d)).count)
same_contents: ¥ name € (model.range_restricted_by(d)).domain: name € Result remind: ARRAY(..] item: STRING
-- infix symbol for range restriction: model @> (d)

invariant

invariant: item[1] € A..Z
consistent_book_and_model_counts: count = model.count

Birthday Book: Implementation LASSONDE

h BIRTHDAY

f BIRTHDAY BOOK

model: FUN[NAME, BIRTHDAY |
~ abstraction function model: FUNINAME, .1 | month: INTEGER
do >
~ promote hashtable to function o
ensure invariant
same_counts: Result.count = implementation.count 1 <month < 12
1 <day<31

ontents: ¥/ [name, date] € Result: [name, date] € implementation

same_
end

put(n: NAME; d: BIRTHDAY)
do

- implement using hashtable

ensure
model_operation: model ~ (old model.deep_twin) @<+ [n.d]

end
remind(d: BIRTHDAY): ARRAY[NAME]
o

- implement using hashtable
ensure

nothing_changed: model ~ (old model.deep_twin)

same_counts: Result.count = (model @> d).count

same_contents: ¥ name € (model @> d).domain: name € Result

end

count: INTEGER -- number of names
remind: ARRAY]..] | item: STRING

feature {NONE}
implementation: HASH_TABLE[BIRTHDAY, NAME] >
invariant

item[1] € A.Z

invariant:
consistent_book_and_model_counts: count = model.count

consistent_book_and_imp_counts: count = implementation.count

/|

Beyond this lecture . ..

¢ Familiarize yourself with the features of class RET, FUN, and
SET.
» Exercise:
o Consider an alternative implementation using two linear structures
(e.g., here in Java).
o Implement the design of birthday book covered in lectures.
o Create another LINEAR BIRTHDAY _BOOK class and modify the
implementation of abstraction function accordingly.
Do all contracts still pass? What should change? What remain
unchanged?

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#oop_java

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

[Math Review: Set Definitions and Membership|
Maih Beview: Set Relations|
[Math Review: Set Operations]
[Maih Beview: Power Sets|
ath Review: Set of Tuple
[Math Models: Relations (1)
[Math Models: Relations (2)
ath Models: Relations (3.

at odels: Relations (3.

ath Models: Relations (3.

Index (2) :A§SCE>MI&BNE

[Math Review: Functions (1)
[Math Review: Functions (2)
[Math Review: Functions (3.1)
[Math Review: Functions (3.2)
[Math Models: Command-Query Separation|
[Math Models: Example Test|

ase Study: irthday Boo
Birthday Book: Decisions|
Birthday Book: Design|
Birthday Book: Tmplementation|
Beyond this Tecture .]

Design Pattern: Iterator

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Motivating Problem of the lterator Design Pattern

2. Supplier: Implementing the lterator Design Pattern

3. Client: Using the lterator Design Pattern

4. A Challenging Exercise (architecture & generics)

P ot 22

/|

What are design patterns?

e Solutions to recurring problems that arise when software is
being developed within a particular context.
o Heuristics for structuring your code so that it can be systematically
maintained and extended.
o Caveat : A pattern is only suitable for a particular problem.
o Therefore, always understand problems before solutions!

3 of 20

/|

Iterator Pattern: Motivation (1)
Client:
iar: class
Supplier: i
class feature
CART cart: CART
feature checkout: INTEGER
orders: ARRAY[ORDER] do
end from
i := cart.orders.lower
class until
ORDER i > cart.orders.upper
feature do
price: INTEGER Result := Result +
quantity: INTEGER cart.orders[i] .price
end *
cart.orders[i].quantity
i:=41i+1
end
Problems? end
end

Iterator Pattern: Motivation (2)

/|

Supplier:

class
CART
feature
orders:
end

LINKED_LIST[ORDER]

class
ORDER
feature
price:
quantity:
end

INTEGER
INTEGER

Client’s code must be modi-
fied to adapt to the supplier's
change on implementation.

Client:
class
SHOP
feature
cart: CART
checkout: INTEGER
do
from
cart.orders.start
until
cart.orders.after
do
Result := Result +
cart.orders.item.price
*
cart.orders.item.quantity
end
end
end

/|

Iterator Pattern: Architecture

ITERATION_CURSOR[G]*

/|

Iterator Pattern: Supplier’s Side

» Information Hiding Principle :

o Hide design decisions that are likely to change (i.e., stable API).
o Change of secrets does not affect clients using the existing API.
e.g., changing from ARRAY to LINKED_LIST in the CART class
e Steps:
1. Let the supplier class inherit from the deferred class
ITERABLE[G].
2. This forces the supplier class to implement the inherited feature:
new._cursor: ITERATION_CURSOR [G], where the type parameter
G may be instantiated (e.g., ITERATION_.CURSOR[ORDER)]).
2.1 If the internal, library data structure is already iterable
e.g., imp: ARRAY[ORDER], then simply return imp.new_cursor.
2.2 Otherwise, say imp: MY_-TREE[ORDER], then create a new class
MY_TREE_ITERATION_CURSOR that inherits from

ITERATION-CURSOR[ORDER], then implement the 3 inherited
features after, item, and forth accordingly.

/|

lterator Pattern: Supplier’s Implementation ([fJ:ono:

class
CART

inherit
ITERABLE [ORDER]

feature {NONE} - Information Hiding
orders: ARRAY[ORDER]

feature - Iteration
new_cursor: ITERATION_CURSOR|[ORDER]
do
Result := orders.new_cursor
end

When the secrete implementation is already iterable, reuse it!

/|

Iterator Pattern: Supplier’s Imp. (2.1)

class
GENERIC _BOOK[G]
inherit
ITERABLE [TUPLE [STRING, G]]

feature {NONE} —— Ir
names: ARRAY [STRING]
records: ARRAY|[G]

feature Iteration
new_cursor: ITERATION_CURSOR|[TUPLE [STRING, G]]

local
cursor: MY_ITERATION_CURSOR/[G]

do
create cursor.make (names, records)
Result := cursor

end

No Eiffel library support for iterable arrays = Implement it yourself!

/|

Iterator Pattern: Supplier’s Imp. (2.2)
class

MY ITERATION_CURSORI[G]
inherit

ITERATION CURSOR[TUPLE [STRING, G]]
feature - Constructor

make (ns: ARRAY[STRING], rs: ARRAY[G])

do ... end

feature {NONE} - Information

cursor_position: INTEGER
names: ARRAY [STRING]
records: ARRAY[G]

feature - C or Operations
item: TUPLE[STRING G]
do ... end
after: Boolean
do ... end
forth
do ... end

You need to implement the three inherited features:
item, after, and forth.

_

Iterator Pattern: Supplier’s Imp. (2.3)

Visualizing iterator pattern at runtime:

ArrayedMap
inherit ITERABLE[TUPLE[STRING, G]] names . upper

— ol ----_

records.upper
records ER

p— I N N R

ITERATION_CURSOR[TUPLE[STRING, G]]
values_1
values_2
cursor_position
item
after, forth

/|

Exercises LASSONDE

1. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.
2. Draw the BON diagram showing how the iterator pattern is
applied to the supplier classes:
o GENERIC_BOOK (a descendant of ITERABLE) and
o MY_ITERATION_CURSOR (a descendant of
ITERATION_CURSOR).

Resources LASSONDE

e Tutorial Videos on Generic Parameters and the lterator Pattern

o Tutorial Videos on Information Hiding and the lterator Pattern

¢ Tutorial on Making a Birthday Book (implemented using
HASH_TABLE) ITERABLE

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#generic_parameter
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#information_hiding
https://www.youtube.com/watch?v=TrgpbQ6d3Ag&list=PL5dxAmCmjv_5O2hx1ARzjI5LQhkX477bw&index=14
https://www.youtube.com/watch?v=TrgpbQ6d3Ag&list=PL5dxAmCmjv_5O2hx1ARzjI5LQhkX477bw&index=14

/|

Iterator Pattern: Client’s Side

Information hiding : the clients do not at all depend on how the

supplier implements the collection of data; they are only interested

in iterating through the collection in a linear manner.

Steps:

1. Obey the code to interface, not to implementation principle.

2. Let the client declare an attribute of interface type
ITERABLE[G] (rather than implementation type ARRAY,
LINKED_LIST, or MY_TREE).

e.g., cart: CART, Wwhere CART inherits ITERATBLE [ORDER]

3. Eiffel supports, in both implementation and coniracts, the
across syntax for iterating through anything that’s iterable.

_

Ilterator Pattern:
Clients using across for Contracts (1)

LASSONDE

class
CHECKER

feature Attributes
collection:

feature Queries
is_all_positive : BOOLEAN

Are all items in collection positive?

do

ensure
across
collection is item
all
item > 0
end
end

e Using all corresponds to a universal quantification (i.e., V).

» Using some corresponds to an existential quantification (i.e., 3).

_

lterator Pattern: LASSONDE
Clients using across for Contracts (2)
class BANK
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT
—— Search on accounts sorted in non-descending order.
require
across
1 |..| (accounts.count - 1) is 1
all
accounts [1].1id <= accounts [1 + 1].id
end
do
ensure
Result.id = acc_id
end

This precondition corresponds to:
i : INTEGER | 1 < i < accounts.count e accounts[i].id < accounts[i+1].id

Iterator Pattern:
Clients using across for Contracts (3)

class BANK

accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

Does the account list contain duolica
—— Does the account list contain duplicat

do
ensure
Vi,j: INTEGER |
| 1 < i< accounts.count A 1< j < accounts.count e |
accounts[i] ~ accounts[j] = i = j
’ end ‘

» Exercise: Convert this mathematical predicate for

postcondition into Eiffel.
¢ Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as

necessary.

_

Iterator Pattern:
Clients using Iterable in Imp. (1)

class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

—— Account with the maximum b nce
require ?°?
local
cursor: ITERATION_CURSOR[ACCOUNT]; max: ACCOUNT
do
‘ from cursor := accounts. new-cursor ; max := cursor. item ‘

until cursor. after
do
‘ if cursor. item .balance > max.balance then

max := cursor. item
end
cursor. forth
end
ensure ??
end
8.0r22]

Iterator Pattern: ‘fiéésésom

Clients using Iterable in Imp. (2)

class SHOP
cart: CART
checkout: INTEGER
require °??
do
across
cart is order
loop
Result := Result + order.price * order.quantity
end

CQWOoONO® O »hWN =

N =

ensure ??
end

(]

e Class CART should inherit from ITERABLE[ORDER].

e L10 implicitly declares cursor: ITERATION_CURSOR[ORDER]
and does cursor := cart.new_cursor

Ilterator Pattern:
Clients using Iterable in Imp. (3)

LASSONDE

class BANK
accounts: LIST[ACCOUNT] Q:
max_balance: ACCOUNT
—— Account with the maxii lance value
require ??
local
max: ACCOUNT
do
max := accounts [1]
across
accounts is acc
loop
if acc.balance > max.balance then
max := acc
end
end
ensure ??
end
T Biat2d

/|

Beyond this lecture . ..

e Tutorial Videos on lterator Pattern
e Exercise: Architecture & Generics

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

|What are design patterns®|

llterator Pattern: Motivation (1)

llterator Pattern: Motivation (2)
lterator Pattern: Architecture|
llterator Pattern: Supplier’s Side)

llterator Pattern: Supplier’s Implementation (1)

lterator Pattern: Supplier’s Imp. (2.1)

llterator Pattern: Supplier’s Imp. (2.2)

llterator Pattern: Supplier’s Imp. (2.3)

Index (2) :_ASSONDE

[ferafor Paffern:]
[Clients using across for Contracts (1)

[ferafor Paffern:]
[Clients using across for Contracts (2)

[ferafor Paffern: |
Ellents using across for Contracts (3)

[ferafor Paffern:]
[Clients using Iterable in Imp. (1)

[ferafor Paffern:]

lients using lterable in Imp. (2

Index (3) 5“359“’.‘5(2“5
iferator Pattern:]
IClients using lterable in Imp. (3)

IBeyond this lecture .. .|

Singleton Design Pattern

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
. Modeling Concept of Expanded Types (Compositions)

. Once Routines in Eiffel vs. Static Methods in Java

. Export Status

. Sharing via Inheritance (w.r.t. SCP and Cohesion)
Singleton Design Pattern

—h

OB ON

Expanded Class: Modelling

¢ We may want to have objects which are:
o Integral parts of some other objects
o Not shared among objects
e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

/|

Expanded Class: Programming (2)
class KEYBOARD ... end class CPU ... end
class MONITOR ... end class NETWORK ... end

class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

Alternatively:

expanded class KEYBOARD ... end
expanded class CPU ... end
expanded class MONITOR ... end
class NETWORK ... end
class WORKSTATION

k: KEYBOARD

c: CPU

m: MONITOR

n: NETWORK
end

/|

Expanded Class: Programming (3)
1 | test_expanded
2 local
expanded class 2 d:*ﬂ' ebz: B
f;iture 5 check ebl.i = 0 and eb2.i = 0 end
, , 6 check ebl = eb2 end
cﬁi?geil (ni: INTEGER) 7 eb2.change_i (15)
PR 8 check ebl.i = 0 and eb2.i = 15 end
end. 9 check ebl /= eb2 end
feature 10 ebl := eb2
) 11 check ebl.i = 15 and eb2.i = 15 end
1: INTEGER ,
end 12 ebl.change_1i (10)
13 check ebl.i = 10 and eb2.i = 15 end
14 check ebl /= eb2 end
15 end

e L5: object of expanded type is automatically initialized.
e L10,L12,L13: no sharing among objects of expanded type.

e L6,L9,L14: = compares contents between expanded objects.
Eaiza

Reference vs. Expanded (1)

e Every entity must be declared to be of a certain type (based on
a class).

e Every type is either referenced or expanded.

e In reference types:

o y denotes a reference to some object
o x := vy attaches x to same object as does y
o x = y compares references

¢ In expanded types:
o y denotes some object (of expanded type)

o x := y copies contents of y into x
o x = ycompares contents [x ~ V]
Earz3

Reference vs. Expanded (2)

/|

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author

I

expanded-typed author

“The Red and the Black™

“Life of Rossini”

1783

1842

1830 1823 “The Red and the Black” “Life of Rossini”
341 307 1830 1823
reference reference 341 307
“Stendhall” “Stendhall”
“Henri Beyle” “Henri Beyle”
Ste!?dha]l 1783 1783
| “HenriBeyle” | 1842 1842

Hyperlinked author page

H
e

Physical printed copies

/|

Singleton Pattern: Motivation LASSONDE

Consider two problems:

1. Bank accounts share a set of data.
e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.

e.g., printers

/|

\n,

Shared Data via Inheritance LASSONDE
Descendant:
class DEPOSIT inherit SHARED DATA
fevant Ancestor:
end
class
class SHARED_DATA
feature
end interest_rate: REAL
exchange_rate: REAL
class minimum_balance: INTEGER
o rate’ maximum_balance: INTEGER
end .
end
class ACCOUNT inherit SHARED DATA
feature
deposits: DEPOSIT LIST Problems?
withdraws: WITHDRAW_LIST
end
BEoi23

/|

Sharing Data via Inheritance: Architecture |.ssono:

< WITHDRAWAL_LIST |

o Irreverent features are inherited.
= Descendants’ cohesion is broken.
o Same set of data is duplicated as instances are created.

= Updates on these data may result in inconsistency .

/|

Sharing Data via Inheritance: Limitation |Jssonos

e Each descendant instance at runtime owns a separate copy of
the shared data.

¢ This makes inheritance not an appropriate solution for both
problems:
o What if the interest rate changes? Apply the change to all

instantiated account objects?
o An update to the global lock must be observable by all regulated

processes.
Solution:
o Separate notions of data and its shared access in two separate

classes.
o Encapsulate the shared access itself in a separate class.

e

/|

Introducing the Once Routine in Eiffel (1.1) |issonoe

1 |class 4

2 | create make

3 | feature Constructor

4 make do end

5 | feature Query

6 new_once_array (s: STRING): ARRAY[STRING]

7 -— A once query that returns an array.

8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result.force (s, Result.count + 1)

11 end

12 new_array (s: STRING): ARRAY[STRING]

13 -—- An ordinary query that returns an array
14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result. force (s, Result.count + 1)

17 end

18 |end

L9 & L10 executed only once for initialization.
L15 & L16 executed whenever the feature is called.

e

/|

Introducing the Once Routine in Eiffel (1.2) |.ssonoe

1 | test_query: BOOLEAN

2 local

3 a: A

4 arrl, arr2: ARRAY[STRING]

5 do

6 create a.make

7

8 arrl := a.new_array ("Alan")

9 Result := arrl.count = 1 and arrl[l] ~ "Alan"
10 check Result end

11

12 arr2 := a.new_array ("Mark")

13 Result := arr2.count = 1 and arr2[1l] ~ "Mark"
14 check Result end

15

16 Result := not (arrl = arr2)

17 check Result end

18 end

| KIax]

/|

Introducing the Once Routine in Eiffel (1.3) |iassonoe

1 | test_once_query: BOOLEAN

2 local

3 a: A

4 arrl, arr2: ARRAY|[STRING]

5 do

6 create a.make

7

8 arrl := a.new_once_array ("Alan")

9 Result := arrl.count = 1 and arrli[l] ~ "Alan"
10 check Result end

11

12 arr2 := a.new_once_array ("Mark")

13 Result := arr2.count = 1 and arr2[1l] ~ "Alan"
14 check Result end

15

16 Result := arrl = arr2

17 check Result end

18 |end

Introducing the Once Routine in Eiffel (2) [asono:

r (...): T
once

end

e The ordinary do ... end is replaced by once ... end.

e The first time the once routine r is called by some client, it
executes the body of computations and returns the computed
result.

e From then on, the computed result is “cached”.

¢ In every subsequent call to r, possibly by different clients, the
body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.

e How does this help us?

Cache the reference to the same shared object !
[Evaa]

Approximating Once Routine in Java (1)

/|

We may encode Eiffel once routines in Java:

class BankData {
BankData () { }
double interestRate;
void setIR(double r);

class Account {
BankData data;
Account () |

}

data = BankDataAccess.getData();

class BankDataAccess {
static boolean initOnce;
static BankData data;
static BankData getData()
if(!initOnce) {
data = new BankData() ;
initOnce = true;
}
return data;
}
}

{

Problem?

Multiple BankData objects may
be created in Account,
breaking the singleton!

Account () |
data = new BankData() ;

}

Approximating Once Routine in Java (2)

/|

We may encode Eiffel once routines in Java:

class BankData {
private BankData() { }
double interestRate;
void setIR(double r);
static boolean initOnce;
static BankData data;
static BankData getData()
if (!initOnce) |
data = new BankData() ;
initOnce = true;
}
return data;
}
}

{

Problem?

Loss of Cohesion: Data
and Access to Data are
two separate concerns,
s0 should be decoupled
into two different classes!

/|

Singleton Pattern in Eiffel (1) LASSONDE

Supplier: Client:
class DATA test: BOOLEAN
create {DATA ACCESS} make local
feature {DATA ACCESS} access: DATA ACCESS
make do v := 10 end dl, d2: DATA
feature - Data Attributes do
v: INTEGER dl := access.data
change_v (nv: INTEGER) d2 := access.data
do v := nv end Result := dI = d2
end and dlI.v = 10 and d2.v = 10
check Result end
dl.change_v (15)
expanded class Result := dI = d2
DATA ACCESS and dl.v = 15 and d2.v = 15
feature end
data: DATA end

—— 1T d on ac

once create Result.make end
invariant data = data

Writing | create d7.make |in test
feature does not compile. Why?

