
Design-by-Contract (DbC)
Readings: OOSC2 Chapters 6, 7, 8, 11

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Design by Contract (DbC): Motivation & Terminology

2. Supporting DbC (Java vs. Eiffel):
Preconditions, Postconditions, Class Invariants

3. Runtime Assertion Checking of Contracts

2 of 72

Part 1

Design by Contract (DbC): Motivation & Terminology

3 of 72

Motivation: Catching Defects – When?
● To minimize development costs , minimize software defects.● Software Development Cycle:

Requirements → Design → Implementation → Release
Q. Design or Implementation Phase?
Catch defects as early as possible .

∵ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.● Discovering defects after release costs up to 30 times more
than catching them in the design phase.● Choice of design language for your project is therefore of
paramount importance.

Source: IBM Report
4 of 72

ftp://ftp.software.ibm.com/software/rational/info/do-more/RAW14109USEN.pdf

What this Course Is About (1)

Abstract Data types (ADTs)
Cohesion Principle
Single Choice Principle
Open-Closed Principle
Design Document
Justified Design Decisions

Code Reuse via Inheritance
Substitutibility
Polymorphism (esp. Polymorphic Collections)
Type Casting
Static Typing, Dynamic Binding
Unit Testing

Syntax: Implementation vs. Specification
agent expression, across constructs

expanded types, export status
Runtime Contract Checking

Debugger

Axioms, Lemmas, Theorems
Equational Proofs

Proof by Contradiction (witness)

Design Eiffel

OOP Logic

Architecture: Client-Supplier Relation
Architecture: Inheritance Relation

Program to Interface,
Not to Implementation
Modularity: Classes

Design Patterns
(Iterator, Singleton, State, Template,

Composite, Visitor, Strategy,
Observer, Event-Driven Design)

Anti-Patterns

Design by Contract (DbC):
 Class Invariant, Pre-/Post-condition

Information Hiding Principle
Eiffel Testing Framework (ETF)

Abstraction (via Mathematical Models)
Regression Testing
Acceptance Testing

Void Safety
Generics

Multiple Inheritance
Sub-Contracting

Architectural Design Diagrams Specification: Predicates
Contracts of Loops: Invariant & Variant

Program Correctness
Weakest Precondition (WP)

Hoare Triples
Specification: Higher-Order Functions

5 of 72

What this Course Is About (2)

● Focus is design
○ Architecture: (many) inter-related modules○ Specification: precise (functional) interface of each module

● For this course, having a prototypical, working implementation
for your design suffices.

● A later refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
∴ Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

6 of 72

Terminology: Contract, Client, Supplier
● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.○ The client is required to follow certain instructions to obtain the

service (e.g., supplier assumes that client powers on, closes
door, and heats something that is not explosive).○ If instructions are followed, the client would expect that the
service does what is guaranteed (e.g., a lunch box is heated).○ The client does not care how the supplier implements it.● What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions

SUPPLIER assume instructions followed provide a service
● There is a contract between two parties, violated if:○ The instructions are not followed. [Client’s fault]○ Instructions followed, but service not satisfactory. [Supplier’s fault]
7 of 72

Client, Supplier, Contract in OOP (1)

class Microwave {

private boolean on;

private boolean locked;

void power() {on = true;}

void lock() {locked = true;}

void heat(Object stuff) {

/* Assume: on && locked */

/* stuff not explosive. */

} }

class MicrowaveUser {

public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;

m.power(); m.lock();]

m.heat(obj);
} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [MicrowaveUser]○ Supplier: type of context object (or call target) m [Microwave]

8 of 72

Client, Supplier, Contract in OOP (2)
class Microwave {

private boolean on;

private boolean locked;

void power() {on = true;}

void lock() {locked = true;}

void heat(Object stuff) {

/* Assume: on && locked */

/* stuff not explosive. */ } }

class MicrowaveUser {

public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;

m.power(); m.lock();

m.heat(obj);
} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.● If any of these fails, there is a contract violation.● m.on or m.locked is false ⇒ MicrowaveUser’s fault.● obj is an explosive ⇒ MicrowaveUser’s fault.

A fault from the client is identified ⇒ Method call will not start.● Method executed but obj not properly heated ⇒ Microwave’s fault
9 of 72

What is a Good Design?
● A “good” design should explicitly and unambiguously describe

the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .● When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.○ Instructions to clients should not be unreasonable.

e.g., asking them to assemble internal parts of a microwave○ Working conditions for suppliers should not be unconditional .
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!○ You as a designer should strike proper balance between

obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]○ Upon contract violation, there should be the fault of only one side.