Singleton Pattern in Eiffel (2) LASSONDE

/|

Supplier:

class BANK DATA

create {BANK DATA ACCESS} make

feature {BANK DATA ACCESS}
make do ... end

feature —— Data Attribt
interest_rate: REAL
set_interest_rate (r: REAL)

end

Client:

expanded class
BANK_DATA_ACCESS
feature
data: BANK_DATA

— lhne one

1d only access
once create Result.make end
invariant data = data

class
ACCOUNT

feature
data: BANK_DATA
make (...)

local
data_access: BANK DATA ACCESS
do
data := data_access.data
end
end

Writing | create data.make| in
client's make feature does not
compile. Why?

/|

Testing Singleton Pattern in Eiffel LASSONDE

\n,

test_bank_ shared data: BOOLEAN
—-— Test that a

I le data
local accl, acc2: ACCOUNT
do

comment ("t1l: test that a single data object is shared")

create accl.make ("Bill")

create accZ2.make ("Steve")

Result := accl.data = acc2.data
check Result end
Result := accl.data ~ accZ.data

check Result end
accl.data.set_interest_rate (3.11)
Result :=
accl.data.interest_rate = acc2.data.interest_rate
and accl.data.interest_rate = 3.11
check Result end
acc2.data.set_interest_rate (2.98)
Result :=
accl.data.interest_rate = acc2.data.interest_rate
and accl.data.interest_rate = 2.98
end

T Eoaf2y

/|

\n,

Singleton Pattern: Architecture

client_1
M '
H h
' . data_access+ supplier_of shared_data
' APPLICATION_I P R ettt -
. - \ S ™
M oo . . DATA+ \
H DATA_ACCESS+ |
: = create {DATA_ACCESS} -- Creation Restriction H
' feature - Data make 1
L data+: DATA H
client_2 0 O eference 1o shared data object feature {DATA_ACCESS) — Update Restriction '
gTTTIIEIEIIE I \ ! once : make+ H
: + o data_access+ ! create Result.make data+ - fnitalze duta object H
H x
' Apprication 2/ 0 end feature - Data |
H H H invariant v: SOME_DATA_CLASS '
---------------- 4 : shared_instance: - An example query :
i data = d H
T fata = data - An example command '
H |
\ J
client 3 N tttt=—~—””rA A —mm P
! \
' I
H ' data_access*
|

Important Exercises: Instantiate this architecture to the
problem of shared bank data.

Draw it in draw. io.
asax]

Beyond this lecture

/|

The singleton pattern is instantiated in the ETF framework:

e ETF _MODEL
e ETF_MODEL_ACCESS

(shared data)
(exclusive once access)

e ETF_COMMAND and its effective descendants:

deferred class
ETF_COMMAND
feature - Att
model: ETF_MODEL
feature {NONE}
make(...)
local

ributes

do

model := ma.m
end
end

ma: ETF_MODEI_ACCESS

class

ETF_MOVE
inherit
ETF_MOVE_INTERFACE

—— wl

feature -
move (...)

do

model.some_routine (...)

end
end

icl s ETF _C

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

[Expanded Class: Modelling|
[Expanded Class: Programming (2)
[Expanded Class: Programming (3)

[Reference vs. Expanded (1)

[Reference vs. Expanded (2)

[Singleton Pattern: Motivation|

5] I Data via Inherii I

ISharing Data via Inheritance: Architecture|

[Sharing Data via Inheritance: Limitation|

lintroducing the Once Routine In Eiffel (1.1)
arnw]

Index (2) :Agsgurgig“s

introducing the Once Routine in Eiftel (1.2)|

lintroducing the Once Routine In Eiffel (1.3)

lintroducing the Once Routine In Eiftel (2)

[Approximating Once Routines in Java (1)

[Approximating Once Routines in Java (2)

E|n§|eton Pattern in Eiffel (1)
Elnﬁleton Pattern in Eiffel (2)

|Testing Singleton Pattern in Eiffel

ISingleton Pattern: Architecture)

Beyond this Tecture

Eiffel Testing Framework (ETF):
Automated Regression & Acceptance Testing

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. User Interface: Concrete vs. Abstract

2. Use Case: Interleaving Model, Events & (Abstract) States
3. Acceptance Tests vs. Unit Tests

4. Regression Tests

ReqUired Tutorial LASSONDE

All technical details of ETF are discussed in this tutorial series:

https://www.voutube.com/playlist?1ist=PL5dxAmCmiv
S5unIgLB9XiLwBeyv105v3kT

https://www.youtube.com/playlist?list=PL5dxAmCmjv_5unIgLB9XiLwBey105y3kI
https://www.youtube.com/playlist?list=PL5dxAmCmjv_5unIgLB9XiLwBey105y3kI

/|

Take-Home Message

* Your remaining assignments are related to ETF: Lab3 & Project.
* You are no longer just given partially implemented classes:

o Design decisions have already been made for you.

o You are just to fill in the blanks (to-do’ s).
e ETF is in Eiffel, but try to see beyond what it allows you do:

1. Design your own classes and routines.
2. Practice design principles:
e.g., DbC, modularity, information hiding, single-choice, cohesion.
3. Practice design patterns:
e.g., iterator, singleton.
4. Practice acceptance testing and regression testing.

Bank ATM: Concrete User Interfaces

‘L;ASBS?MBF

An ATM app has many concrete (implemented, functioning) Uls.

PHYSICAL INTERFACE

MOBILE INTERFACE

| i |

eDeposit g

Step 1 of 2: Cheque Details (i)

TAKE FRONT PHOTO

| TAKE BACK PHOTO

Select... >

/|

UI, MOdel, TDD LASSONDE

e Separation of Concerns

o The (Concrete) User Interface
Users typically interact with your application via some GUI.
e.g., web app, mobile app, or desktop app

o The Model (Business Logic)
Develop an application via classes and features.
e.g., a bank storing, processing, retrieving accounts & transactions

e Test Driven Development (TDD) In practice:
o The model should be independent of the Ul or View.
o Do not wait to test the model when the concrete Ul is built.

= Test your software as if it was a real app
way before dedicating to the design of an actual GUI.
= Use an abstiract Ul (e.g., a cmd-line Ul) for this purpose.

/|

Prototyping System with Abstract Ul

e For you to quickly prototype a working system, you do not

need to spend time on developing a elaborate, full-fledged GUI.

e The Eiffel Testing Framework (ETF) allows you to:

o Generate a starter project from the specification of an abstract Ul.

o Focus on developing the business model .
o Test your business model as if it were a real app.

e Q. What is an abstract UI?

Events absiracting observable interactions with the concrete
GUI (e.g., button clicks, text entering).
¢ Q. Events vs. Features (attributes & routines)?

| Events [Features
interactions computations
external internal
observable hidden
acceptance tests unit tests

users, customers

programmers, developers

/|

Bank ATM: Abstract Ul

Abstract Ul is the list of events absiracting observable interactions
with the concrete GUI (e.g., button clicks, text entering).

system bank

new (id: STRING)
- create a new bank account for "id"
deposit (id: STRING; amount: INTEGER)

—-— deposit "amount" into the account of "id"

withdraw (id: STRING; amount: INTEGER)

- withdraw "amount" from the account of "id"
transfer (idl: STRING; id2: STRING; amount: INTEGER)
—-— transfer "amount" from "idl" to "id2"

/|

Bank ATM: Abstract States

Abstract State is a representation of the system:
o Including relevant details of functionalities under testing
o Excluding other irrelevant details

€.g., An abstract state may show each account’s owner:

{alan, mark, tom}

€.g., An abstract state may also show each account’s balance:

{alan: 200, mark: 300, tom: 700}

€.9., An abstract state may show account’s transactions:

Account Owner: alan
List of transactions:
+ deposit (Oct 15): $100
— withdraw (Oct 18): $50
Account Owner: mark
List of transactions:

/|

Bank ATM: Inputs of Acceptance Tests

An acceptance test is a use case of the system under test,
characterized by sequential occurrences of abstract events.

For example:

new ("alan")

new ("mark")

deposit ("alan", 200)

deposit ("mark", 100)
transfer ("alan", "mark", 50)

/|

Bank ATM: Outputs of Acceptance Tests (1) |.assonoe

Output from running an acceptance test is a sequence
interleaving abstract states and abstract events:

So—>e1 —>S1 —>62—>82—> .

where:

o Sy is the initial state.

o §;is the pre-state of event e;, 1 [i>0]
e.g., Sy is the pre-state of e, Sy is the pre-state of e»

o S;is the post-state of event g; [i>1]

e.g., Sy is the post-state of e, S; is the post-state of e,

e

/|

Bank ATM: Outputs of Acceptance Tests (2) |.assonoe

Consider an example acceptance test output:

{}
->new ("alan")
{alan: 0}

—>new ("mark")
{alan: 0, mark: 0}
->deposit ("alan", 200)
{alan: 200, mark: O}
->deposit ("mark", 100)
{alan: 200, mark: 100}
->transfer ("alan", "mark", 50)
{alan: 150, mark: 150}

e Initial State? {}
e What role does the state {alan: 200, mark: 0} play?
o Post-State of deposit ("alan", 200)

o Pre-State of deposit ("mark", 100)
2otz

/|

Bank ATM: Acceptance Tests vs. Unit Tests |.ssono:

Q. Difference between an acceptance test and a unit test?

{} test: BOOLEAN
local acc: ACCOUNT

- " AL
>new ("alan") do create acc.make("alan")

{alan: 0} acc.add(200)

->deposit ("alan", 200) Result := acc.balance = 200
{alan: 200} end

A.

o Writing a unit test requires knowledge about the programming
language and details of implementation.
= Written and run by developers

o Writing an acceptance test only requires familiarity with the
abstract Ul and abstract state.
= Written and run by customers [for communication]

= Written and run by developers [for testing]
oz

/|

ETF in a Nutshell LASSONDE

« Eiffel Testing Framework (ETF) facilitates engineers to write
and execute input-output-based acceptance tests.
o Inputs are specified as traces of events (or sequences).
o The abstract Ul of the system under development (SUD) is
defined by declaring the list of input events that might occur.
o Qutputs are interleaved states and events logged to the terminal,
and their formats may be customized.

e An executable ETF project tailored for the SUD can already be
generated, using these event declarations (specified in a plain
text file), with a default business model .

o Once the business model is implemented, there is a small
number of steps to follow for developers to connect it to the
generated ETF.

o Once connected, developers may re-run all accepiance tests
and observe if the expected state effects occur.

e

Workflow: Develop-Connect-Test

l define

limplemem‘

monitored
events

business
model

|
(re)new connect to |
|

generate

Code
Skeleton

redefine

et ae o

ETF: Abstract Ul and Acceptance Test

Input Grammar

(namel: NAME)
-- create a new bank account for “id"

(namel: NAME; amount: VALUE)

- deposit "amount" into the account of “id"

(namel: NAME; amount: VALUE)
- withdraw "amount” from the account of “id"

(namel: NAMFE; name2: NAME; amount: VALUE)
- transfer "amount” from "id1" to "id2"

Albent Einstein
Albert Einstein Nisis Bohr
(o)
= soca
R
my ot
N o s Interface

%bank -b atl.txt

init
->new("Steve")
name: Steve, balance: 0.00
->new("Bill")
name: Bill, balance: 0.00
name: Steve, balance: 0.00
->deposit("Steve",520)
name: Bill, balance: 0.00
name: Steve, balance: 520.00
->new("Pam")
name: Bill, balance: 0.00
name: Pam, balance: 0.00
name: Steve, balance: 520.00
->deposit("Bill",100)
name: Bill, balance: 100.00
name: Pam, balance: 0.00
name: Steve, balance: 520.00
->withdraw("Steve",20)
name: Bill, balance: 100.00
name: Pam, balance: 0.00
name: Steve, balance: 500.00

ETF: Generating a New Project

etf -new bank.input.txt <directory>

v bank
v abstract_ui
software_operation.e

User Il’lput v [user_commands

(from command line) deposit.e
new.e
transfer.e
withdraw.e

Model [model
account.e
(business logic) bank_access.e
bank.e
customer.e
v output

Output ﬁ output_handler.e

4 bank-fresh.ecf

4 bank.ecf
v docs
> generated_code
> root
. v test
Unit Tests > > =
Acceptance Tests > [unit

> utilities

ETF: Architecture

ETF_COMMAND

e Classes in the model cluster are hidden from the users.

¢ All commands reference to the same model (bank) instance.
e When a user’s request is made:

o A command object of the corresponding type is created, which
invokes relevant feature(s) in the mode1 cluster.
o Updates to the model are published to the output handler.

EEof]

/|

ETF: Implementing an Abstract Command |.assono:

class
ETF_DEPOSIT
inherit
ETF_DEPOSIT_INTERFACE
redefine deposit end
create
make
feature -- command
deposit(id: STRING ; amount: REAL_64)
do
if not model.has_user (id) then
-- Set some error message
elseif not amount <= model.get_balance (id) then
-- Set some other error message
else
-- perform some update on the model state
model.deposit (id, amount)
end
-- Publish model update
etf_cmd_container.on_change.notify ([Current])
end
end

Beyond this lecture

/|

The singleton pattern is instantiated in the ETF framework:

e ETF _MODEL
e ETF_MODEL_ACCESS

(shared data)
(exclusive once access)

e ETF_COMMAND and its effective descendants:

deferred class
ETF_COMMAND

feature - Attributes
model: ETF_MODEL

feature {NONE}
make(...)

local
do
model := ma.m

end
end

ma: ETF_MODEI_ACCESS

class

ETF_DEPOSIT
inherit
ETF_DEPOSIT _INTERFACE

- wl

feature -
deposit(...)

do

model.some_routine (...)

end
end

1icl s ETF _(

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

[Required Tutoriall
[Take-Home Message|
Bank ATM: Concrete User Interfaces]

U Vioo DD

Prototyping System with Abstract Ul

Bank ATM: Abstract Ul

Bank ATM: Abstract Siates

[Bank ATM: Tnputs of Acceptance Tests|
[Bank ATM: Outputs of Acceptance Tests (1)

[Bank ATM: Outputs of Acceptance Tests (2)
awswi|

Index (2)

[Bank ATM: Acceptance Tests vs. Unit Tests|
ETE in a Nuishell

[Workflow: Develop-Connect-Test

[ETF: Abstract Ul'and Acceptance Tesi
[ETF: Generating a New Projeci|

ETE. Architecturel

[ETF: Implementing an Abstract Command|
[Beyond this lecture

Inheritance
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
Design Attempts without Inheritance (w.r.t. Cohesion, SCP)
Using Inheritance for Code Reuse

Static Type & Polymorphism

Dynamic Type & Dynamic Binding

Type Casting

Polymorphism & Dynamic Binding:

AU S

Routine Arguments, Routine Return Values, Collections

/|

Aspects of Inheritance

e Code Reuse
e Substitutability
o Polymorphism and Dynamic Binding
[compile-time type checks]
o Sub-contracting
[runtime behaviour checks]

/|

Why Inheritance: A Motivating Example |sono:

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

/|

The COURSE Class

class
COURSE

create

make
feature - Attributes
title: STRING
fee: REAL
feature Co ds
make (t: STRING; f: REAL)
Initialize a course with title ’t’ and fee ’"f’.

oot
0 k-
O o
—
.0
I
o
t

No Inheritance: RESIDENT _STUDENT Class

class RESIDENT_-STUDENT
create make

feature - C S
set_pr (r: REAL) do premium.rate

register (c:

feature —— Queries
tuition: REAL
local base: REAL
do base := 0.0
across courses as c loop base

‘ Result := base x premium-rate

end
end

COURSE) do courses.extend (c)

feature - Att
name: STRING
courses: LINKED_LIST[COURSE]
premium_rate: REAL
feature Co uctor
make (n: STRING)
do name := n ; create courses.make end

:= r end

end

:= base + c.item.fee end

e

No Inheritance: NON_ RESIDENT_STUDENT Cla

class NON_-RESIDENT-STUDENT

create make

feature - Att
name: STRING
courses: LINKED_LIST[COURSE]

discount_rate: REAL

feature - Con
make (n: STRING)
do name := n create courses.make end
feature - Co
set.dr (r: REAL) do discount_rate := r end
register (c: COURSE) do courses.extend (c) end
feature 0 s

tuition: REAL
local base: REAL
do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base x discount-rate
end
end

_

/|

No Inheritance: Testing Student Classes |.ssono:

test_students: BOOLEAN

local
cl, c2: COURSE
jim: RESIDENT_STUDENT
jeremy: NON_RESIDENT_ STUDENT

do
create cl.make ("EECS2030", 500.0)
create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25)
jim.register (cl)
jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75)
jeremy.register (cl)
jeremy.register (c2)
Result := jeremy.tuition = 750

end

No Inheritance: ‘i’ésgsom

Issues with the Student Classes

Implementations for the two student classes seem to work. But
can you see any potential problems with it?

The code of the two student classes share a lot in common.
Duplicates of code make it hard to maintain your software!
This means that when there is a change of policy on the
common part, we need modify more than one places.

= This violates the Single Choice Principle :

when a change is needed, there should be a single place (or
a minimal number of places) where you need to make that
change.

/|

No Inheritance: Maintainability of Code (1) |assonoe

What if a new way for course registration is to be implemented?
e.g.,

register (Course c)

do

if courses.count >= MAX_ CAPACITY then
Error: maximum capacity reached.
else
courses.extend (c)

end

end

We need to change the register commands in both student
classes!

= Violation of the Single Choice Principle

/|

No Inheritance: Maintainability of Code (2) |assono:

What if a new way for base tuition calculation is to be
implemented?

e.g.,

tuition: REAL
local base: REAL
do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base x inflation.rate x ...
end

We need to change the tuition query in both student
classes.

= Violation of the Single Choice Principle

No Inheritance:

A Collection of Various Kinds of Students

How do you define a class studentManagementSystem that
contains a list of resident and non-resident students?

class STUDENT MANAGEMENT SYSETM
rs : LINKED_LIST[RESIDENT_-STUDENT]
nrs : LINKED_LIST[NON_RESIDENT_STUDENT]

add_rs (rs: RESIDENT_-STUDENT) do ... end

add_nrs (nrs: NON_RESIDENT_STUDENT) do ..

register_all (Course c) —-— Register a cc course ’c’
do

across rs as c loop c.item.register (c) end
across nrs as c loop c.item.register (c) end
end
end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the
same manner, separately!

LASSONDE

Inheritance Architecture

STUDENT

inherit
inherit

RESIDENT_STUDENT NON_RESIDENT_STUDENT

/|

Inheritance: The STUDENT Parent Class

1 |class STUDENT

2 | create make

3 | feature —— Attr

4 name: STRING

5 courses: LINKED LIST[COURSE]

6 | feature Cc nds t 1 1sed as constructors

7 make (n: STRING) do name := n ; create courses. make end
8 | feature —— Cc ds

9 register (c: COURSE) do courses.extend (c) end

10 | feature —— Queries

11 tuition: REAL

12 local base: REAL

13 do base := 0.0

14 across courses as c loop base := base + c.item.fee end
15 Result := base

16 end

17 | end

L of B0

14

Inherltance: LASSONDE
The RESIDENT STUDENT Child Class

1 |class

2 RESIDENT _STUDENT

3 |inherit

4 STUDENT

5 redefine tuition end

6 | create make

7 | feature —— Attributes

8 ‘ premium_.rate : REAL

9 | feature Com s

10 set_pr (r: REAL) do premium _rate := r end

11 | feature —— Queries

12 tuition: REAL

13 local base: REAL

14 ‘ do base := Precursor ; Result := base * premium.rate end ‘

15 ’end ‘

e L3: RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command
o L14: Precursor returns the value from query tuition in STUDENT.

Inheritance: e

The NON_RESIDENT_STUDENT Child Class

1 |class

2 NON_RESIDENT_ STUDENT

3 |inherit

4 STUDENT

5 redefine tuition end

6 | create make

7 | feature —— Attributes

8 discount_rate : REAL

9 | feature - Co 5

10 set_.dr (r: REAL) do discount_rate := r end
11 | feature C s

12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base » discount_-rate end
15 |end

e L3: NON_RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command

e L14: Precursor returns the value from query tuition in STUDENT.

Inheritance Architecture Revisited

STUDENT
inherit
inherit
RESIDENT_STUDENT NON_RESIDENT_STUDENT

¢ The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

e Each “specialized” class is called a child , sub, or

descendent class.

/|

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:
o Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class
o Define an “specialized” version of the class which:
e inherits definitions of all attributes, commands, and queries
e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition
This means code reuse and elimination of code duplicates!
o defines new features if necessary
e.g., set pr for RESIDENT_STUDENT
e.g., set_dr for NON_.RESIDENT_STUDENT
e redefines features if necessary
e.g., compounded tuition for RESIDENT_STUDENT
e.g., discounted tuition for NON_RESIDENT_STUDENT

_

Testing the Two Student Sub-Classes

/|

test_students: BOOLEAN
local
cl, c2: COURSE
jim: RESIDENT _STUDENT ; jeremy: NON_RESIDENT STUDENT
do
create cl.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25) ; jim.register (cl); jim.register (c2)
Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75); jeremy.register (cl); jeremy.register (c2)
Result := jeremy.tuition = 750
end

¢ The software can be used in exactly the same way as before
(because we did not modify feature signatures).
e But now the internal structure of code has been made

maintainable using inheritance .

/|

Static Type vs. Dynamic Type LASSONDE
e In object orientation , an entity has two kinds of types:
o static type is declared at compile time [unchangeable]

An entity’s ST determines what features may be called upon it.
o dynamic type is changeable at runtime
¢ In Java:

Student s = new Student ("Alan");
Student rs = new ResidentStudent ("Mark");

e |n Eiffel:

local s: STUDENT
rs: STUDENT
do create {STUDENT} s.make ("Alan")
create {RESIDENT STUDENT} rs.make ("Mark")

o In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:

local s: STUDENT
do create s.make ("Alan")

/|

Inheritance Architecture Revisited

register (c: COURSE)+ name: STRING
tuition: REAL+ STUDENT courses: LINKED_LIST[COURSE]

\n,

/* new features */ / /* new features */
premium_rate: REAL discount_rate: REAL
set_pr (r: REAL)+ set_dr (r: REAL)+

/* redefined features */ RESIDENT_STUDENT NON_RESIDENT_STUDENT | /: redefined features */
tuition: REAL++ tuition: REAL++

sl,s2,s3: STUDENT ; rs: RESIDENT.STUDENT ; nrs : NON_RESIDENT STUDENT
create {STUDENT} sl.make ("S1")

create {RESIDENT_STUDENT} sZ2.make ("S2")
create {NON_RESIDENT_STUDENT} s3.make ("S3")
create {RESIDENT_STUDENT} rs.make ("RS")
create {NON.RESIDENT_STUDENT} nrs.make ("NRS")

l H name ‘ courses | reg ‘ tuition ‘ pr H set_pr
sl.
s2.
s3.

rs.

dr H set_dr

X
X
X

SN ESESENEN

AN

X

nrs.

Polymorphism: Intuition (1)

/|

1 | local

2 s: STUDENT

3 rs: RESIDENT STUDENT

4 |do

5 create s.make ("Stella")

6 create rs.make ("Rachael")

7 rs.set_pr (1.25)

8 s := rs /x Is this valid? x/
9 rs := s /* Is this valid? =/

¢ Which one of L8 and L9 is valid? Which one is invalid?

o L8: What kind of address can s store? [STUDENT]

.. The context object s is expected to be used as:
e s.register (eecs3311) and s.tuition

o L9: What kind of address can rs store? [RESIDENT_STUDENT]

.. The context object rsis expected to be used as:
e rs.register (eecs3311) and rs.tuition

e rs.set_pr (1.50) [increase premium rate]

/|

Polymorphism: Intuition (2) LASSONDE

local s: STUDENT ; rs: RESIDENT STUDENT
do create {STUDENT} s.make ("Stella")
create {RESIDENT STUDENT} rs.make ("Rachael")
rs.set_pr (1.25)
s := rs /* Is this valid? =*/
rs := s /x Is this valid? x/

e rs := s (L6) should be invalid:
s :STUDENT
[name]

“Stella”

courses

rs:RESIDENT STUDENT

e rs declared of type RESIDENT_STUDENT
s.calling rs.set pr(1.50) can be expected.
e rsis now pointing to a STUDENT object.
e Then, what would happen to rs.set pr(1.50)7?
CRASH + rs.premium_rate is undefined!!

OO WN =

RESIDENT_STUDENT

Polymorphism: Intuition (3) LASSONDE

local s: STUDENT ; rs: RESIDENT STUDENT
do create {STUDENT} s.make ("Stella")
create {RESIDENT STUDENT} rs.make ("Rachael")
rs.set_pr (1.25)
s := rs /* Is this valid? =*/
rs := s /x Is this valid? x/

e s :=rs (L5) should be valid:

s : STUDENT

[neme [RETTR
[couses |
rs :RESIDENT_STUDENT

OO WN =

RESIDENT_STUDENT

e Since s is declared of type STUDENT, a subsequent call
s.set_pr(1.50) is never expected.

e sis now pointing to @a RESIDENT_STUDENT object.

e Then, what would happento s. tuition?

OK " s.premium_rate is just never used!!

/|

Dynamic Binding: Intuition (1) LASSONDE

local ¢ : COURSE ; s : STUDENT
rs : RESIDENT_STUDENT ; nrs : NON_RESIDENT_STUDENT

do create c.make ("EECS3311", 100.0)

create {RESIDENT STUDENT} rs.make("Rachael")

create {NON_RESIDENT_STUDENT} nrs.make("Nancy")

rs.set_pr(l.25); rs.register(c)

nrs.set_dr(0.75); nrs.register(c)

s := rs; ; check s .tuition = 125.0 end

s := nrs; ; check s .tuition = 75.0 end

© oO~NO UL~ WN =

After s := rs (L7), s points to a RESIDENT_STUDENT Object.
= Calling s .tuition applies the premium_rate.
rs:RESIDENT STUDENT

courses
premium_rate

s:STUDENT

RESIDENT_STUDENT
“Rachael”

125

[title REESERE
[ree JLE

nrs:NON_RESIDENT STUDENT —*| NON_RESIDENT _STUDENT

courses.

05 of 60N discount_rate

/|

Dynamic Binding: Intuition (2)

LASSONDE
1 |local c COURSE ; s STUDENT
2 rs RESIDENT_STUDENT ; nrs NON_RESIDENT STUDENT
3 |do create c.make ("EECS3311", 100.0)
4 create {RESIDENT_STUDENT} rs.make("Rachael")
5 create {NON_RESIDENT_STUDENT} nrs.make("Nancy")
6 rs.set_pr(l.25); rs.register(c)
7 nrs.set_dr(0.75); nrs.register(c)
8 s := rs; ; check s .tuition = 125.0 end
9 s := nrs; ; check s .tuition = 75.0 end
After s:=nrs (L8), s points to a NON_RESIDENT_STUDENT Object.
= Calling s .tuition appliesthe discount_rate.
rs:RESIDENT STUDENT RESIDENT_STUDENT
name “Rachael”
s:STUDENT
[course]
[title REESEINE
[fee [T
nrs:NON RESIDENT STUDENT— | NON_RESIDENT_STUDENT
discount_rate

Multi-Level Inheritance Architecture (1)

DOMESTIC_STUDENT FOREIGN_STUDENT

DOMESTIC_RESIDENT_STUDENT ‘

DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

‘ FOREIGN_RESIDENT_STUDENT ‘

Multi-Level Inheritance Architecture (2)

dial -- basic feature
surf_web -- basic feature

surf_web -- redefined using safari surf_web -- redefined using firefox
facetime -- new feature skype -- new feature

quick_take / side_sync

‘ IPHONE_11_PRO ‘ ‘ HUAWEI

z00mage \

ANDROID

IPHONE_XS_MAX

HUAWEI_MATE_20_PRO

‘ HUAWEI_P30_PRO ‘

‘ GALAXY_S10 ‘ ‘ GALAXY_S10_PLUS ‘

/|

Inheritance Forms a Type Hierarchy LASSONDE
e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:
o (Implicit) Root of the hierarchy is ANY.
o Each inherit declaration corresponds to an upward arrow.
o The inherit relationship is fransitive: when A inherits B and B
inherits C, we say 2 indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, inherits.
¢ A inherits all features from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes

that directly, or indirectly, inherits A.
e Code defined in A is inherited to all its descendant classes.

_

-
Inheritance Accumulates Code for Reuse |iassono:
e The Jower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
o Declare new attributes.
o Define new queries or commands.
¢ Redefine inherited queries or commands.
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).
o When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.
o e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT_STUDENT Or @ NON_RESIDENT_STUDENT object.
o Justification: A descendant class contains at least as many
features as defined in its ancestor classes (but not vice versa!).

_

Substitutions via Assignments

e By declaring |v1:c1|, reference variable v1 will store the
address of an object of class Cc1 at runtime.

* By declaring[v2: 2], reference variable w2 will store the
address of an object of class c2 at runtime.

* Assignment copies the address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

) \)
v2 Cc2 ,

e In such assignment[v1:=v2] we say that we substitute an
object of type c1 with an object of type c2.

e Substitutions are subject to rules!

Rules of Substitution o
Given an inheritance hierarchy:

1. When expecting an object of class 2, it is safe to substitute it

with an object of any descendant class of 2 (including 2).
o e.g., When expecting an 10s phone, you can substitute it with
either an TPHONE_XS_MAX of TPHONE_11_PRO.
o - Each descendant class of a is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.
o .. All features defined in A are guaranteed to be available in the
new substitute.
2. When expecting an object of class 2, it is unsafe to substitute
it with an object of any ancestor class of A’s parent .

o e.g., When expecting an 10s phone, you cannot substitute it with
just a SMART_PHONE, because the facetime feature is not
supported in an ANDROID phone.

o -+ Class A may have defined new features that do not exist in any

of its parent’s ancestor classes .

/|

Reference Variable: Static Type
¢ A reference variable’s static type is what we declare it to be.
o e.g.,| jim: STUDENT |declares jin’s static type as STUDENT.

° e.g.,|my phone : SMART PHONE |
declares a variable my_phone of static type SmartPhone.
o The static type of a reference variable never changes.
e For a reference variable v, its static type defines the

expected usages of v as a context object .

e Afeature call v.m(...) is compilable if mis defined in .

o e.g., After declaring | jim: STUDENT |, we
e may call register and tuition on jim
e may not call set_pr (specific to a resident student) or set_dr
(specific to a non-resident student) on jim
o e.g., After declaring | my_phone : SMART PHONE |, we
e may call dial and surf_web ONn my_phone
e may not call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on my_phone

/|

Reference Variable: Dynamic Type LASSONDE

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.

Reference Variable: i
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o Substitution Principle : the new object’s class must be a
descendant class of the reference variable’s static type.
o e.g., Given the declaration | jim: STUDENT |;

. ’ create {RESIDENT STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jim to RESIDENT_STUDENT.

. ’ create {NON_RESIDENT STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jim to NON_RESIDENT_STUDENT.

o e.g., Given an alternative declaration | jim: RESIDENT STUDENT |

e eg., ’ create {STUDENT} jim.make ("Jim") ‘ is illegal
because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT_STUDENT).

Reference Variable: i
Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):

o Substitution Principle : the static type of other must be a
descendant class of v’s static type.
o eg.,

jim: STUDENT ; rs: RESIDENT_STUDENT; nrs: NON_RESIDENT_STUDENT
create {STUDENT} jim.make (...)

create {RESIDENT.STUDENT} rs.make (...)

create {NON_RESIDENT_STUDENT} nrs.make (...)

e rs := jim

X
e nrs := jim X
e jim := rs Vv
changes the dynamic type of jim to the dynamic type of rs
e jim := nrs v
changes the dynamic type of jim to the dynamic type of nrs

Polymorphism and Dynamic Binding (1) LASSONDE

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each feature
that may be called.

¢ e.g., 3 possibilities of tuition on a STUDENT reference variable:
In STUDENT: base amount
In RESIDENT_STUDENT: base amount with premium_rate
In NON_RESIDENT STUDENT: base amount with discount_rate
e Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.

jim: STUDENT; rs: RESIDENT STUDENT; nrs: NON_STUDENT
create {RESIDENT STUDENT} rs.make (...)
create {NON_RESIDENT_STUDENT} nrs.nrs (...)

jim := rs
jim.tuitoion; /* version in RESIDENT_STUDENT x/
jim := nrs

jim.tuition; /% version in NON_RESIDENT_STUDENT x/

37 of 600

/|

Polymorphism and Dynamic Binding (2.1)

©CoONOOOR~WN =

—_
A ON—=LO

test_polymorphism_students
local
jim: STUDENT
rs: RESIDENT STUDENT

nrs: NON_RESIDENT _STUDENT
do
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
create {NON_RESIDENT STUDENT} nrs.make ("J. Davis")
jim := rs Vv
rs := jim X
jim := nrs
rs := jim x
end

In (L3, L7), (L4, L8), (L5, L9), ST = DT, so we may abbreviate:

L7:’create jim.make ("J. Davis")‘

L8:’create rs.make ("J. Davis")‘

L9:’create nrs.make ("J. Davis")‘

/|

Polymorphism and Dynamic Binding (2.2) |ssonoe

test_dynamic_binding_students: BOOLEAN
local
jim: STUDENT
rs: RESIDENT _STUDENT
nrs: NON_RESIDENT STUDENT
c: COURSE
do

create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis"
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)
jim := rs
Result := jim.tuition = 750.0
check Result end
create {NON_ RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)
nrs.set_dr (0.5)

‘ jim := nrs ‘

Result := jim.tuition = 250.0

b

/|

Reference Type Casting: Motivation

SO =

local jim: STUDENT; rs: RESIDENT_STUDENT
do create {RESIDENT STUDENT} jim.make ("J. Davis")

rs := jim
rs.setPremiumRate (1.5)

Line 2 is legal: restpent_stupent IS @ descendant class of the
static type of jim (i.e., stupent).

Line 3 is illegal: jim’s static type (i.e., stupent) is not a
descendant class of rs’s static type (i.e., restpenT_sTupEnT).
Eiffel compiler is unable to infer that 7im’s dynamic type in

Line 4 is resrpENT STUDENT. [Undecidable |
Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):

check attached {RESIDENT_STUDENT} jim as rs_jim then

rs := rs_jim
rs.set_pr (1.5)
end

/|

Reference Type Casting: Syntax

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)

end

L1 is an assertion:
o ’attached RESIDENT_STUDENT Jjim ‘ is a Boolean expression

that is to be evaluated at runtime .

« If it evaluates to frue, then the expression has the effect

of assigning “the cast version” of jim to a new variable rs_jim.
o [f it evaluates to false, then a runtime assertion violation occurs.

o Dynamic Binding : Line 4 executes the correct version of set pr.
e |t is approximately the same as following Java code:

if (jim instanceof ResidentStudent) {
ResidentStudent rs = (ResidentStudent) jim;
rs.set_pr(l.5);

}

else { throw new Exception("Cast Not Done."); }

SO =

/|

Notes on Type Cast (1)

* |check attached {C} y then ... end| always compiles

e What if C is not an ancestor of y's DT?
= A runtime assertion violation occurs!
- y's DT cannot fulfill the expectation of C.

/|

Notes on Type Cast (2)

e Given v of static type ST, it is violation-free to castvto C, as

long as C is a descendant or ancestor class of ST.
e Why Cast?
o Without cast, we can only call features defined in ST on v.

o By castingvto C,we create an alias of the object pointed by v,

with the new static type C .
= All features that are defined in C can be called.

my_phone: IOS
create ({IPHONE.11_PRO} my_phone.make

lial, s time v quic e z e X
check attach

ial e z je X
end
check attached {IPHONE_11 PRO} my_phone as ipll_pro then

-- dial, surf_web, facetime, quick_take v skype, side_sync, zoomage X

end
43 of 60

/|

Notes on Type Cast (3) LASSONDE

A cast[check attached (c} v as ...|triggers an assertion
violation if C is not along the ancestor path of v's DT.

test_smart_phone_type cast_violation
local mine: ANDROID
do create {HUAWEI} mine.make

-— ST of is ROID; DT of is \WE T

check attached {SMART PHONE} mine as sp then ... end
-- ST of sp is T_PHO DT of sp i e

check attached {HUAWEI} mine as huawei then

—— ST of huawel is HUAWEI; DT of huawe

check attached {SAMSUNG} mine as samsung then ... end

estor of

end

L of B0

/|

Polymorphism: Routine Call Parameters LASSONDE

1 class STUDENT MANAGEMENT_ SYSTEM {

2 ss : ARRAY|[STUDENT] —— ss[i] h pe Student

3 add_s (s: STUDENT) do ss[0] :

4 add_rs (rs: RESIDENT_STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON_RESIDENT_ STUDENT) do ss[0] := nrs end

e L4: m is valid. -+ RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.
e Say we have a STUDENT MANAGEMENT_SYSETM object sms:

o - call by value , | sms .add_rs (o) |attempts the following
assignment (i.e., replace parameter rs by a copy of argument o):

rs := O ‘

o Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class c, then we may call feature m by passing objects whose

static types are C’s descendants.

/|

Polymorphism: Routine Call Arguments LASSONDE

test_polymorphism_ feature_arguments
local
sl, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
sms: STUDENT_ MANAGEMENT SYSTEM
do
create sms.make
create {STUDENT} sl.make ("sl1l")
create {RESIDENT _STUDENT} s2.make ("s2")
create {NON_RESIDENT_ STUDENT} s3.make ("s3")
create {RESIDENT STUDENT} rs.make ("rs")
create {NON_RESIDENT STUDENT} nrs.make ("nrs")
sms.add_s (sl) v sms.add_s (s2) v sms.add_s (s3) v
sms.add_s (rs) v sms.add_s (nrs) v
sms.add_rs (sl) x sms.add_rs (s2) x sms.add_rs (s3) x
sms.add_rs (rs) v sms.add_rs (nrs) x
sms.add _nrs (sl) x sms.add _nrs (s2) x sms.add _nrs (s3) x
sms.add_nrs (rs) x sms.add _nrs (nrs) v
end

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT _MANAGEMENT_SYSETM
that contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST[STUDENT]
add_student (s: STUDENT)
do
students.extend (s)
end
registerAll (c: COURSE)
do
across
students as s
loop
s.item.register (c)
end
end
end

Polymorphism and Dynamic Binding:

A Polymorphic Collection of Students

LASSONDE

test_sms_polymorphism: BOOLEAN
local
rs: RESIDENT _STUDENT
nrs: NON_RESIDENT STUDENT

c: COURSE
sms: STUDENT_ MANAGEMENT SYSTEM
do

create rs.make ("Jim")
rs.set_pr (1.5)

create nrs.make ("Jeremy")
nrs.set_dr (0.5)

create sms.make

sms.add_s (rs)

sms.add_s (nrs)

create c.make ("EECS3311", 500)
sms.register_all (c)

end

Result := sms.ss[l].tuition = 750 and sms.ss[2].tuition

250

/|

Polymorphism: Return Values (1)

class STUDENT _MANAGEMENT _SYSTEM {
ss: LINKED_LIST[STUDENT]
add_s (s: STUDENT)
do
ss.extend (s)
end
get_student (i: INTEGER): STUDENT
require 1 <= i and i <= ss.count
do
10 Result := ss[i]
11 end
12 | end

O©CoOoONOOOLhAhWN =

L2: ST of each stored item (ss[i]) in the list:
L3: ST of input parameter s:

L11: ss[i]’s ST is descendant of Result’ ST.