○ This design process is called Design by Contract (DbC) .
10 of 72

Part 2.1

Supporting DbC in Java:
Problem & 1st Attempt (No Contracts)

11 of 72

A Simple Problem: Bank Accounts
Provide an object-oriented solution to the following problem:

REQ1 : Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.
REQ2 : We may withdraw an integer amount from an account.

REQ3 : Each bank stores a list of accounts.

REQ4 : Given a bank, we may add a new account in it.

REQ5 : Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").
REQ6 : Given a bank, we may withdraw from a specific

account, identified by its name, for an integer amount.

Let’s first try to work on REQ1 and REQ2 in Java.
This may not be as easy as you might think!

12 of 72

Playing the Various Versions in Java

● Download the Java project archive (a zip file) here:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/codes/DbCIntro.zip

● Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQZg2qY

● Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

13 of 72

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://youtu.be/h-rgdQZg2qY
https://youtu.be/OEgRV4a5Dzg

V1: An Account Class
1 public class AccountV1 {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountV1(String owner, int balance) {

7 this.owner = owner; this.balance = balance;

8 }

9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;

11 }

12 public String toString() {

13 return owner + "’s current balance is: " + balance;

14 }

15 }

● Is this a good design? Recall REQ1 : Each account is
associated with . . . an integer balance that is always positive .

● This requirement is not reflected in the above Java code.
14 of 72

V1: Why Not a Good Design? (1)
public class BankAppV1 {

public static void main(String[] args) {

System.out.println("Create an account for Alan with balance -10:");

AccountV1 alan = new AccountV1("Alan", -10) ;

System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:

Alan’s current balance is: -10

● Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). ⇒ Violation of REQ1

● Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of
AccountV1 does not require that! ⇒ A lack of defined contract

15 of 72

V1: Why Not a Good Design? (2)
public class BankAppV1 {

public static void main(String[] args) {

System.out.println("Create an account for Mark with balance 100:");

AccountV1 mark = new AccountV1("Mark", 100);

System.out.println(mark);

System.out.println("Withdraw -1000000 from Mark’s account:");

mark. withdraw(-1000000) ;

System.out.println(mark);

Create an account for Mark with balance 100:

Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:

Mark’s current balance is: 1000100

● Mark’s account state is always valid (i.e., 100 and 1000100).
● Withdraw amount is never negative! ⇒ Violation of REQ2
● Again a lack of contract between BankAppV1 and AccountV1.
16 of 72

V1: Why Not a Good Design? (3)
public class BankAppV1 {

public static void main(String[] args) {

System.out.println("Create an account for Tom with balance 100:");

AccountV1 tom = new AccountV1("Tom", 100);

System.out.println(tom);

System.out.println("Withdraw 150 from Tom’s account:");

tom. withdraw(150) ;

System.out.println(tom);

Create an account for Tom with balance 100:

Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

● Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid . ⇒ Violation of REQ1

● Again a lack of contract between BankAppV1 and AccountV1.
17 of 72

Part 2.2

Supporting DbC in Java:
2nd Attempt (Method Preconditions)

18 of 72

V1: How Should We Improve it? (1)

Preconditions of a method specify the precise circumstances
under which that method can be executed.○ Precond. of divide(int x, int y)? [y != 0]○ Precond. of binSearch(int x, int[] xs)? [xs is sorted]○ Precond. of topoSort(Graph g)? [g is a DAG]

19 of 72

V1: How Should We Improve it? (2)
● The best we can do in Java is to encode the logical negations

of preconditions as exceptions:○ divide(int x, int y)

throws DivisionByZeroException when y == 0.○ binSearch(int x, int[] xs)

throws ArrayNotSortedException when xs is not sorted.○ topoSort(Graph g)

throws NotDAGException when g is not directed and acyclic.
● Design your method by specifying the preconditions (i.e.,

service conditions for valid inputs) it requires, not the
exceptions (i.e., error conditions for invalid inputs) for it to fail.

● Create V2 by adding exceptional conditions (an
approximation of preconditions) to the constructor and
withdraw method of the Account class.

20 of 72

V2: Preconditions ≈ Exceptions

1 public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /* negated precondition */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */

14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

21 of 72

V2: Why Better than V1? (1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Alan with balance -10:");

4 try {

5 AccountV2 alan = new AccountV2("Alan", -10) ;

6 System.out.println(alan);

7 }

8 catch (BalanceNegativeException bne) {

9 System.out.println("Illegal negative account balance.");

10 }

Create an account for Alan with balance -10:

Illegal negative account balance.