L7: ST of return value (Result) of get_student:

[STUDENT]
[STUDENT]
[STUDENT]

Question: What can be the dynamic type of s after Line 117

Answer: All descendant classes of Student.

/|

Polymorphism: Return Values (2) LASSONDE
1 | test_sms_polymorphism: BOOLEAN

2 |local

3 rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT

4 c: COURSE ; sms: STUDENI MANAGEMENT SYSTEM

5 |do

6 create rs.make ("Jim") ; rs.set_pr (1.5)

7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)

8 create sms.make ; sms.add s (rs) ; sms.add_s (nrs)

9 create c.make ("EECS3311", 500) ; sms.register_all (c)

10 Result :=

11 sms.get_student (1) .tuition = 750

12 and sms.get_student (2).tuition = 250

13 | end
e L11: get_student (1)’s dynamic type? [RESIDENT_STUDENT]
e L11: Version of tuition? [rESIDENT sTUDENT]
e L12: get _student (2)’s dynamic type? [won_resrpenT sTupENT]
e L12: Version of tuition? [Non_RESIDENT_sTUDENT]
Eofa0l

/|

Design Principle: Polymorphism LASSONDE

* When declaring an attribute

= Choose static type | T | which “accumulates” all features that
you predict you will want to call on a.
e.g., Choose if you do not intend to be specific about
which kind of student s might be.
= Let dynamic binding determine at runtime which version of
tuition will be called.

» What if after declaring you find yourself often
needing to cast s to RESIDENT_STUDENT in order to access
premium_rate?

check attached {RESIDENT_ STUDENT} s as rs then rs.set_pr(...) end‘

= Your design decision should have been: | s:respent_sTupent|
e Same design principle applies to:
o Type of feature parameters: fla: T)

o Type of queries: gle.): T

Static Type vs. Dynamic Type: LASSONDE

When to consider which?

e Whether or not an OOP code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Eiffel code being executed at runtime

e.g., which version of the routine is called
e.g., if a check attached {...} as ... then ... end
assertion error will occur

depends on the dynamic types of relevant variables.

= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

Summary: Type Checking Rules
[[CobE [[CONDITION TO BE TYPE CORRECT I
X =Yy yv’s ST a descendant of x's ST
Feature f defined in x’s ST
x.£(y) y's ST a descendant of £'s parameter's ST
Feature f defined in x’s ST
z 1= x.f(y) y’'s ST a descendant of £’s parameter's ST
ST of m’s return value a descendant of z's ST
check attached {C} y Always compiles
check attached {C} y as temp || Cadescendantof x's ST
then x := temp end
check attached {C} y as temp || Feature £ definedin x's ST
then x.f (temp) end c a descendant of £’s parameter's ST
Even if’ check attached {C} y then ... end ‘ always compiles,

a runtime assertion error occurs if C is not an ancestor of y’s DT/

/|

Beyond this lecture . ..

o Written Notes: Static Types, Dynamic Types, Type Casts

https://www.eecs.yorku.ca/~Jackie/teaching/lectures/2020/F/

EECS3311/notes/EECS3311 F20 Notes Static Tvpes Cast.pdf
e Recommended Exercise 1.

Expand the student inheritance design (here) to reproduce the
various fragments of polymorphism and dynamic binding.

e Recommended Exercise 2:

Create a new project (using eiffel-new) to reproduce the various
fragments related to the running example of smart phones.

_

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/notes/EECS3311_F20_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/notes/EECS3311_F20_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/inheritance.zip
https://www.eecs.yorku.ca/~eiffel/eiffel-new/

Index (1) :Agsgurgig“s

[Cearning Objectives|

|Aspects of Inheritance|

[Why Inheritance: A Motivating Example|

lLhe cOURSE Class|

No Inheritance: RESTDENT STUDENT Class]
NoInherifance: NON RESTDENT STUDENT Clasd

No Tnheritance: Testing Student Classes|

No Inheritance:]
Issues with the Student Classes|

[No Tnheritance: Maintainability of Code (1)

[No Tnheritance: Maintainability of Code (2)

Index (2) :A§ngNBNE

No Inheritance:]

B Collecti FVari Kinds of Students
Inherit Architecturel
Inheritance: The STUDENT Parent Class|

Inheritance:]
lLhe RESTDENT STUDENT Child Classl

Inheritance:]
lLhe NON RESTDENT STUDENT Child Class!

IoReri Archi Revisited
Esmg Inheritance for Code Reuse
[Testing the Two Student Sub-Classes|
[Static Type vs. Dynamic Typel

Index (3) :Agsgurgig“s

_] Revisited
Polymorphism: Tntuition (1)

Polymorphism: Intuition (2)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2}

[Multi-Cevel Inheritance Architecture (1)

[Multi-Cevel Inheritance Architecture (2)

Inheritance Forms a Type Hierarchy|
Inheritance Accumulates Code for Reuse!
[Substitutions via Assignments|

Index (4) :A%SCE)MI\ABME

m F Subsfifufion
[Reference Variable: Static Typel

[Reference Variable: Dynamic Type|

Beference Variable: l
[Changing Dynamic Type (1)

Beference Variable: |
[Changing Dynamic Type (2)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.7)
Polymorphism and Dynamic Binding (2.2)f
[Reference Type Casting: Mofivation|

[Reference Type Casfing: Syntax

Index (5) :Agsgurgig“s

[Notes on Type Cast (1)

[Notes on Type Cast (2)

[Notes on Type Cast (3)

Polymorphism: Routine Call Parameters|

Polymorphism: Routine Call Arguments|

|Why Inheritance: |
|A Polymorphic Collection of Students|

[Polymorphism and Dynamic Binding: |
A Polymorphic Collection of Students|

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)

Design Principle: Polymorphism |

Index (6) LASSONDE
[Static Type vs. Dynamic Type: |
When | id hich?

pummary: Type Checking Rules|

Beyond this lecture . .|

-
—

_

Generics

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

-
—

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. A general collection ARRAY [ANY] : storage vs. retrieval

2. A generic collection ARRAY [G] : storage vs. retrieval

3. Generics vs. Inheritance

Motivating Example: A Book of Any Object

class BOOK
names: ARRAY [STRING]

- to the

ANY) do ...

ed w

. end
end

Question: Which line has a type error?

birthday: DATE; phone_number: STRING

b: BOOK; is_wednesday: BOOLEAN

create {BOOK} b.make

phone_number := "416-677-1010"

b.add ("SuYeon", phone_number)

create {DATE} birthday.make (1975, 4, 10)

b.add ("Yuna", birthday)

is_wednesday := b.get ("Yuna").get_day_of_week =

ONO O WN =

4

/|

Motivating Example: Observations (1)

¢ In the BOOK class:
o In the attribute declaration

’ records: ARRAY [ANY] ‘

e ANY is the most general type of records.
o Each book instance may store any object whose static type is a
descendant class of ANY .

o Accordingly, from the return type of the get feature, we only know
that the returned record has the static type ANY, but not certain
about its dynamic type (e.g., DATE, STRING, elc.).

.. a record retrieved from the book, e.g., b.get ("Yuna"), may
only be called upon features defined in its static type (i.e,. ANY).
¢ In the tester code of the BOOK class:

o In Line 1, the static types of variables birthday (i.e., DATE) and
phone_number (i.€., STRING) are descendant classes of ANY.

.. Line 5 and Line 7 compile.
Ecia

/|

Motivating Example: Observations (2)
Due to polymorphism , in a collection, the dynamic types of

stored objects (e.g., phone_number and birthday) need not

be the same.

o Features specific to the dynamic types (e.g., get_day_of_week
of class Date) may be new features that are not inherited from
ANY.

o This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :

check attached {DATE} b.get("Yuna") as yuna bday then
is_wednesday := yuna_bday.get_day_of week = 4
end

o But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get("SuYeon") as suyeon_bday then
is_wednesday := suyeon_bday.get_day_of_week = 4
end

= An assertion violation at runtime!

/|

Motivating Example: Observations (2.1)

e |t seems that a combination of at tached check (similar to an
instanceof check in Java) and type cast can work.

e Can you see any potential problem(s)?

e Hints:
o Extensibility and Maintainability
o What happens when you have a large number of records of
distinct dynamic types stored in the book
(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY_CONTAINER,
DICTIONARY, etc.)? [all classes are descendants of ANY]

Motivating Example: Observations (2.2)

/|

LASSONDE

Say a client stores 100 distinct record objects into the book.

recl: C1

.. —— declarations of rec2 to rec99

reclOO cio0

create {Cl} recl.make(...) ; b. add(. ., recl)
—— additions of rec2 to rec9’

create {C100} recl00.make(...) ; b add(..., recl00)

where static types C1 to C100 are descendant classes of ANY.
o Every time you retrieve a record from the book, you need to check
“exhaustively” on its dynamic type before calling some feature(s).

~5

—-— cases for C2 to C99
elself attached {C100} b.get("Jim") as cl100 then
c100.£100

end

assumption: ’fl’ specific to Cl, ’'f2’ specific to C2, etc
if attached {Cl} b.get ("Jim") as cl then
cl.f1l

o Writing out this list multiple times is tedious and error-prone!

-
Motivating Example: Observations (3)
We need a solution that:
¢ Eliminates runtime assertion violations due to wrong casts
e Saves us from explicit at tached checks and type casts
As a sketch, this is how the solution looks like:
e When the user declares a BOOK object b, they must commit to
the kind of record that b stores at runtime.
e.g., b stores either DATE objects (and its descendants) only
or string objects (and its descendants) only, but not a mix .
¢ When attempting to store a new record object rec into b, if

rec’s static type is not a descendant class of the type of book
that the user previously commits to, then:
o ltis considered as a compilation error
o Rather than triggering a runtime assertion violation
e When attempting to retrieve a record object from b, there is no
longer a need to check and cast.
-+ Static types of all records in b are guaranteed to be the same.

/|

Parameters LASSONDE

¢ In mathematics:

o The same function is applied with different argument values.
eg.,2 + 3,1 + 1,10 + 101, etfc.

o We generalize these instance applications into a definition.
e.g., +:(ZxZ) - Zis a function that takes two integer
parameters and returns an integer.

* In object-oriented programming:

o We want to call a feature, with different argument values, to
achieve a similar goal.

e.g., acc.deposit (100), acc.deposit (23), efc.

o We generalize these possible feature calls into a definition.
e.g., In class ACCOUNT, a feature deposit (amount: REAL)
takes a real-valued parameter .

* When you design a mathematical function or a class feature,
always consider the list of parameters , each of which
BZrE%Presenting a set of possible argument values.

/|

Generics: Design of a Generic Book

class BOOK|[G]
names: ARRAY [STRING]
records: ARRAY[G]

—-— Creat

e an empty book

make do ... end
/* Add a name-record pair to the book */
add (name: STRING; record: G) do ... end
/* Return the record associated with a given name =/
get (name: STRING): G do ... end
end

Question: Which line has a type error?
1 ’birthday: DATE; phone_number: STRING
| b: BOOK[DATE] ; is_wednesday: BOOLEAN

‘ create BOOK[DATE] b.make
phone_number = "416-67-1010"

create {DATE} birthday.make (1975, 4, 10)
b.add ("Yuna", birthday)

2

3

4

5 | b.add ("SuYeon", phone_number)

6

7

8 | is_wednesday := b.get("Yuna") .get_day of week == 4

/|

Generics: Observations

* In class BOOK:
o At the class level, we parameterize the type of records :

’class BOOK [G] ‘

o Every occurrence of ANY is replaced by E.

e As far as a client of BOOK is concerned, they must instantiate G.
= This particular instance of book must consistently store items of
that instantiating type.

e As soon as E instantiated to some known type (e.g., DATE,

STRING), every occurrence of E will be replaced by that type.
e For example, in the tester code of BOOK:
o In Line 2, we commit that the book b will store DATE objects only.
o Line 5 fails to compile. [-- STRING not descendant of DATE]
o Line 7 still compiles. [- DATE is descendant of itself]
o Line 8 does not need any attached check and type cast, and
does not cause any runtime assertion violation.
-+ All attempts to store non-DATE objects are caught at compile time.
[iEmm]

/|

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

o |t allows all kinds of objects to be stored.
-+ All classes are descendants of ANY.

o We can expect very little from an object retrieved from this book.
-+ The static type of book’s items are ANY, root of the class
hierarchy, has the minimum amount of features available for use.
- Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

o8

Instantiating Generic Parameters

e Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] —— V type of S
add_entry (v: V; k: K) do ... end
remove_entry (k: K) do ... end

end

» Clients use nicrronary with different degrees of instantiations:

class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]
end

e.g., Declaring | parasse_rasre[INTEGER, STRING] |instantiates

’ DICTIONARY[STRING, INTEGER] |

class STUDENT_BOOK|[V]
imp: DICTIONARY[V, STRING]
end

e.g., Declaring | sTupent_soox [aRRAY [coursE]] | instantiates
DICTIONARY [ARRAY [COURSE], STRING] ‘

Generics vs. Inheritance (1)

/|

Type parameterization

Abstraction

SET OF
BOOKS

Type parameterization

LIST OF_ LIST_OF_ LIST OF
PEOPLE BOOKS JOURNAL

LINKED_LIST
OF BOOKS

Specialization

/|

Generics vs. Inheritance (2)

/ﬁ Inheritance and

Inheritance T Generalization genericity
CHAIN [TAXI)){------=~ .
Genericity 1
(type parameterization) 4 i
1
1

i

: LINKED LIS
[TAXT

A ‘Specializmion

/|

Beyond this lecture . ..

e Study the “Generic Parameters and the Iterator Pattern” [Tutorial
Videos.

http://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#design
http://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#design

Index (1) :Agsgurgig“s

[Cearning Objectives|

[Motivating Example: A Book of Any Objects]

[Motivating Example: Observations (1)

[Motivating Example: Observations (2)

I\Ilotlvatlng Example: Observations (2.1)

I\Ilotlvatlng Example: Observations (2.2)

[Motivating Example: Observations (3)

ameiters

[Generics: Design of a Generic Book]
[Generics: Observationsl

Bad Example of using Generics|
Kz

|ndeX (2) 5“359“’.‘5(2“5
Instantiating Generic Parameters

[Generics vs. Inheritance (1)

IGenerics vs. Inheritance (2)|

[Beyond this lecture .. .|

The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Motivating Problem: Interactive Systems

2. First Design Attempt: Assembly Style
3. Second Design Attempt: Hierarchical, Procedural Sylte

4. Template & State Design Patterns: OO, Polymorphic

/|

Motivating Problem LASSONDE

Consider the reservation panel of an jonline booking system:

-- Enquiry on Flights --

Flight sought from: To:
Departure on or after: On or before:

Preferred airline (s):
Special requirements:

AVAILABLE FLIGHTS: 1
FIt#AA 42 Dep 8:25 Arr 7:45 Thru: Chicago

Choose next action:
0 - Exit
1 - Help
2 - Further enquiry
3 - Reserve a seat

https://www.cheapflights.co.uk/

State Transition Diagram LASSONDE

Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

(3)
Seat Enquiry

/|

Design Challenges

1. The state-transition graph may /arge and sophisticated.
A large number N of states has O(N?) transitions
2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:
Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.9., Add a new state “Dietary Requirements”
3. A general solution is needed for such interactive systems .
e.g., taobao, eBay, amazon, etc.

https://world.taobao.com/
https://www.ebay.ca/
https://www.amazon.ca/

-
A First Attem pt LASSONDE

\n,

T 1
‘ 3_.Seat_Enquiry_panel:
from
Display Seat Enquiry Panel
; until
2.Flight_Enquiry.panel: o not (wrong answer or wrong choice)
—— Actions bel 2. do
Read user’s answer for current panel
Read user’s choice for next step
if wrong answer or wrong choice then
Output error messages
end
end
Process user’s answer
case in
2: goto 2. Flight_Enquiry_panel
3: goto 4_Reservation_panel
end

I1_-Initial_panel:

—— Actions for

3_Seat_Enquiry._panel:

£ ons I1or

€]

6_Final_panel:

for Lab

&

—-— Actions

.
A First Attempt: Good Design? Retoue

¢ Runtime execution ~ a “bowl of spaghetti”.
= The system’s behaviour is hard to predict, trace, and debug.
e Transitions hardwired as system’s cenfiral control structure.

= The system is vulnerable to changes/additions of
states/transitions.

 All labelled blocks are largely similar in their code structures.
= This design “smells” due to duplicates/repetitions!

¢ The branching structure of the design exactly corresponds to
that of the specific transition graph.
= The design is application-specific and not reusable for
other interactive systems.

A Top-Down, Hierarchical Solution

/|

LASSONDE

Separation of Concern

feature the system, rather than its central control structure:

Declare the transition table as a

transition (src: INTEGER;

+ cstate bv Fakina f
1 state by tar (

Return

require valid source_state: 1 < src < 6
<

valid _choice: 1

choice: INTEGER) : INTEGER

el F oo
e Irom src

choice < 3

ensure valid target_state: 1 < Result < 6

’ ’ .
5

e We may implement transition via a 2-D array.

choice
CHOICE 1 3
SRC STATE 11213 /—\1‘ 6 5 2
1 (Initial) 6|52 2 1 3
2 (Flight Enquiry) -] 113 3 2 a
3 (Seat Enquiry) - |21 4 state . " s
4 (Reservation) - 1315
5 (Confirmation) — 411 5 4 1
6 (Final) - = = 6
Btz

/|

Hierarchical Solution: Good Design?

e This is a more general solution.

-+ State transitions are separated from the system’s central
control structure.

= Reusable for another interactive system by making
changes only to the transition feature.

e How does the central control structure look like in this design?

Hierarchical Solution: ‘fléésgsom

Top-Down Functional Decomposition

Level 3 execute_
session
Level 2 %
o o execute ic fi
initial transition state is_final
Level 1 %
display read correct message process

Modules of execute_session and execute_state are general

enough on their control structures. = reusable
EoEz

Hierarchical Solution: System Control LASSONDE

/|

All interactive sessions share the following control pattern:

o Start with some initial state.

o Repeatedly make state transitions (based on choices read from
the user) until the state is final (i.e., the user wants to exit).

execute_session
ute a full interactive se
current_state , choice: INTEGER
do
from
current_state := initial
until
is_final (current_state)
do
choice := execute_state (current_state)
current_state := transition (current_state, choice)
end
end
otz

Hierarchical Solution: State Handling (1)

The following control pattern handles all states:

execute_state (current_state :

2t

INTEGER) : INTEGER

local

answer)

answer: ANSWER; valid _answer: BOOLEAN; choice: INTEGER
do
from
until
valid _answer
do
display(current_state)
answer := read answer(current_state)
choice := read.choice(current_state)
valid answer := correct(current_state , answer)
if not valid answer then message(current_state ,
end
process (current_state , answer)
Result := choice
end

12 of 3]

Hierarchical Solution: State Handling (2)

/|

FEATURE CALL

I

FUNCTIONALITY

display(s)

Display screen outputs associated with state s

read_answer(S)

Read user’s input for answers associated with state s

read_choice(S)

Read user’s input for exit choice associated with stafe s

correct(s, answer)

Is the user’s answer valid w.r.t. state s?

process(s, answer)

Given that user’s answer is valid w.r.t. state s,
process it accordingly.

message(s, answer)

Given that user’s answer is not valid w.r.t. stafe s,
display an error message accordingly.

Q: How similar are the code structures of the above
state-dependant commands or queries?

e

S
ym

Hierarchical Solution: State Handling (3) LASSONDE
A: Actions of all such state-dependant features must explicitly
discriminate on the input state argument.

display(current_state: INTEGER)

require

valid state: 1 < current_state < 6
do
if current_state = 1 then

Displav N1t ial 1
I splay nitial Panel

2 then

elseif current_state

—— Display Flight Enquiry

else

end
end

o Such design smells !
- Same list of conditional repeats for all state-dependant features.

o Such design violates the Single Choice Principle .
g., To add/delete a state = Add/delete a branch in all such features.

e _

/|

Hierarchical Solution: Visible Architecture igsom

Level 3 execute_
session
Level 2
. . execute_ , ,
initial transition state is_final
. %
display read correct message process

sl

/|

Hierarchical Solution: Pervasive States
Level 3 execute_
session
Level 2 m
initial transition gl’getg“te— is_final
state
Level 1 St sfate state state
display read correct message process

Too much data transmission: current _state is passed
o From execute_session (Level 3) to execute_state (Level 2)

o From execute_state (Level 2) to all features at Level 1
EEoLEd

Law of Inversion LASSONDE

If your routines exchange too many data, then
put your routines in your data.
e.g.,
execute_state (Level 2) and all features at Level 1:
e Pass around (as inputs) the notion of current siate
e Build upon (via discriminations) the notion of current_state

execute_state (S:INTEGER)
(s:INTEGER)
read answer (s:INTEGER)
read choice (s:INTEGER)
('s:
(‘s

display

INTEGER ; answer: ANSWER)
process s: INTEGER ; answer: ANSWER)
message (s: INTEGER ; answer: ANSWER)

= Modularize the notion of state as class STATE.

= Encapsulate state-related information via a STATE interface.

= Notion of current _state becomes implicit: the Current class.
EZotzd

correct

Grouping by Data Abstractions

execute APPLICATION
session

Level 2 ﬂ\

execute_
state

Level 3

initial transition is_final

STATE

Level 1

display read correct message process

EEofx]

Architecture of the State Pattern

execute+
+ state+ re_ad *
APPLICATION display*
correct*

process*
message*

state_implementations

+
SEAT_ENQUIRY
+
RESERVATION

+
CONFIRMATION

/|

The STATE ADT LASSONDE

\n,

deferred class STATE
read execute
L eer’g local
good: BOOLEAN
-— Set ’answer do
deferred end
from
answer: ANSWER .
15 + FOr Nt state until
INTEGER good
loop
. ce for next step displ
display TR and
-— Display current state rea& e
deferred end ood 1= correct
correct: BOOLEAN ff ot e
deferred end g
rocess message
l)require correct end
d
deferred end en
process
message end
require not correct end
deferred end

-

/|

The Template Design Pattern LASSONDE

Consider the following fragment of Eiffel code:

s: STATE
create {SEAT ENQUIRY} s.make
s.execute
create {CONFIRMATION} s.make
s.execute

g wnn =

L2 and L4: the same version of effective feature execute
(from the deferred class STATE) is called. [template |
L2: specific version of effective features display, process,
etc., (from the effective descendant class SEAT ENQUIRY) is
called. [template instantiated for SEAT ENQUIRY |
L4: specific version of effective features display, process,
etc., (from the effective descendant class CONFIRMATION) is
called. [template instantiated for CONFIRMATION]
Lawmaci

APPLICATION Class: Array of STATE LASSONDE

choice

1 2 3

6 5 2

1 3

2 4

3 5

T 4 1

app APPLICATION
transition: ARRAY2[INTEGER] 2 3 4 5 6

app.states

states: ARRAY[STATE]

FLIGHT_

INITIAL ENQUIRY

/|

APPLICATION Class (1)

\n,

class APPLICATION create make
feature {TEST APPLICATION}
transition: ARRAYZ[INTEGER]

+r

S

feature
initial: INTEGER
number._of_states: INTEGER
number_of_choices: INTEGER
make(n, m: INTEGER)
do number_of states := n
number_of_choices := m
create transition.make filled(0, n, m)
create states.make_empty
end
invariant

‘ transition.height = number_of_states
transition.width = number_of_choices

end

EXotx]

/|

APPLICATION Class (2) LASSONDE

\n,

class APPLICATION
feature {TEST _APPLICATION} ——
transition: ARRAYZ2[INTEGER]
states: ARRAY [STATE]
feature
put_state(s: STATE; index: INTEGER)
require 1 < index < number_of states
do states.force(s, index) end
choose_initial (index: INTEGER)
require 1 < index < number_of_states

do initial := index end
put_transition(tar, src, choice: INTEGER)
require
1 < src £ number_of_states
1 < tar < number_of states
1 < choice < number._of_ choices
do
transition.put(tar, src, choice)
end
end

/|

Example Test: Non-Interactive Session LASSONDE

test_application: BOOLEAN
local
app: APPLICATION ; current_state: STATE ; index: INTEGER
do
create app.make (6, 3)
app.put_state (create {INITIAL}.make, 1)

>}

larly for other 5 s

app.choose_initial (1)

—— t to

app.put_transition (6, 1

ol Larly Ior otner

index := app.initial
current_state := app.states [index]
Result := attached {INITIAL} current_state

check Result end

+’ e ~rhoice 19 3¢ +rangit " om
r°s cnoice 1S > ctran [from

1= app.transition.item (index, 3)

current_state := app.states [index]

Result := attached {FLIGHT ENQUIRY} current_state
end
i)

APPLICATION Class (3): Interactive Session .ssono:

class APPLICATION
feature {TEST APPLICATION} ——
transition: ARRAYZ[INTEGER]
states: ARRAY[STATE]
feature
execute_session
local
current_state: STATE
index: INTEGER
do
from
index := initial
until
is _final (index)
loop

tation of

current_state := states[index] - polymorphism
current_state.execute dynamic binding
index := transition.item (index, current_state.choice)
end
end

end

B B —SS—————————————————————————————————

/|

Building an Application LASSONDE
o Create instances of STATE.

sl: STATE
create {INITIAL} sl.make

o Initialize an APPLICATION.

’create app.make (number_of_states, number_of_ choices) ‘

o Perform polymorphic assignments on app.states.

app.put_state (create {INITIAL}.make, 4) ‘

o Choose an initial state.

app.choose_initial (1) ‘

o Build the transition table.

app.put_transition(6, 1, 1) ‘

o Run the application.

’ app.execute_session ‘
| A iy

/|

Top-Down, Hierarchical vs. OO Solutions s

¢ In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually
discriminate on the argument value, via a a list of conditionals.

e.g., Given ’ display (current_state: INTEGER) |, the

calls ’ display(1) ‘ and ’ display(2) ‘ behave differently.

e The third (OO) solution, called the State Pattern, makes such
conditional implicit and automatic, by making STATE as a
deferred class (whose descendants represent all types of
states), and by delegating such conditional actions to

dynamic binding .

e.g., Given[s: STATE], behaviour of the call | s.display

depends on the dynamic type of s (such as INITIAL vs.

FLIGHT_ENQUIRY).

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

[Motivating Problem|

[State ITransition Diagram|

Design Challenges|

[AFirst Attemptl

|A First Attempt: Good Design?|

|A Top-Down, Hierarchical Solution|

Hierarchical Solution: Good Design?|
Hierarchical Solution: I

ITop-Down Functional Decomposition|

Hierarchical Solution: System Control

Index (2) :Agsgurgig“s

Hierarchical Solution: State Handling (1)
Hierarchical Solution: State Handling (2)
Hierarchical Solution: State Handling (3)|
Hi Rical Solution: Visible Archi !
Hi Rical Solufion: P e Siates
Law of Inversionl

Erouglng by Data Abstractions|
lArchitecture of the State Pattern|

{The Template Design Pattern|

ass: Array o

-
—

Index (3) LASSONDE
ass
ass

[Example Test: Non-Interactive Session|
ass (3): Interactive Session

Building an Application|

{Top-Down, Hierarchical vs. OO Solutions|

Observer Design Pattern
Event-Driven Design

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

o kwbd

Motivating Problem: Distributed Clients and Servers
First Design Attempt: Remote Procedure Calls
Second Design Attempt: Observer Design Pattern
Third Design Attempt: Event-Driven Design (Java vs. Eiffel)
Use of agent
[» C function pointers ~ C# delegates ~ Java lambda]

Motivating Problem ‘

o A weather station maintains weather data such as temperature,
humidity, and pressure.

 Various kinds of applications on these weather data should
regularly update their displays:
o Forecast: if expecting for rainy weather due to reduced pressure.
o Condition: temperature in celsius and humidity in percentages.
o Statistics: minimum/maximum/average measures of temperature.

First Design: Weather Station

(WEATHER DATA+

)

temperature: REAL
humidity: REAL
pressure: REAL
correct_limits (t, p,h): BOOLEAN
-- Are current data within legal limits?
invariant
correct_limits (temperature, humidity, pressuure)

weather_data

(CURRENT_CONDITIONS+)

feature

weather_data

display +
-- Retrieve and display the latest data.
temperature: REAL

_/umidity: REAL)
Ve
STATISTICS+
feature
display +
-- Retrieve and display the latest data.
_rerperature: REAL y

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the
weather_data reference.

et ae o
r
FORECAST+

feature

display +

-- Retrieve and display the latest data.

veather_data current_pressure: REAL

_last_pressure: REAL)

/|

Implementing the First Design (1)

LASSONDE

class WEATHER DATA create make

feature - Data
temperature: REAL
humidity: REAL
pressure: REAL

feature - Queries
correct_1limits(t,p, h: REAL): BOOLEAN
ensure

Result implies -36 <=t and t <= 60
Result implies 50 <= p and p <= 110
Result implies 0.8 <= h and h <= 100
feature Co s
make (t, p, h: REAL)
require

correct_limits(t, p, h)
ensure

temperature = t and pressure = p and humidity = h
invariant

‘ correct_limits (temperature, pressure, humidity) ‘
’end

- |
e

-
—

Implementing the First Design (2.1)

LASSONDE

class FORECAST create make
feature - Attril
current_pressure: REAL
last_pressure: REAL
weather._data: WEATHER_DATA
feature - C
make (wd: WEATHER_DATA)

ensure weather_data = wd

update
do last_pressure := current_pressure
current_pressure := weather_data.pressure
end
display
do wupdate

if current_pressure > last_pressure then

print ("Improving weather on the way!%N")

elseif current_pressure = last_pressure then

print ("More of the same%N")

else print("Watch out for cooler, rainy weather%N")

end

end

end

/|

LASSONDE

Implementing the First Design (2.2)

class CURRENT_CONDITIONS create make

feature

Att

temperature:

REAL

humidity: REAL
weather_data:

WEATHER_DATA

-—= Co

feature
make (wd: WEATHER DATA)

ensure weather_data = wd
update
do temperature := weather_data.temperature
humidity := weather_ data.humidity
end
display
do wupdate

Current Conditions: ")
io.put_string (" degrees C and ")
(" percent humidity$N"

io.put_string("
io.put_real (temperature) ;
io.put_real (humidity) ; io.put_string
end
end

/|

Implementing the First Design (2.3) LASSONDE

class STATISTICS create make
feature —— Att 8
weather data: WEATHER_DATA
current_temp: REAL
max, min, sum_so_far: REAL
num_readings: INTEGER

feature - Co

make (wd: WEATHER _DATA)
ensure weather_data = wd

update
do current_temp := weather_data. temperature

—-— Update min, max i ry

end

display
do update

print ("Avg/Max/Min temperature = ")
print (sum_so_far / num_readings + "/" + max + "/" min + "$N")
end
end

Implementing the First Design (3) LASSONDE
1 |class WEATHER STATION create make
2 | feature —— Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 | feature - Co ds
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd
9
10 wd.set_measurements (15, 60, 30.4)
11 cc.display ; fd.display ; sd.display
12 cc.display ; fd.display ; sd.display
13
14 wd. set_measurements (11, 90, 20)
15 cc.display ; fd.display ; sd.display
16 end
17 | end

L14: Updates occur on cc, £d, sd even with the same data.

/|

First Design: Good Design?

e Each application (CURRENT_CONDITION, FORECAST,
STATISTICS) cannot know when the weather data change.

= All applications have to periodically initiate updates in order
to keep the display results up to date.
-~ Each inquiry of current weather data values is a remote call.
.. Waste of computing resources (e.g., network bandwidth)
when there are actually no changes on the weather data.

¢ To avoid such overhead, it is better to let:

o Each application is subscribed/attached/registered to the

weather data.
o The weather data publish/notify new changes.

= Updates on the application side occur only when necessary .

Observer Pattern: Architecture LASSONDE

OBSERVER*

feature - { SUBJECT }
up

a update.

}
ject: BOOLEAN *
date with

* Observer (publish-subscribe) pattern: one-to-many relation.
o Observers (subscribers) are attached to a subject (publisher).
o The subject notify its attached observers about changes.
e Some interchangeable vocabulary:
o subscribe ~ attach ~ register
o unsubscribe ~ detach ~ unregister
o publish ~ notify
o handle ~ update

/|

Observer Pattern: Weather Station LASSONDE

\n,

subjects observers
e mmmmm R -——————— g
4 ~ ’, ~
¢ N N ¢ \\
’
(SUBJECT+ (OBSERVER* |
feature -- { NONE } feature -- { SUBJECT }
observers: LISTOBSERVER] update *
feature -- { OBSERVER } attach. detach - React to a update.
notify +)
ﬁ Notify an update to observers feature -- { SUBJECT }
ensure up_to_date_with_subject: BOOLEAN *
Vo : observers : o.update_to_date_with_subject - Is current observer up to date with

-- the latest state of the subject?

J

(WEATHER DATA+

temperature: REAL

humidity: REAL

pressure: REAL

correct_limits (t, p,h): BOOLEAN

-- Are current data within legal limits?
invariant
correct_limits (temperature, humidity, pressuure)

’

Implementing the Observer Pattern (1.1) LASSONDE

class SUBJECT create make

feature - Attributes
observers : LIST[OBSERVER]
feature - 5
make
do create {LINKED_LIST[OBSERVER]} observers.make
ensure no._observers: observers.count = 0 end
feature - an OB ;
attach (o: OBSERVER) —-— Add ‘o’ to the observers

require not_yet_attached: not observers.has (o)
ensure is attached: observers.has (o) end
detach (o: OBSERVER) Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is_ attached not observers.has (o) end
feature - T
notify —— N / ea
do across observers as cursor loop cursor.item.update end
ensure all views_updated:
across observers as o all o.item.up_to_date with_subject end
end
end

e

the u DC}&?G.

/|

Implementing the Observer Pattern (1.2) LASSONDE

class WEATHER DATA
inherit SUBJECT rename make as make_subject end
create make
feature - data
temperature: REAL
humidity: REAL
pressure: REAL
correct llmlts(t,p,h REAL) : BOOLEAN
feature i
make (t, p, h: REAL)
do
make_subject —- itial
set_measurements (t, p, h)
end
feature - Called by
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)
invariant

empty observ

‘ correct_limits (temperature, pressure, humidity)
’end ‘

Implementing the Observer Pattern (2.1)

deferred class
OBSERVER
feature To be effected by a des 1t
up_to_date_with_ subject BOOLEAN
—-— Is this observer up to date with its subject?
deferred
end
update
Update the observer’s view of .
deferred
ensure
up_to_date_with_subject: up_to_date_with_subject
end
end

Each effective descendant class of OBSERVER should:

o Define what weather data are required to be up-to-date.
o Define how to update the required weather data.
[y

/|

\n,

Implementing the Observer Pattern (2.2) LASSONDE

class FORECAST
inherit OBSERVER
feature - C 1d
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data
weather_data.attach (Current)
ensure weather_data = a_weather _data

weather_data.observers.has (Current)
end
feature C
up_to_date_with_ subject BOOLEAN
ensure then
Result = current_pressure = weather_data.pressure
update
do ——

/ on demand

/|

Implementing the Observer Pattern (2.3) LASSONDE

class CURRENT_CONDITIONS
inherit OBSERVER
feature - C 1d
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data
weather_data.attach (Current)
ensure weather_data = a_weather _data

weather_data.observers.has (Current)

end
feature C
up_to_date_with_ subject BOOLEAN
ensure then Result = temperature = weather_data.temperature and
humidity = weather_data.humidity
update

do —— / on demand

/|

\n,

Implementing the Observer Pattern (2.4) LASSONDE

class STATISTICS
inherit OBSERVER
feature - C 1d
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data
weather_data.attach (Current)
ensure weather_data = a_weather _data

weather_data.observers.has (Current)
end
feature C
up_to_date_with_ subject BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature
update
do ——

/ on demand

Implementing the Observer Pattern (3) LASSONDE
1 |class WEATHER STATION create make
2 | feature —— Att utes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_ DATA
5 | feature Co
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd
9
10 wd.set_measurements (15, 60, 30.4)
11 wd.notify |
12 cc.display ; fd.display ; sd.display
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)
16 | wd.notify
17 cc.display ; fd.display ; sd.display
18 end
19 |end

L13: cc, £d, sd make use of “cached” data values.

/|

Observer Pattern: Limitation? (1) LASSONDE

e The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

e But what if a many-to-many relationship is required for the
application under development?

o Multiple weather data are maintained by weather stations.

o Each application observes all these weather data.

o But, each application still stores the /atest measure only.
e.g., the statistics app stores one copy of temperature

o Whenever some weather station updates the temperature of its
associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.

* How can the observer pattern solve this general problem?
o Each weather data maintains a list of subscribed applications.
o Each application is subscribed to multiple weather data.

Observer Pattern: Limitation? (2) LASSONDE

What happens at runtime when building a many-to-many
relationship using the observer pattern?

[wdi: WEATHER_DATA ‘ application; ’

[wdz: WEATHER_DATA

applications ’

| wdm—1: WEATHER_DATA

[wd.,: WEATHER_DATA application,, ’

Gragh complexity, with m subjects and n observers? [O(m-n)]

Event-Driven Design (1) LASSONDE

Here is what happens at runtime when building a many-to-many

relationship using the event-driven design.

application,_;
application,,

wdi: WEATHER_DATA

wdz: WEATHER_DATA publish subscribe

change_on_temperature: EVENT

wdn—1: WEATHER_DATA

wdn: WEATHER_DATA

Graph complexity, with m subjects and n observers? [O(m+n)]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m+ n)]

/|

Event-Driven Design (2) LASSONDE

In an event-driven design :

e Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.

e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

e Each monitored variable is declared as an event :
o An observer is attached/subscribed to the relevant events.
e CURRENT_CONDITION attached to events for temperature, humidity.
e FORECAST only subscribed to the event for pressure.
e STATISTICS only subscribed to the event for temperature.
o A subject notifies/publishes changes to the relevant events.

/|

Event-Driven Design: Implementation LASSONDE

* Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event, it attaches:
1.1 The reference/pointer to an update operation
Such reference/pointer is used for executions.
1.2 ltself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event, it:

2.1 lterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the
corresponding observer.

» Both requirements can be satisfied by Eiffel and Java.

» We will compare how an event-driven design for the weather
station problems is implemented in Eiffel and Java.

= It's much more convenient to do such design in Eiffel.

Event-Driven Design in Java (1) LASSONDE

/|

}

©OoO~NOO O AhWN =

—_ o a A
A WON—= O

}
}

—_
(¢)]

public class Event {
Hashtable<Object, MethodHandle> listenersActions;
Event () { listenersActions = new Hashtable<>(); }
void subscribe (Object listener, MethodHandle action) {

void publish(Object arg) {

listenersActions.put(listener , action);

for (Object listener : listenersActions.keySet()) {
MethodHandle action = listenersActions.get (listener);
try {

action .invokeWithArguments(listener , arg);
} catch (Throwable e) { }
}

L5: Both the delayed action reference and its context object (or call
target) 1istener are stored into the table.