L6: When attempting to call the constructor AccountV2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object .
22 of 72

V2: Why Better than V1? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Mark with balance 100:");

4 try {

5 AccountV2 mark = new AccountV2("Mark", 100);

6 System.out.println(mark);

7 System.out.println("Withdraw -1000000 from Mark’s account:");

8 mark. withdraw(-1000000) ;

9 System.out.println(mark);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

23 of 72

V2: Why Better than V1? (2.2)
Console Output:
Create an account for Mark with balance 100:

Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:

Illegal negative withdraw amount.

● L8: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException

(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

● We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppV2’s code to get
complicated by the try-catch statements.

● Adding clear contract (preconditions in this case) to the design
should not be at the cost of complicating the client’s code!!

24 of 72

V2: Why Better than V1? (3.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Tom with balance 100:");

4 try {

5 AccountV2 tom = new AccountV2("Tom", 100);

6 System.out.println(tom);

7 System.out.println("Withdraw 150 from Tom’s account:");

8 tom. withdraw(150) ;

9 System.out.println(tom);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

25 of 72

V2: Why Better than V1? (3.2)
Console Output:
Create an account for Tom with balance 100:

Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Illegal too large withdraw amount.

● L8: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmountTooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

● We should observe that due to the added preconditions to the
supplier BankV2’s code, the client BankAppV2’s code is forced
to repeat the long list of the try-catch statements.

● Indeed, adding clear contract (preconditions in this case)
should not be at the cost of complicating the client’s code!!

26 of 72

V2: Why Still Not a Good Design? (1)
1 public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /* negated precondition */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 }

9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */

14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

● Are all the exception conditions (¬ preconditions) appropriate?
● What if amount == balance when calling withdraw?
27 of 72

V2: Why Still Not a Good Design? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:");

4 try {

5 AccountV2 jim = new AccountV2("Jim", 100);

6 System.out.println(jim);

7 System.out.println("Withdraw 100 from Jim’s account:");

8 jim. withdraw(100) ;

9 System.out.println(jim);

10 }

11 catch (BalanceNegativeException bne) {

12 System.out.println("Illegal negative account balance.");

13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");

16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");

19 }

28 of 72

V2: Why Still Not a Good Design? (2.2)

Create an account for Jim with balance 100:

Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount
100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of REQ1), there should have
been a precondition violation.

Supplier AccountV2’s exception condition balance < amount

has a missing case :
● Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).● ∴ L13 of AccountV2 should be balance <= amount.

29 of 72

Part 2.3

Supporting DbC in Java:
3rd Attempt (Class Invariants)

30 of 72

V2: How Should We Improve it?
● Even without fixing this insufficient precondition, we could

have avoided the above scenario by checking at the end of
each method that the resulting account is valid .
⇒We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

● Invariants of a class specify the precise conditions which all
instances/objects of that class must satisfy.○ Inv. of CSMajoarStudent? [gpa >= 4.5]○ Inv. of BinarySearchTree? [in-order trav. → sorted key seq.]● The best we can do in Java is encode invariants as assertions:○ CSMajorStudent: assert this.gpa >= 4.5○ BinarySearchTree: assert this.inOrder() is sorted○ Unlike exceptions, assertions are not in the class/method API.

● Create V3 by adding assertions to the end of constructor and
withdraw method of the Account class.

31 of 72

V3: Class Invariants ≈ Assertions

1 public class AccountV3 {

2 public AccountV3(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if(balance < 0) { /* negated precondition */

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }

8 assert this.getBalance() > 0 : "Invariant: positive balance";

9 }

10 public void withdraw(int amount) throws

11 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

12 if(amount < 0) { /* negated precondition */

13 throw new WithdrawAmountNegativeException(); }

14 else if (balance < amount) { /* negated precondition */

15 throw new WithdrawAmountTooLargeException(); }

16 else { this.balance = this.balance - amount; }

17 assert this.getBalance() > 0 : "Invariant: positive balance";

18 }

32 of 72

V3: Why Better than V2?
1 public class BankAppV3 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jim with balance 100:");

4 try { AccountV3 jim = new AccountV3("Jim", 100);

5 System.out.println(jim);

6 System.out.println("Withdraw 100 from Jim’s account:");

7 jim. withdraw(100) ;

8 System.out.println(jim); }

9 /* catch statements same as this previous slide:

10 * V2: Why Still Not a Good Design? (2.1) */

Create an account for Jim with balance 100:

Jim’s current balance is: 100

Withdraw 100 from Jim’s account:

Exception in thread "main"

java.lang.AssertionError: Invariant: positive balance

L8: Upon completion of jim.withdraw(100), Jim has a zero
balance, an assertion failure (i.e., invariant violation) occurs,
preventing further operations on this invalid account object .