L11: An invocation is made from retrieved 1istener and action.

Event-Driven Design in Java (2) LASSONDE

o NOO O~ WN =

public class WeatherData {
private double temperature;
private double pressure;
private double humidity;
public WeatherData(double t, double p, double h) {
setMeasurements(t, h, p);

}

public static Event changeOnTemperature = new Event(); ‘
public static Event changeOnHumidity = new Event();
public static Event changeOnPressure = new Event(); ‘

public void setMeasurements(double t, double h, double p) {
temperature = t;
humidity = h;
pressure = p;
changeOnTemperature .publish(temperature);

changeOnHumidity .publish(humidity) ; ‘

changeOnPressure .publish(pressure); ‘

Event-Driven Design in Java (3) LASSONDE

1 |public class CurrentConditions {

2 private double temperature; private double humidity;

3 public void updateTemperature(double t) { temperature = t; }
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {

6 MethodHandles.Lookup lookup = MethodHandles.lookup/();
7 try {

8 MethodHandle ut = lookup.findVirtual (

9 this.getClass (), "updateTemperature",

10 MethodType.methodType (void.class, double.class));
11 WeatherData.changeOnTemperature.subscribe (this, ut);
12 MethodHandle uh = lookup.findVirtual (

13 this.getClass (), "updateHumidity",

14 MethodType.methodType (void.class, double.class));
15 WeatherData.changeOnHumidity.subscribe (this, uh);

16 } catch (Exception e) { e.printStackTrace(); }

17 }

18 public void display() {

19 System.out.println("Temperature: " + temperature);

20 System.out.println("Humidity: " + humidity); } }

Event-Driven Design in Java (4) LASSONDE

public class WeatherStation {

public static void main(String[] args) {
WeatherData wd = new WeatherData (9, 75, 25);
CurrentConditions cc = new CurrentConditions();
System.out.println("=======");
wd.setMeasurements (15, 60, 30.4);
cc.display();
System.out.println("=======");
wd.setMeasurements (11, 90, 20);
cc.display();

b}

0O OWONOOOR~WN =

—_

L4 invokes
WeatherData.changeOnTemperature. subscribe (
cc, ‘‘updateTemperature handle’’)
L6 invokes
WeatherData.changeOnTemperature.publish(15)
which in turn invokes

‘‘updateTemperature handle’’ .invokeWithArguments (cc, 15)
BEaf37

/|

Event-Driven Design in Eiffel (1) LASSONDE
1 class EVENT [ARGUMENT -> TUPLE]
2 | create make
3 | feature —— Initialization
4 actions: LINKED_LIST[PROCEDURE [ARGUMENT]]
5 make do create actions.make end
6 | feature
7 subscribe (an_action: PROCEDURE [ARGUMENT])
8 require action_not_already_subscribed: not actions.has(an_action
9 do actions.extend (an_action)
10 ensure action_subscribed: action.has(an_action) end
11 publish (args: ARGUMENT
12 do from actions.start until actions.after
13 loop actions.item.call (args) ; actions.forth end
14 end
15 | end

® L1 constrains the generic parameter ARGUMENT: any class that instantiates
ARGUMENT must be a descendant of TUPLE.

® L4: The type PROCEDURE encapsulates both the context object and the
reference/pointer to some update operation.

BSaf37

Event-Driven Design in Eiffel (2)

1 | class WEATHER DATA

2 | create make

3 | feature Measure s

4 temperature: REAL ; humidity: REAL ; pressure: REAL

5 correct_limits(t,p, h: REAL): BOOLEAN do ... end

6 make (t, p, h: REAL) do ... end

7 | feature - Ex t for data changes

8 ‘ change_on_-temperature : EVENT[TUPLE [REAL] Jonce create Result end
9 ‘ change_on-humidity : EVENT[TUPLE [REAL]]once create Result end

10 ‘ change_on_-pressure : EVENT[TUPLE [REAL] Jonce create Result end

11 | feature —— Command

12 set_measurements(t, p, h: REAL)

13 require correct_limits(t,p,h)

14 do temperature := t ; pressure := p ; humidity := h

15 change_on_temperature .publish ([t]

16 ‘ change_on_humidity .publish ([p])

17 ‘ change_on_pressure .publish ([h]) ‘
18 end

19 |invariant correct_limits(temperature, pressure, humidity) end

Event-Driven Design in Eiffel (3) LASSONDE

1 |class CURRENT_CONDITIONS

2 | create make

3 | feature Initialization

4 make (wd: WEATHER_DATA)

5 do

6 wd.change_on_temperature.subscribe (agent update_temperature)
7 wd.change_on_humidity.subscribe (agent update_ humidity)
8 end

9 | feature

10 temperature: REAL

11 humidity: REAL

12 update_temperature (t: REAL) do temperature := t end

13 update_humidity (h: REAL) do humidity := h end

14 display do ... end

15 |end

. retrieves the pointer to cmd and its context object.

e L6~ ’ ... (agent Current.update,temperature)‘

e Contrast L6 with L8—11 in Java class CurrentConditions.
| cEmsacy]

/|

Event-Driven Design in Eiffel (4) LASSONDE
1 | class WEATHER STATION create make
2 | feature
3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd.set_measurements (15, 60, 30.4)
8 cc.display
9 wd.set_measurements (11, 90, 20)
10 cc.display
11 end
12 | end
L6 invokes
wd.change_on_temperature. subscribe (
agent cc.update_temperature)
L7 invokes

wd.change_on_temperature.publish([15])

which in turn invokes ’ cc.update_temperature (15) ‘
| coasiay]

/|

Event-Driven Design: Eiffel vs. Java LASSONDE

e Storing observers/listeners of an event
o Java, in the Event class:

’Hashtable<0bject, MethodHandle> listenersActions; ‘

o Eiffel, in the EVENT class:

actions: LINKED_LIST[PROCEDURE [ARGUMENT]] ‘

e Creating and passing function pointers
o Java, inthe CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual (
this.getClass (), "updateTemperature",
MethodType.methodType (void.class, double.class));

WeatherData.changeOnTemperature.subscribe (this, ut);

o Eiffel, in the CURRENT_CONDITIONS class construction:

’ wd.change_on_temperature. subscribe (agent update temperature)

= Eiffel’s type system has been better thought-out for design .

Beyond this lecture. .. 4%

et ae o

Play with the source code of with the various designs (with an
IDE debugger):

© non_observer.zip

[1st Design Attempt]

[Observer Design Pattern]

[Event-Driven Design in Java]
[Event-Driven Design in Eiffel]

o observer.zip
o JavaObserverEvent.zip
o observer_event.zip

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/non_observer.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/observer.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/JavaObserverEvent.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/observer_event.zip

Index (1) :A§SCE>MI&BNE

[Cearning Objectives]

[Motivating Problem|

First Design: Weather Station|
implementing the First Design (1)
Implementing the First Design (2.1)|
mplementing the First Design (2.2)|
Implementing the First Design (2.3)|
mplementing the First Design (3)|
Firsi Design: Good Design?|
[Observer Patiern: Architecturel
Observer Pattern: Weather Station|

Index (2) :Agsgurgig“s

implementing the Observer Pattern (1.1)|

implementing the Observer Pattern (1.2)|

implementing the Observer Pattern (2.1)|

implementing the Observer Pattern (2.2)

Implementing the Observer Pattern (2.3)|

implementing the Observer Pattern (2.4)|

implementing the Observer Pattern (3)|

[Observer Pattern: Limitation? (1)

[Observer Pattern: Limitation? (2)

[Event-Driven Design (1)

Event-Drlven Des@n iz E]
BEof3Z

Index (3) :Agsgurgig“s

[Event-Driven Design: Implementation|

[Event-Driven Design in Java (1)

[Event-Driven Design in Java (2)

[Event-Driven Design in Java (3)|

[Event-Driven Design in Java (4)

[Event-Driven Design in Eiffel (1)

[Event-Driven Design in Eiffel (2)
[Event-Driven Design in Eiftel (3)|

[Event-Driven Design in Eiffel (4)

[Event-Driven Design: Eiffel vs. Javal
Beyond this Tecture.]

Subcontracting
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Aspects of Inheritance

e Code Reuse
e Substitutability

o Polymorphism and Dynamic Binding
[compile-time type checks]

o Sub-contracting

[runtime behaviour checks]

/|

Learning Objectives LASSONDE

1. Preconditions: require less vs. require more
2. Postconditions: ensure less vs. ensure more
3. Inheritance and Contracts: Static Analysis

4. Inheritance and Contracts: Runtime Checks

/|

Background of Logic (1) LASSONDE

Given preconditions P; and P,, we say that

’ P> requires less than P; ‘if
P, is less strict on (thus allowing more) inputs than P; does.

{x[P10 }e{x]|Pa(x) }

More concisely:
P1 = P2

e.g., For command withdraw (amount: amount),
| P> : amount > 0| requires less than | P; : amount > 0|

What is the precondition that requires the least? [true]
Loay:]

/|

Background of Logic (2) LASSONDE

Given postconditions or invariants Q; and Q., we say that

] Qo ensures more than Qq \ if
Q» is stricter on (thus allowing less) outputs than Q; does.

{x[Q(x) }e{x|Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER) : BOOLEAN,
’ Q> :Result =(i>0)A(imod2=0) ‘ ensures more than
Qi :Result = (i>0)v(imod2=0)]

What is the postcondition that ensures the most? [false]
Eatia

/|

Inheritance and Contracts (1)
e The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE_11_PRO
samsung_phone: GALAXY S10_PLUS
huawei_phone: HUAWEI_P30_PRO

do my_phone := 1i_phone
my_phone := samsung_phone
my_phone := huawei_phone

suggests that these instances may substitute for each other.
e Intuitively, when expecting SMART PHONE, we can substitute it
by instances of any of its descendant classes.
-~ Descendants accumulate code from its ancestors and can thus
meet expectations on their ancestors.

e Such substitutability can be reflected on contracts, where a

substitutable instance will:
o Not require more from clients for using the services.

o Not ensure less to clients for using the services.
Eoiia

Inheritance and Contracts (2.1)

(PHONE USER | .. [SMART PHONE)
tﬂy phone: SMART PHONE ﬁtetrefniniers: LIST[EVENT]
_ - require ??
) ensure ??
A

)

IPHONE 11 PRO

get_reminders: LIST[EVENT]
require else ??
ensure then ??

/|

Inheritance and Contracts (2.2)

class SMART PHONE
get_reminders: LIST[EVENT]
require
a: battery _level > 0.1 —— 10%
ensure
B: Ve:Result | e happens today
end

class IPHONE_ 11 _PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow

end

Contracts in descendant class rexone_11_pro @re not suitable.
(battery _level > 0.1 = battery _level > 0.15) is not a tautology.
e.g., A client able to get reminders on a smart_rrHonE, When battery
level is 12%, will fail to do so on an rrronE_11_PRO.

/|

Inheritance and Contracts (2.3)

class SMART PHONE
get_reminders: LIST[EVENT]
require
a: battery _level > 0.1 —— 10%
ensure
B: Ve:Result | e happens today
end

class IPHONE_ 11 _PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.15 —— 15%
ensure then
0: Ve:Result | e happens today or tomorrow

end

Contracts in descendant class zrzong_11_pro @re not suitable.
(e happens ty. or tw.)= (€ happens ty.) nottautology.
e.g., A client receiving today’s reminders from svarT_pHONE are
mshocked by tomorrow-only reminders from rrronE_11_pPRO.

Inheritance and Contracts (2.4)

/|

class SMART PHONE
get_reminders: LIST[EVENT]
require
a: battery _level > 0.1 —— 10%
ensure
B: Ve:Result | e happens today
end

class IPHONE_ 11 _PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.05 —— 5%
ensure then
d: Ve:Result | e happens today between 9am and 5pm
end

Contracts in descendant class rrrone_11_pro are suitable.
o Require the same or less

=7

Clients satisfying the precondition for suarT proNE are not shocked

mby not being to use the same feature for rrronE_11_PRO.

Inheritance and Contracts (2.5)

class SMART PHONE
get_reminders: LIST[EVENT]
require
a: battery _level > 0.1 —— 10%
ensure
B: Ve:Result | e happens today
end

class IPHONE_ 11 _PRO
inherit SMART PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
v: battery_level > 0.05 —— 5%
ensure then
d: Ve:Result | e happens today between 9am and 5pm
end

Contracts in descendant class rrronz 11 _pro are suitable.

o Ensure the same or more §=0

Clients benefiting from smarT_pronE are not shocked by failing to

mgain at least those benefits from same feature in rpronE_11_PrRO.

/|

Contract Redeclaration Rule (1)

¢ In the context of some feature in a descendant class:

o Use to redeclare its precondition.
o Use to redeclare its postcondition.

e The resulting runtime assertions checks are:

o ’originalﬁpre or else newﬁpre‘

= Clients able to satisfy original_pre will not be shocked.
- truev new_pre = true
A precondition violation will not occur as long as clients are able
to satisfy what is required from the ancestor classes.
o ’original_post and then new_post‘
= Failing to gain original _post will be reported as an issue.
-+ false n new_post = false
A postcondition violation occurs (as expected) if clients do not
receive at least those benefits promised from the ancestor classes.

o8

Contract Redeclaration Rule (2.1)

/|

class FOO
£
do ...
end
end

class BAR
inherit FOO redefine f end
f require else new_pre
do ...
end
end

e Unspecified original_pre is as if declaring

- true v new_pre = true

class FOO
£
do ...
end
end

class BAR
inherit FOO redefine f end
£
do ...
ensure then new_post
end
end

* Unspecified original_post is as if declaring

EXotid

-+ true A new_post = new_post

Contract Redeclaration Rule (2.2)

/|

class FOO
f require
original _pre
do ...
end
end

class BAR
inherit FOO redefine f end
£
do ...
end
end

* Unspecified new_pre is as if declaring | require else false|

class FOO
f
do ...
ensure
original post
end
end

- original_pre v false = original _pre

class BAR
inherit FOO redefine f end
£
do ...
end
end

 Unspecified new_post is as if declaring [ensure then true|

- original_post A true = original post

Invariant Accumulation

/|

e Every class inherits invariants from all its ancestor classes.
¢ Since invariants are like postconditions of all features, they are

“conjoined” to be checked at runtime.

class POLYGON
vertices: ARRAY[POINT]
invariant
vertices.count > 3
end

class RECTANGLE
inherit POLYGON
invariant

vertices.count = 4
end

e What is checked on a RECTANGLE instance at runtime:

(vertices.count > 3) A (vertices.count = 4) = (vertices.count = 4)

e Can PENTAGON be a descendant class of RECTANGLE?

| LAaEL]

(vertices.count = 5) A (vertices.count = 4) = false

/|

Inheritance and Contracts (3)
1 FOO class BAR
¢ ;ss inherit FOO redefine f end
. £
require .
original pre re?::;’r;r:lse
ensu.re. ensure then
original post new post
end P
end

end

end

(Static) Design Time :

o | original_pre = new_pre | should be proved as a tautology

o | new_posi = original,post‘ should be proved as a tautology

(Dynamic) Runtime :
original_pre v new,pre‘ is checked

o

o

original_posi A new,post‘ is checked

Index (1) :A§SCE>MI&BNE

|Aspects of Inheritance|

[Cearning Objectives|

Background of Logic (1)
Background of Logic (2)

Inheritance and Contracts (1)

Inheritance and Contracts (2.1)|

Inheritance and Contracts (2.2)

Inheritance and Contracts (2.3)

Inheritance and Contracts (2.4)

Inheritance and Contracts (2.5)

[Contract Redeclaration Rule (1)
[ivanzs:]

—
Index (2) :A§SCERI&BNE
[Contract Redeclaration Rule (2.1)

[Contract Redeclaration Rule (2.2)

I fant A lafion

inheritance and Contracts (3)|

The Composite Design Pattern

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

U e

Motivating Problem: Recursive Systems

Two Design Attempts

Multiple Inheritance

Third Design Attempt: Composite Design Pattern
Implementing and Testing the Composite Design Pattern

/|

Motivating Problem (1) LASSONDE

e Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
¢ Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.
o Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

* Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

Motivating Problem (2) LASSONDE

Design for tree structures with whole-part hierarchies.

CABINET

e
-1 Mm

POWER SUPPLY

v \' 9

CARD HARD_DRIVE DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.
Eorz

Design Attempt 1: Architecture

equipment

EQUIPMENT* children+: LISTY..])

feature

R
.
'
|
p . price: REAL*
\ feature
. add_child(e: EQUIPMENT)+

ensure children[children.count] = e

7

*

-
—

Design Attempt 1: Flaw? LASSONDE

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]
o add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD _DRIVE) that do
not apply to such features.

Design Attempt 2: Architecture

equipment
// -
! (EQUIPMENT*)
ot ' Teat children+: LIST[..]
L eature <
@ ' price: REAL*
' - J
(COMPOSITE*)
feature
add_child(c: EQUIPMENT)+
ensure children[children.count] = ¢

-
—

Design Attempt 2: Flaw? LASSONDE

Q: Any flaw of this second design?

A: Two “composite” features defined at the COMPOSITE level:
o children: LIST[EQUIPMENT]

o add(child: EQUIPMENT)

= Multiple instantiations of the composite architecture (e.g.,
equipments, furnitures) require duplicates of the COMPOSITE

class.

Multiple Inheritance: %

Combining Abstractions (1)

A class may have two more parent classes.

COMPARABLE

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window
Bz

MI: Combining Abstractions (2.2)
A: Separating Graphical features and Hierarchical features

class RECTANGLE
feature Queries
width, height: REAL

class TREE[G]

feature Queries
REAL)
XPoS, Ypos: descendants: ITERABLE [G]
feature - Cc . ,
feature Cc s

make (w, h: REAL)

change_width add (7C: G\)\ child et
change_height end
move
end
test_window: BOOLEAN
local wl, w2, w3, w4: WINDOW
class WINDOW do
inherit
1nREe(§;ANGLE create wl.make(8, 6) ; create w2.make(4, 3)
TREE [WINDOW)] create w3.make(l, 1) ; create w4.make(l, 1)
end w2.add(w4) ; wl.add(w2) ; wl.add(w3)
Result := wl.descendants.count = 2
end

| &)

MI: Name Clashes

In class c, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

MI: Resolving Name Clashes
foo
rename foo as fog rename foo as zoo
class C o.foo | o.fog | o.zo0
inherit
A rename foo as fog end o: A v . X
B rename foo as zoo end o: B \/ X X
o C X e v

The Composite Pattern: Architecture

(COMPOSITE[T]*)

feature
children: LIST[T]+
add_child(c: T)+
ensure children[children.count] = ¢

equipment

EQUIPMENT*

children+: LIST[..]

feature ¢
price: REAL*
\

*

_EQUIPMENT

/|

Implementing the Composite Pattern (1)

deferred class

EQUIPMENT
feature

name: STRING

price: REAL deferred end —— unif
end

class
CARD
inherit
EQUIPMENT
feature {NONE }
unit_price: REAL

feature
make (n: STRING; p: REAL)
do name := n ; unit_price := p end
price
do Result := unit_price end
end

ot

/|

Implementing the Composite Pattern (2.1) |.assonoe

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST[T]

add (c: T)
do
children.extend (c) —- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

/|

Implementing the Composite Pattern (2.2) | assonoe

deferred class
COMPOSITE _EQUIPMENT
inherit
EQUIPMENT
COMPOSITE [EQUIPMENT]
feature
make (n: STRING)
classes will declare this c

Ccn class

across
children is c¢
loop
Result := Result + c.price -- dynamic binding
end
end

end

ot

/|

Testing the Composite Pattern

\n,

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET —-—- h
chassis: CHASSIS ——
bus: BUS —— ! ds
do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make ("PC Cabinet")

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

EEof]

/|

Summay: The Composite Pattern

. : Categorize into base artifacts or recursive artifacts.