33 of 72

V3: Why Still Not a Good Design?
Let’s recall what we have added to the method withdraw:
○ From V2 : exceptions encoding negated preconditions
○ From V3 : assertions encoding the class invariants

1 public class AccountV3 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 if(amount < 0) { /* negated precondition */

5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { /* negated precondition */

7 throw new WithdrawAmountTooLargeException(); }

8 else { this.balance = this.balance - amount; }

9 assert this.getBalance() > 0 : "Invariant: positive balance"; }

However, there is no contract in withdraw which specifies:○ Obligations of supplier (AccountV3) if preconditions are met.○ Benefits of client (BankAppV3) after meeting preconditions.
⇒We illustrate how problematic this can be by creating V4 ,
where deliberately mistakenly implement withdraw.

34 of 72

Part 2.4

Supporting DbC in Java:
4th Attempt (Faulty Implementation)

35 of 72

V4: withdraw implemented incorrectly? (1)
1 public class AccountV4 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException

4 { if(amount < 0) { /* negated precondition */

5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { /* negated precondition */

7 throw new WithdrawAmountTooLargeException(); }

8 else { /* WRONT IMPLEMENTATION */

9 this.balance = this.balance + amount; }

10 assert this.getBalance() > 0 :

11 owner + "Invariant: positive balance"; }

○ Apparently the implementation at L11 is wrong.○ Adding a positive amount to a valid (positive) account balance
would not result in an invalid (negative) one.⇒ The class invariant will not catch this flaw.○ When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

36 of 72

V4: withdraw implemented incorrectly? (2)
1 public class BankAppV4 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV4 jeremy = new AccountV4("Jeremy", 100);

5 System.out.println(jeremy);

6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }

9 /* catch statements same as this previous slide:

10 * V2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:

Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. ⇒ Violation of REQ2

37 of 72

Part 2.5

Supporting DbC in Java:
5th Attempt (Method Postconditions)

38 of 72

V4: How Should We Improve it?
● Postconditions of a method specify the precise conditions

which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

○ Postcondition of double divide(int x, int y)?
[Result × y == x]○ Postcondition of boolean binSearch(int x, int[] xs)?

[x ∈ xs ⇐⇒ Result]
● The best we can do in Java is, similar to the case of invariants,

encode postconditions as assertions.
But again, unlike exceptions, these assertions will not be part of
the class/method API.

● Create V5 by adding assertions to the end of withdraw
method of the Account class.

39 of 72

V5: Postconditions ≈ Assertions
1 public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 int oldBalance = this.balance;

5 if(amount < 0) { /* negated precondition */

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /* negated precondition */

8 throw new WithdrawAmountTooLargeException(); }

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 assert this.getBalance() == oldBalance - amount :

12 "Postcondition: balance deducted"; }

A postcondition typically relates the pre-execution value and
the post-execution value of each relevant attribute
(e.g.,balance in the case of withdraw).
⇒ Extra code (L4) to capture the pre-execution value of balance for
the comparison at L11.

40 of 72

V5: Why Better than V4?
1 public class BankAppV5 {

2 public static void main(String[] args) {

3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV5 jeremy = new AccountV5("Jeremy", 100);

5 System.out.println(jeremy);

6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }

9 /* catch statements same as this previous slide:

10 * V2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:

Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Exception in thread "main"

java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw(50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object .

41 of 72

Part 2.6

Supporting DbC:
Java vs. Eiffel

42 of 72

Evolving from V1 to V5
Improvements Made Design Flaws

V1 – Complete lack of Contract

V2 Added exceptions as
method preconditions

Preconditions not strong enough (i.e., with missing
cases) may result in an invalid account state.

V3 Added assertions as
class invariants –

V4
Deliberately changed
withdraw’s implementa-
tion to be incorrect.

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V5 Added assertions as
method postconditions –

● In Versions 2, 3, 4, 5, preconditions approximated as exceptions.
/ These are not preconditions, but their logical negation .
/ Client BankApp’s code complicated by repeating the list of try-catch statements.● In Versions 3, 4, 5, class invariants and postconditions approximated as assertions.
/ Unlike exceptions, these assertions will not appear in the API of withdraw.
Potential clients of this method cannot know : 1) what their benefits are; and 2) what
their suppliers’ obligations are.
/ For postconditions, extra code needed to capture pre-execution values of attributes.