Programming ‘:

Build a tree structure representing the whole-part hierarchy .

Allow clien

ts to treat base objects (leafs) and recursive

compositions (nodes) uniformly .

=

=

Polymorphism |: leafs and nodes are “substitutable”.

Dynamic Binding

: Different versions of the same

operation is applied on individual objects and composites.
e.g., Given |e: EQUIPMENT |:

° may return the unit price of a DIsSK DRIVE.

o

oo

e.price |may sum prices of a craszs’ containing equipments.

Index (1) :Agsgurgig“s

[Cearning Objectives|
[Motivating Problem (1)
[Motivating Problem (2)|

Design Attempt 1: Architecture]
Design Attempt 1: Flaw?
PDesign Attempt 2: Architecture]

Design Attempt 2: Flaw?|

[Multiple Tnheritance: |
[Combining Abstractions (1)

|MT: Combining Abstractions (2.1)

[MI: Combining Abstractions (2.2)

Index (2) :A§SCE>MI&BNE

M Name Clashes]
[MT: Resolving Name Clashes

IThe Composite Pattern: Architecture

implementing the Composite Pattern (1)

implementing the Composite Pattern (2.1)f

implementing the Composite Pattern (2.2)f

[Testing the Composite Pattern|

ISummary: The Composite Pattern|

The Visitor Design Pattern

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

U e

Motivating Problem: Processing Recursive Systems

First Design Attempt: Cohesion & Single-Choice Principle?
Open-Closed Principle

Second Design Attempt: Visitor Design Pattern
Implementing and Testing the Visitor Design Pattern

Motivating Problem (1) LASSONDE

Based on the composite pattern you learned, design classes

to model structures of arithmetic expressions
(e.9., 341, 2,341 + 2).

[EXPERSSION*] (composiTe*)
value INTEGER [leﬂ right: EXPRESSION

=~

(consTanT+

il

ADDITION+

1)

Motivating Problem (2) 4%

et ae o

Extend the composite pattern to support operations such as

evaluate, pretty printing (print prefix, print _postfix),
and type_check.

(EXPERSSION* } (COMPOSITE* }
value: INTEGER left, right: EXPRESSION
evaluate*

print_prefix*
print_postfix*
type_check*

(constant+) (ApDITION®

evaluate+
print_prefix+
iprint_postfix+
type_check+

evaluate+
|print_prefix+
print_postfix+
type_check+

%
J

Problems of Extended Composite Pattern |sono:

e Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :
To add/delete/modify an operation
= Change of all descendants of EXPRESSTON
e Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.

= We want to avoid “polluting” the classes with these various
unrelated operations.

/|

Open/Closed Principle LASSONDE

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:
o ALTERNATIVE 1:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.
o ALTERNATIVE 2:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.

/|

Visitor Pattern LASSONDE

e Separation of concerns :

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e QOpen-Closed Principle (OCP) : [ALTERNATIVE 2]

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.

A &L

Visitor Pattern: Architecture

/|

\n,

LASSONDE

CpESion aBGUIRE L o eeeeeecececeacacanan-

VISITOR*

. EXPERSSION*
accept(v: VISITOR)*
COMPOSITE*

' lefi, right: EXPRESSION

visit_constant(c: CONSTANT)*
visit_addition(a: ADDITION)

(owmts) (aoomow) (evatoaions

(e) [oeecmeckers)

Lv/srLconstanf(c coNsTANT)j

accept(v: VISITOR)+ visit_addition(a: ADDITION)+

visit_constant(c: CONSTANT)+| | visit_constant(c: CONSTANT)+
visit_addition(a: ADDITION)+ visit_addition(a: ADDITION)+

1 | accept(v: VISITOR)+

/|

Visitor Pattern Implementation: Structures |.assono:

Cluster expression_language
o Declare deferred feature] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept (v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end

Visitor Pattern Implementation: Operations

/|

Cluster expression_operations

o For each descendant class C of EXPRESSION, declare a deferred

feature] visit_c (e: C) \in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

’class EVALUATOR inherit VISITOR

| [value]: INTEGER

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)

:= eval_left.value + eval_right.value

end
end

visit_constant (c: CONSTANT) do := c.value end

B e e

Testing the Visitor Pattern

/|

1 test_expression_evaluation: BOOLEAN

2 local add, cl, c2: EXPRESSION ; v: VISITOR
3 do

4 create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make
5 create {ADDITION} add.make (cl, c2)

6 create {EVALUATOR} v.make

7 \ add.accept (v)

8 check attached {EVALUATOR} v as eval then
9 Result := eval.value = 3
10 end
11 end

(2)

Double Dispatch in Line 7:

1. DT of add is apprrron = Call accept in apprrron

v.visit_ addition (add)

2. DT of vis evarvaror = Call visit_addition in EvarvaTor

’visiting result of add.left ‘ + ’ visiting result of add. right ‘

/|

To Use or Not to Use the Visitor Pattern

e In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR \ of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new| visit multiplication |operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.

= Do not use visitor if the structure changes often.

Beyond this Lecture. ..

et ae o

e Learn about implementing the Composite and Visitor Patterns,

from scratch, in this tutorial series:

https://www.voutube.com/playlist?list=PL5dxAmCmiv

4z0eXGW-2BagssSZW4TyBHY 2

e The Visitor Pattern can be used to facilitate the development of

a language compiler:

https://www.voutube.com/playlist?list=PL5dxAmCmiv

4FGYtGzcvBeoS—BobRTJLg

https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

[Motivating Problem (1)

[Motivating Problem (2)

[Problems of Extended Composite Pattern|
[Open/Closed Principlel

Wisitor Pafiern)

ViSHor P —Archi |

|Visitor Pattern Implementation: Structures|

\Visitor Pattern Implementation: Operations
|Testing the Visitor Pattern|

MoU Not fo Use the Visitor P I
Zas

/|

Index (2) i\gsonos

IBeyond this Lecture.. .|

Program Correctness
OO0SC2 Chapter 11

EECS3311 A & E: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

o ok wb

Motivating Examples: Program Correctness
Hoare Triple

Weakest Precondition (wp)

Rules of wp Calculus

Contract of Loops (invariant vs. variant)

Correctness Proofs of Loops

/|

Assertions: Weak vs. Strong

Describe each assertion as a set of satisfying value.
x >3 has satisfying values { x | x>3}={4,56,7,... }
x >4 has satisfying values { x | x >4 }={5,6,7,... }
An assertion p is stronger than an assertion q|if | p’'s set of
satisfying values is a subset of ¢’s set of satisfying values.
o Logically speaking, p being stronger than q (or, g being weaker
than p) means p = q.
oceg,x>4=>x>3
What'’s the weakest assertion? [TRUE]
What'’s the strongest assertion? [FALSE]

In Design by Contract :

o A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

o A weaker precondition has more acceptable input values

o A weaker postcondition has more acceptable output values
x|

/|

Assertions: Preconditions

Given preconditions P; and P,, we say that

’ P> requires less than P; ‘if
P, is less strict on (thus allowing more) inputs than P; does.

{x[P10 }e{x]|Pa(x) }

More concisely:
P1 = P2

e.g., For command withdraw (amount: INTEGER),
| P> : amount > 0| requires less than | P; : amount > 0|

What is the precondition that requires the least? [true]
s |

/|

Assertions: Postconditions

Given postconditions or invariants Q; and Q., we say that

] Qo ensures more than Qq \ if
Q» is stricter on (thus allowing less) outputs than Q; does.

{x[Q(x) }e{x|Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER) : BOOLEAN,
’ Q> :Result =(i>0)A(imod2=0) ‘ ensures more than
Qi :Result = (i>0)v(imod2=0)]

What is the postcondition that ensures the most? [false]
v |

/|

Motivating Examples (1) LASSONDE

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 3 is too weak or too strong?

A: Too weak

-~ assertion i/ > 3 allows value 4 which would fail postcondition.
Ecrsl

/|

Motivating Examples (2)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong

- assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.

/|

Software Correctness

e Correctness is a relative notion:

consistency of implementation with respect to specification.
= This assumes there is a specification!

* We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s { R}

oeg.,{i>3}1 := i+ 9{i>13}
oeg,{i>5}i := 1 + 9{i>13}

o If| {@} s {R} | can be proved TRUE, then the S is correct.

eg.,{i>5}i := i + 9 {i>13} can be proved TRUE.
o If| {@Q} s {R} | cannot be proved TRUE, then the S is incorrect.
e.g.,{i>3}1i := i + 9 {i>13} cannot be proved TRUE.

/|

Hoare Logic LASSONDE

e Consider a program S with precondition Q and postcondition R.

o {@} s {R}is a correctness predicate for program S

o {@} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .
(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

/|

Hoare Logic and Software Correctness

Consider the contract view of a feature f (whose body of

implementation is S) as a | Hoare Triple |

{Q} s {R}
Qis the precondition of f.
S is the implementation of f.
Ris the postcondition of f.

{true} s {R}

[e]

All input values are valid [Most-user friendly]
o {false} s {R}
All input values are invalid [Most useless for clients]

o

{Q} s {true}
All output values are valid [Most risky for clients; Easiest for suppliers]
{Q} s {false}

o

All output values are invalid [Most challenging coding task]
o {true} s {true}
All inputs/outputs are valid (No contracts) [Least informative]

||

/|

Proof of Hoare Triple using wp LASSONDE

{Q} s {R} = Q=wp(S,A)

e wp(S,R) isthe weakest precondition for S to establish R .

o If @= wp(S, R), then any execution started in a state satisfying Q
will terminate in a state satisfying R.

o If Q= wp(S, R), then some execution started in a state satisfying
Q will terminate in a state violating R.

e Scan be:
o Assignments (x := y)
o Alternations (if ... then ... else ... end)
o Sequential compositions (S1 ; Sp)
o Loops (from ... until ... loop ... end)

¢ We will learn how to calculate the wp for the above

programming constructs.
(e |

/|

Denoting New and Old Values LASSONDE

In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.
o We write to denote its post-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.
eg., {bp>atb := b - a{b=by—-a}
¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
-+ All variables are pre-state values in preconditions

o We don’t write “by” in program
-~ there might be multiple intermediate values of a variable due to
sequential composition

| v

/|

wp Rule: Assighments (1) LASSONDE

wp(x := e, R)=R[x:=¢]

R[x := e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

/|

wp Rule: Assighments (2) LASSONDE

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} x := e {R}?

{@} x := e{R} < Q= R[x:=¢]
— —
wp(x := e,R)

/|

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program x := x + 11to
establish the postcondition x > xp?

{M}x := x + 1{x>x}

For the above Hoare triple to be TRUE, it must be that
M=>wp(x := x + 1, X>Xp).

wp(x := x + 1,X>Xp)

= {Rule of wp: Assignments}
X > Xo[Xx:=Xx0+1]

= {Replacing X by Xo+1}

Xo+1>Xp
= {1>0 always true}
True
Any precondition is OK. False is valid but not useful.

L)

/|

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1to
establish the postcondition x = 23?

{77} x := x + 1{x=23}

For the above Hoare triple to be TRUE, it must be that
M?=>wp(x := x + 1, x=23).

wp(x := x + 1, x=23)

= {Rule of wp: Assignments}
X=23[X:=X0+1]

= {Replacing X by Xp+1}
Xo+1=23

= {arithmetic}
Xp = 22

Any precondition weaker than x = 22 is not OK.
v

/|

wp Rule: Assignments (4) Revisit LASSONDE

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.

e.g., {n>5}n:=n+9{n> 13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.

e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

A

/|

wp Rule: Alternations (1) LASSONDE

B = Wp(S'I? R)
wp(if B then S; else S, end, R)=| A
- B = wp(S,, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

-
—

wp Rule: Alternations (2) LASSONDE
Recall: {@Q} s{R} = Q= wp(S,R)

How do we prove that {Q} if B then S; else S; end {R}?
{o}

if B then
{on B} S {Rr}

else
{or-B} S {R}
end

{r}

{Q} if B then Si else S; end{R}

{QA B } S {R} (Qn B) = wp(S;, R)
— | A —= | A
{QAr-B } S { R} (Qr-B) = wp(Ss, R)

e

/|

wp Rule: Alternations (3) Exercise

Is this program correct?

{x>0Ay>0}
if x > y then

bigger := x ; smaller :=y
else

bigger := y ; smaller := x
end
{bigger > smaller}

bigger := x ; smaller :

({(x>0Ay>0)A(x>y)}

{bigger > smaller}
A

({(x>0Ay>0)A=(x>y)}

bigger := y ; smaller :

{bigger > smaller}

/|

wp Rule: Sequential Composition (1)

Wp(S1 7 827 R) = Wp(817 Wp(SQ, R))

The wp of a sequential composition is such that the | first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

/|

wp Rule: Sequential Composition (2)

Recall:
{@} s {R} = Q= wp(S,R)

How do we prove {Q} S; ; Sp {R}?

(@) S ; S2{R} < Q= wp(Sy, wp(Sz. R))

wp(Sy ; Sz, R)

wp Rule: Sequential Composition (3) Exercist

Is{ True } tmp := x; x := y; y := tmp{ x>y } correct?
Ifand only if True = wp(tmp := x ; x =y ; y := tmp, X>))

Wp(tmp = X ; |X =y ; Yy = tmp
{wp rule for seg. comp.}

wp(tmp := x, wp(x :=y ; [y := tmp| x>y))
{wp rule for seqg. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp,X>)))
{wp rule for assignment}

wp(tmp := x, wp(x := y,>tmp))

{wp rule for assignment}

wp(tmp := x,y>)

{wp rule for assignment}

y>X

- True = y > x does not hold in general.
.. The above program is not correct.

/|

Loops LASSONDE

* Aloop is a way to compute a certain result by successive
approximations.

e.g. computing the maximum value of an array of integers
* Loops are needed and powerful
e Butloops very hard to get right:

o Infinite loops [termination]
o “off-by-one” error [partial correctness |
o Improper handling of borderline cases [partial correctness |
o Not establishing the desired condition [partial correctness |

Loops: Binary Search

/|

BS1

BS2

BS3

BS4

4 implementations for
binary search: published,
but wrong!

See page 381 in Object Oriented
Software Construction

/|

Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from
Sinit
until
B
loop
Sbmw
end
{R}

{0}

Sinit

while (- B)
Sbody

{R}

* In case of C/Java, denotes the stay condition.

* In case of Eiffel, | B| denotes the exit condition.
There is native, syntactic support for checking/proving the
total correctness of loops.

/|

Contracts for Loops: Syntax

from

Sinit
invariant

invariant_tag: | —— Boolean expression for
until

B
loop

Sbww
variant

variant_tag: V —- In
end

/|

Contracts for Loops

¢ Use of loop invariants (LI) and loop variants (LV).

o Invariants: expressions for partial correctness.
o Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array

LI can be “ Result is maximum of the part of array scanned so far ”.
o Established before the very first iteration.
¢ Maintained TRUE after each iteration.
o Variants: expressions for termination

o Denotes the number of iterations remaining

e Decreased at the end of each subsequent iteration

e Maintained non-negative at the end of each iteration.

e As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

¢ Remember:

total correctness = partial correctness + termination

LASSONDE

Contracts for Loops: Runtime Checks (1)

Invariant
Violation

Loop
Variant
Violation

/|

Contracts for Loops: Runtime Checks (2) |assonoe

1 | test

2 local

3 i: INTEGER

4 do

5 from

6 i :=1

7 invariant

8 1 <=1 and i <= 6
9 until

10 i>5

11 loop

12 io.put_string ("iteration " + i.out + "S$N")
13 i:=1+1

14 variant

15 6 - 1

16 end

17 | end

L8: Changeto 1 <= i and i <= 5 fora Loop Invariant Violation.
L15: Changeto 5 - i fora Loop Variant Violation.
Biof5d

Contracts for Loops: Visualization

Ezit condition

Previous state

Initialization Invariant Postcondition

Body
Body /’ Bodv \

‘U . /

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

e

/|

Contracts for Loops: Example 1.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: —-- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| i as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

-
—

Contracts for Loops: Example 1.2
, given:

Consider the feature call ’find,max(((20, 10, 40, 30)))
e Loop Invariant: V|| a.lower <j<i e Result > a[j]
e Loop Variant: a.upper — i + 1

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 v X 3

2nd 3 20 X — -

Loop invariant violation at the end of the 2nd iteration:

Vj | alower <j<[3] e [20]> a[j]

evaluates to false - 20 # a[3] = 40

e

/|

Contracts for Loops: Example 2.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: —-- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i :=1+1
variant
loop_variant: a.upper - i
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

_

/|

Contracts for Loops: Example 2.2

Consider the feature call ’find,max(((20, 10, 40, 30)))

, given:

e Loop Invariant: V|| a.lower <j<i e Result > a[j]
e Loop Variant: a.upper — i

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 N X 2
2nd 3 20 N X 1
3rd 4 40 N X 0

4th 5 40 v v -1

Loop variant violation at the end of the 4th iteration
- a.upper — i =4 -5 evaluates to non-zero.

/|

Contracts for Loops: Example 3.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: —-- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

_

/|

Contracts for Loops: Example 3.2

Consider the feature call ’find,max(((20, 10, 40, 30)))
e Loop Invariant: V|| a.lower <j<i e Result > a[j]

e Loop Variant:. a.upper — i + 1

» Postcondition : Vj | a.lower < j < a.upper o Result > a[j]

, given:

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 v X 3

2nd 3 20 v x 2

3rd 4 40 v X 1

4th 5 40 v v 0

Contracts for Loops: Exercise

class DICTIONARY[V, K]

feature {NONE} ——
values: ARRAY[K]
keys: ARRAY [K]

feature Abstraction Function
model: FUN[K, V]
feature - Queries

get_keys(v: V): ITERABLE [K]
local i: INTEGER; ks: LINKED_LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant

until i > keys.upper

do if values[i] ~ v then ks.extend(keys[i]) end
end
Result := ks.new_cursor

ensure

result_valid: VK|keResult e model.item(k) ~v
nomissing keys: Vk |k e model.domain e model.item(k) ~ v = k € Result
end

/|

Proving Correctness of Loops (1)

{0} from
Sinit
invariant
I
until
B
loop
Sbody
variant
4
end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step S, establishes LI /.
e Atthe end of Sy, if NOt yet to exit, LI | is maintained.
o If ready to exit and L/ | maintained, postcondition R is established.
o Aloop terminates if:
e Given L/ I, and not yet to exit, Spoq, maintains LV V as non-negative.
e Given L/ I, and not yet to exit, Spoq, decrements LV V.

_

/|

Proving Correctness of Loops (2)

{Q} from Sj;; invariant / until B loop Spoy variant V end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step S, establishes LI /.
o At the end of Sy, if Not yet to exit, LI | is maintained.
| {17 =B} Sooay {1}
¢ If ready to exit and L/ | maintained, postcondition R is established.

o Aloop terminates if:

e Given L/ I, and not yet to exit, Spoq, Maintains LV V as non-negative.
] {I'A =B} Spoqy {V >0} \

e Given L/ I, and not yet to exit, Spoq, decrements LV V.
| {1 A =B} Stogy {V < o} |

/|

Proving Correctness of Loops: Exercise (1.1)ssonoe
Prove that the following program is correct:

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: Vj|a.lower <j<i e Result > a[j]
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i:=1i+1
variant
loop_variant: a.upper — i + 1
end
ensure
correct_result: Vj|a.lower<j< a.upper e Result > a[j]
end
end
EfofEd

Proving Correctness of Loops: Exercise (1.

Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:

{ True }
i := a.lower
Result := a[i]

{ Vj|alower<j<ie Result>a[j] }

2. Maintenance of Loop Invariant:

{ (Vj|alower<j<ie Result>a[j])n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i :=1+1

{ (Vj|alower<j<i e Result>a[j]) }

3. Establishment of Postcondition upon Termination:

(Vj|alower<j<i e Result>a[j])Ai>a.upper
= Vj| a.lower < j < a.upper o Result > a[j]
Coxsas

/|

Proving Correctness of Loops: Exercise (1.3} ssono:

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

{ (Vj|alower <j<i e Result>alj]) n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1

{ a.upper-i+1>0 }

5. Loop Variant Keeps Decrementing before Exit:

{ (Vj|alower<j<ie Result>a[j])n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i :=1i+1

{ a.upper-i+1< (a.upper—i+1)y }

where (a.upper — i+ 1)o = a.uppery — ip + 1

S
Proof Tips (1)

{Q}s{R}={QAP}s{R}

In order to prove {Q A P} s {R}, it is sufficient to prove a version
with a weaker precondition: {Q} s {R}.

Proof:
o Assume: {Q} s {R}

It's equivalent to assuming: @ = wp(s, R) (A1)
o To prove: {QA P} s {R}

o It's equivalent to proving: Q A P = wp(s, R)

e Assume: Q A P, which implies
o According to (A1), we have wp(s, R). =

/|

Proof Tips (2)

When calculating wp(s, R), if either program s or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(s, a[i] > 0), augment it as

wp(s, a.lower < i < a.upper A a[i] >0)

e.g., Before calculating wp(x := aflil, R), augmentit as

wp(x := alil, a.lower <i< a.uppernR)

Beyond this lecture

Exercise on proving the total correctness of a program:

https://www.eecs.yvorku.ca/~jacklie/teaching/lectures/2020/F/

EECS3311/exercises/EECS3311 F20 Exercise WP.sol.pdf

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf

Index (1) :A§SCE>MI&BNE

[Cearning Objectives|

|[Assertions: Weak vs. Strong
B ons_P fifions

B [OhS P fifions
[Motivating Examples (7}

[Motivating Examples (2)|

Software Correctness|

Hoare Cogic and Software Correciness|
[Proof of Hoare Triple using wd

Denoting New and OId Values|

Index (2) :Agsgurgig“s

Iwp Rule:

Assignments (1)

lwp Rule:

Assighments (2)|

Iwp Rule:

Assignments (3) Exercise|

lwp Rule:

Assignments (4) Exercise|

Iwp Rule:

Assignments (5) Revisitl

lwp Rule:

Alternations (1)|

Iwp Rule:

Alternations (2)|

lwp Rule:

Alternations (3) Exercise|

Iwp Rule:

Sequential Composition (1)

lwp Rule:

Sequential Composition (2)

Iwp Rule:

Sequential Composition (3) Exercise|

Index (3) LASSONDE

Loops
[Coops: Binary Search|

[Correctness of Loops

[Contracts for Loops: Syntax|

[Contracts for Loops|

[Contracts for Loops: Runtime Checks (1)
[Contracts for Loops: Runtime Checks (2)|
[Contracts for Loops: Visualization|

[Contracts for Loops: Example 1.1]
[Contracts for Loops: Example 1.2]
[Contracts for Loops: Example 2.1]|

_

Index (4) :A%SCE)MI\ABME

[Contracts for Loops: Example 2.2

[Contracts for Loops: Example 3.1]|

[Contracts for Loops: Example 3.2|

[Contracts for Loops: Exercisel

[Proving Correciness of Loops (1)

[Proving Correctness of Loops (2)

[Proving Correciness of Loops: Exercise (1.1)|

[Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

roor _1ips

roof Tips

/|

Index (5)
iBeyond this lecture|

	01-DbC
	Learning Objectives
	Part 1
	Motivation: Catching Defects – When?
	What this Course Is About (1)
	What this Course Is About (2)
	Terminology: Contract, Client, Supplier
	Client, Supplier, Contract in OOP (1)
	Client, Supplier, Contract in OOP (2)
	What is a Good Design?
	Part 2.1
	A Simple Problem: Bank Accounts
	Playing with the Various Versions in Java
	V1: An Account Class
	V1: Why Not a Good Design? (1)
	V1: Why Not a Good Design? (2)
	V1: Why Not a Good Design? (3)
	Part 2.2
	V1: How Should We Improve it? (1)
	V1: How Should We Improve it? (2)
	V2: Preconditions Exceptions
	V2: Why Better than V1? (1)
	V2: Why Better than V1? (2.1)
	V2: Why Better than V1? (2.2)
	V2: Why Better than V1? (3.1)
	V2: Why Better than V1? (3.2)
	V2: Why Still Not a Good Design? (1)
	V2: Why Still Not a Good Design? (2.1)
	V2: Why Still Not a Good Design? (2.2)
	Part 2.3
	V2: How Should We Improve it?
	V3: Class Invariants Assertions
	V3: Why Better than V2?
	V3: Why Still Not a Good Design?
	Part 2.4
	V4: withdraw implemented incorrectly? (1)
	V4: withdraw implemented incorrectly? (2)
	Part 2.5
	V4: How Should We Improve it?
	V5: Postconditions Assertions
	V5: Why Better than V4?
	Part 2.6
	Evolving from V1 to V5
	V5: Contract between Client and Supplier
	DbC in Java
	DbC in Eiffel: Supplier
	DbC in Eiffel: Contract View of Supplier
	DbC in Eiffel: Anatomy of a Class
	DbC in Eiffel: Anatomy of a Command
	DbC in Eiffel: Anatomy of a Query
	Part 3
	Runtime Monitoring of Contracts (1)
	Runtime Monitoring of Contracts (2)
	Runtime Monitoring of Contracts (3)
	Experimenting Contract Violations in Eiffel
	DbC in Eiffel: Precondition Violation (1.1)
	DbC in Eiffel: Precondition Violation (1.2)
	DbC in Eiffel: Precondition Violation (2.1)
	DbC in Eiffel: Precondition Violation (2.2)
	DbC in Eiffel: Precondition Violation (3.1)
	DbC in Eiffel: Precondition Violation (3.2)
	DbC in Eiffel: Class Invariant Violation (4.1)
	DbC in Eiffel: Class Invariant Violation (4.2)
	DbC in Eiffel: Postcondition Violation (5.1)
	DbC in Eiffel: Postcondition Violation (5.2)
	Beyond this lecture...

	02a-Modularity-ADTs
	Learning Objectives
	Modularity (1): Childhood Activity
	Modularity (2): Daily Construction
	Modularity (3): Computer Architecture
	Modularity (4): System Development
	Modularity (5): Software Design
	Design Principle: Modularity
	Abstract Data Types (ADTs)
	Building ADTs for Reusability
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Beyond this lecture...

	02b-Complete-Postconditions
	Learning Objectives
	Part 1
	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Example: Copying Objects
	Example: Collection Objects (1)
	Example: Collection Objects (2)
	Reference Copy of Collection Object
	Shallow Copy of Collection Object (1)
	Shallow Copy of Collection Object (2)
	Deep Copy of Collection Object (1)
	Deep Copy of Collection Object (2)
	Experiment: Copying Objects
	Part 2
	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Experiment: Complete Postconditions
	Beyond this lecture

	03a-Use-of-Generics
	Learning Objectives
	Generic Collection Class: Motivation (1)
	Generic Collection Class: Motivation (2)
	Generic Collection Class: Supplier
	Generic Collection Class: Client (1.1)
	Generic Collection Class: Client (1.2)
	Generic Collection Class: Client (2)

	03b-Abstraction-Math-Models
	Learning Objectives
	Motivating Problem: Complete Contracts
	Motivating Problem: LIFO Stack (1)
	Motivating Problem: LIFO Stack (2.1)
	Motivating Problem: LIFO Stack (2.2)
	Motivating Problem: LIFO Stack (2.3)
	Design Principles: Information Hiding & Single Choice
	Motivating Problem: LIFO Stack (3)
	Math Models: Command vs Query
	Implementing an Abstraction Function (1)
	Abstracting ADTs as Math Models (1)
	Implementing an Abstraction Function (2)
	Abstracting ADTs as Math Models (2)
	Implementing an Abstraction Function (3)
	Abstracting ADTs as Math Models (3)
	Solution: Abstracting ADTs as Math Models
	Beyond this lecture …

	04a-Design-Diagrams
	Learning Objectives
	Why a Design Diagram?
	Classes: Detailed View vs. Compact View (1)
	Classes: Detailed View vs. Compact View (2)
	Contracts: Mathematical vs. Programming
	Classes: Generic vs. Non-Generic
	Deferred vs. Effective
	Classes: Deferred vs. Effective
	Features: Deferred, Effective, Redefined (1)
	Features: Deferred, Effective, Redefined (2)
	Features: Deferred, Effective, Redefined (3)
	Classes: Deferred vs. Effective (2.1)
	Classes: Deferred vs. Effective (2.2)
	Class Relations: Inheritance (1)
	Class Relations: Inheritance (2)
	Class Relations: Client-Supplier (1)
	Class Relations: Client-Supplier (2.1)
	Class Relations: Client-Supplier (2.2.1)
	Class Relations: Client-Supplier (2.2.2)
	Class Relations: Client-Supplier (3.1)
	Class Relations: Client-Supplier (3.2.1)
	Class Relations: Client-Supplier (3.2.2)
	Clusters: Grouping Classes
	Beyond this lecture

	04b-Abstraction-Birthday-Book
	Learning Objectives
	Math Review: Set Definitions and Membership
	Math Review: Set Relations
	Math Review: Set Operations
	Math Review: Power Sets
	Math Review: Set of Tuples
	Math Models: Relations (1)
	Math Models: Relations (2)
	Math Models: Relations (3.1)
	Math Models: Relations (3.2)
	Math Models: Relations (3.3)
	Math Review: Functions (1)
	Math Review: Functions (2)
	Math Review: Functions (3.1)
	Math Review: Functions (3.2)
	Math Models: Command-Query Separation
	Math Models: Example Test
	Case Study: A Birthday Book
	Birthday Book: Decisions
	Birthday Book: Design
	Birthday Book: Implementation
	Beyond this lecture …

	04c-Iterator-Pattern
	Learning Objectives
	What are design patterns?
	Iterator Pattern: Motivation (1)
	Iterator Pattern: Motivation (2)
	Iterator Pattern: Architecture
	Iterator Pattern: Supplier's Side
	Iterator Pattern: Supplier's Implementation (1)
	Iterator Pattern: Supplier's Imp. (2.1)
	Iterator Pattern: Supplier's Imp. (2.2)
	Iterator Pattern: Supplier's Imp. (2.3)
	Exercises
	Resources
	Iterator Pattern: Client's Side
	Iterator Pattern: Clients using across for Contracts (1)
	Iterator Pattern: Clients using across for Contracts (2)
	Iterator Pattern: Clients using across for Contracts (3)
	Iterator Pattern: Clients using Iterable in Imp. (1)
	Iterator Pattern: Clients using Iterable in Imp. (2)
	Iterator Pattern: Clients using Iterable in Imp. (3)
	Beyond this lecture …

	05-Singleton-Pattern
	Learning Objectives
	Expanded Class: Modelling
	Expanded Class: Programming (2)
	Expanded Class: Programming (3)
	Reference vs. Expanded (1)
	Reference vs. Expanded (2)
	Singleton Pattern: Motivation
	Shared Data via Inheritance
	Sharing Data via Inheritance: Architecture
	Sharing Data via Inheritance: Limitation
	Introducing the Once Routine in Eiffel (1.1)
	Introducing the Once Routine in Eiffel (1.2)
	Introducing the Once Routine in Eiffel (1.3)
	Introducing the Once Routine in Eiffel (2)
	Approximating Once Routines in Java (1)
	Approximating Once Routines in Java (2)
	Singleton Pattern in Eiffel (1)
	Singleton Pattern in Eiffel (2)
	Testing Singleton Pattern in Eiffel
	Singleton Pattern: Architecture
	Beyond this lecture

	06-Eiffel-Testing-Framework
	Learning Objectives
	Required Tutorial
	Take-Home Message
	Bank ATM: Concrete User Interfaces
	UI, Model, TDD
	Prototyping System with Abstract UI
	Bank ATM: Abstract UI
	Bank ATM: Abstract States
	Bank ATM: Inputs of Acceptance Tests
	Bank ATM: Outputs of Acceptance Tests (1)
	Bank ATM: Outputs of Acceptance Tests (2)
	Bank ATM: Acceptance Tests vs. Unit Tests
	ETF in a Nutshell
	Workflow: Develop-Connect-Test
	ETF: Abstract UI and Acceptance Test
	ETF: Generating a New Project
	ETF: Architecture
	ETF: Implementing an Abstract Command
	Beyond this lecture

	07-Inheritance-expanded
	Learning Objectives
	Aspects of Inheritance
	Why Inheritance: A Motivating Example
	The COURSE Class
	No Inheritance: RESIDENT_STUDENT Class
	No Inheritance: NON_RESIDENT_STUDENT Class
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The STUDENT Parent Class
	Inheritance: The RESIDENT_STUDENT Child Class
	Inheritance: The NON_RESIDENT_STUDENT Child Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Testing the Two Student Sub-Classes
	Static Type vs. Dynamic Type
	Inheritance Architecture Revisited
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture (1)
	Multi-Level Inheritance Architecture (2)
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Static Type
	Reference Variable: Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Reference Type Casting: Motivation
	Reference Type Casting: Syntax
	Notes on Type Cast (1)
	Notes on Type Cast (2)
	Notes on Type Cast (3)
	Polymorphism: Routine Call Parameters
	Polymorphism: Routine Call Arguments
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Design Principle: Polymorphism
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Beyond this lecture …

	08a-Generics
	Learning Objectives
	Motivating Example: A Book of Any Objects
	Motivating Example: Observations (1)
	Motivating Example: Observations (2)
	Motivating Example: Observations (2.1)
	Motivating Example: Observations (2.2)
	Motivating Example: Observations (3)
	Parameters
	Generics: Design of a Generic Book
	Generics: Observations
	Bad Example of using Generics
	Instantiating Generic Parameters
	Generics vs. Inheritance (1)
	Generics vs. Inheritance (2)
	Beyond this lecture …

	08b-State-Pattern
	Learning Objectives
	Motivating Problem
	State Transition Diagram
	Design Challenges
	A First Attempt
	A First Attempt: Good Design?
	A Top-Down, Hierarchical Solution
	Hierarchical Solution: Good Design?
	Hierarchical Solution: Top-Down Functional Decomposition
	Hierarchical Solution: System Control
	Hierarchical Solution: State Handling (1)
	Hierarchical Solution: State Handling (2)
	Hierarchical Solution: State Handling (3)
	Hierarchical Solution: Visible Architecture
	Hierarchical Solution: Pervasive States
	Law of Inversion
	Grouping by Data Abstractions
	Architecture of the State Pattern
	The STATE ADT
	The Template Design Pattern
	APPLICATION Class: Array of STATE
	APPLICATION Class (1)
	APPLICATION Class (2)
	Example Test: Non-Interactive Session
	APPLICATION Class (3): Interactive Session
	Building an Application
	Top-Down, Hierarchical vs. OO Solutions

	09-Observer-Pattern-Event-Driven-Design
	Learning Objectives
	Motivating Problem
	First Design: Weather Station
	Implementing the First Design (1)
	Implementing the First Design (2.1)
	Implementing the First Design (2.2)
	Implementing the First Design (2.3)
	Implementing the First Design (3)
	First Design: Good Design?
	Observer Pattern: Architecture
	Observer Pattern: Weather Station
	Implementing the Observer Pattern (1.1)
	Implementing the Observer Pattern (1.2)
	Implementing the Observer Pattern (2.1)
	Implementing the Observer Pattern (2.2)
	Implementing the Observer Pattern (2.3)
	Implementing the Observer Pattern (2.4)
	Implementing the Observer Pattern (3)
	Observer Pattern: Limitation? (1)
	Observer Pattern: Limitation? (2)
	Event-Driven Design (1)
	Event-Driven Design (2)
	Event-Driven Design: Implementation
	Event-Driven Design in Java (1)
	Event-Driven Design in Java (2)
	Event-Driven Design in Java (3)
	Event-Driven Design in Java (4)
	Event-Driven Design in Eiffel (1)
	Event-Driven Design in Eiffel (2)
	Event-Driven Design in Eiffel (3)
	Event-Driven Design in Eiffel (4)
	Event-Driven Design: Eiffel vs. Java
	Beyond this lecture…

	10a-Subcontracting
	Aspects of Inheritance
	Learning Objectives
	Background of Logic (1)
	Background of Logic (2)
	Inheritance and Contracts (1)
	Inheritance and Contracts (2.1)
	Inheritance and Contracts (2.2)
	Inheritance and Contracts (2.3)
	Inheritance and Contracts (2.4)
	Inheritance and Contracts (2.5)
	Contract Redeclaration Rule (1)
	Contract Redeclaration Rule (2.1)
	Contract Redeclaration Rule (2.2)
	Invariant Accumulation
	Inheritance and Contracts (3)

	10b-Composite-Pattern
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Attempt 1: Architecture
	Design Attempt 1: Flaw?
	Design Attempt 2: Architecture
	Design Attempt 2: Flaw?
	Multiple Inheritance: Combining Abstractions (1)
	MI: Combining Abstractions (2.1)
	MI: Combining Abstractions (2.2)
	MI: Name Clashes
	MI: Resolving Name Clashes
	The Composite Pattern: Architecture
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Testing the Composite Pattern
	Summary: The Composite Pattern

	11-Visitor-Pattern
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Problems of Extended Composite Pattern
	Open/Closed Principle
	Visitor Pattern
	Visitor Pattern: Architecture
	Visitor Pattern Implementation: Structures
	Visitor Pattern Implementation: Operations
	Testing the Visitor Pattern
	To Use or Not to Use the Visitor Pattern
	Beyond this Lecture…

	12-Program-Correctness
	Learning Objectives
	Assertions: Weak vs. Strong
	Assertions: Preconditions
	Assertions: Postconditions
	Motivating Examples (1)
	Motivating Examples (2)
	Software Correctness
	Hoare Logic
	Hoare Logic and Software Correctness
	Proof of Hoare Triple using wp
	Denoting New and Old Values
	wp Rule: Assignments (1)
	wp Rule: Assignments (2)
	wp Rule: Assignments (3) Exercise
	wp Rule: Assignments (4) Exercise
	wp Rule: Assignments (5) Revisit
	wp Rule: Alternations (1)
	wp Rule: Alternations (2)
	wp Rule: Alternations (3) Exercise
	wp Rule: Sequential Composition (1)
	wp Rule: Sequential Composition (2)
	wp Rule: Sequential Composition (3) Exercise
	Loops
	Loops: Binary Search
	Correctness of Loops
	Contracts for Loops: Syntax
	Contracts for Loops
	Contracts for Loops: Runtime Checks (1)
	Contracts for Loops: Runtime Checks (2)
	Contracts for Loops: Visualization
	Contracts for Loops: Example 1.1
	Contracts for Loops: Example 1.2
	Contracts for Loops: Example 2.1
	Contracts for Loops: Example 2.2
	Contracts for Loops: Example 3.1
	Contracts for Loops: Example 3.2
	Contracts for Loops: Exercise
	Proving Correctness of Loops (1)
	Proving Correctness of Loops (2)
	Proving Correctness of Loops: Exercise (1.1)
	Proving Correctness of Loops: Exercise (1.2)
	Proving Correctness of Loops: Exercise (1.3)
	Proof Tips (1)
	Proof Tips (2)
	Beyond this lecture