43 of 72

V5: Contract between Client and Supplier

benefits obligations
BankAppV5.main balance deduction amount non-negative

(CLIENT) positive balance amount not too large
BankV5.withdraw amount non-negative balance deduction

(SUPPLIER) amount not too large positive balance

benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

44 of 72

DbC in Java
DbC is possible in Java, but not appropriate for your learning:● Preconditions of a method:

Supplier● Encode their logical negations as exceptions.● In the beginning of that method, a list of if-statements for throwing
the appropriate exceptions.

Client● A list of try-catch-statements for handling exceptions.● Postconditions of a method:
Supplier● Encoded as a list of assertions, placed at the end of that method.
Client● All such assertions do not appear in the API of that method.● Invariants of a class:
Supplier● Encoded as a list of assertions, placed at the end of every method.
Client● All such assertions do not appear in the API of that class.

45 of 72

DbC in Eiffel: Supplier
DbC is supported natively in Eiffel for supplier:
class ACCOUNT

create

make

feature -- Attributes

owner : STRING

balance : INTEGER

feature -- Constructors

make(nn: STRING; nb: INTEGER)

require -- precondition

positive_balance: nb > 0

do

owner := nn

balance := nb

end

feature -- Commands

withdraw(amount: INTEGER)

require -- precondition

non_negative_amount: amount > 0

affordable_amount: amount <= balance -- problematic, why?

do

balance := balance - amount

ensure -- postcondition

balance_deducted: balance = old balance - amount

end

invariant -- class invariant

positive_balance: balance > 0

end

46 of 72

DbC in Eiffel: Contract View of Supplier
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):
class ACCOUNT

create

make

feature -- Attributes

owner : STRING

balance : INTEGER

feature -- Constructors

make(nn: STRING; nb: INTEGER)

require -- precondition

positive_balance: nb > 0

end

feature -- Commands

withdraw(amount: INTEGER)

require -- precondition

non_negative_amount: amount > 0

affordable_amount: amount <= balance -- problematic, why?

ensure -- postcondition

balance_deducted: balance = old balance - amount

end

invariant -- class invariant

positive_balance: balance > 0

end

47 of 72

DbC in Eiffel: Anatomy of a Class
class SOME_CLASS

create

-- Explicitly list here commands used as constructors

feature -- Attributes

-- Declare attribute here

feature -- Commands

-- Declare commands (mutators) here

feature -- Queries

-- Declare queries (accessors) here

invariant

-- List of tagged boolean expressions for class invariants

end

● Use feature clauses to group attributes, commands, queries.● Explicitly declare list of commands under create clause, so
that they can be used as class constructors.

[See the groups panel in Eiffel Studio.]● The class invariant invariant clause may be omitted:○ There’s no class invariant: any resulting object state is acceptable.○ The class invariant is equivalent to writing invariant true
48 of 72

DbC in Eiffel: Anatomy of a Command
some_command (x: SOME_TYPE_1; y: SOME_TYPE_2)

-- Description of the command.

require

-- List of tagged boolean expressions for preconditions

local

-- List of local variable declarations

do

-- List of instructions as implementation

ensure

-- List of tagged boolean expressions for postconditions

end

● The precondition require clause may be omitted:○ There’s no precondition: any starting state is acceptable.○ The precondition is equivalent to writing require true
● The postcondition ensure clause may be omitted:○ There’s no postcondition: any resulting state is acceptable.○ The postcondition is equivalent to writing ensure true
49 of 72

DbC in Eiffel: Anatomy of a Query
some_query (x: SOME_TYPE_1; y: SOME_TYPE_2): SOME_RT

-- Description of the query.

require

-- List of tagged boolean expressions for preconditions

local

-- List of local variable declarations

do

-- List of instructions as implementation

Result := . . .
ensure

-- List of tagged boolean expressions for postconditions

end

● Each query has a predefined variable Result.● Implicitly, you may think of:
○ First line of the query declares Result: SOME_RT○ Last line of the query return the value of Result.⇒ Manipulate Result so that its last value is the desired result.

50 of 72

Part 3

DbC in Eiffel: Runtime Checking

51 of 72

Runtime Monitoring of Contracts (1)
In the specific case of ACCOUNT class with creation procedure
make and command withdraw:

STATE:
balance
owner

Class
Invariant
Violation

call
acc.withdraw(a)

Precondition
Violation

execute
acc.withdraw(a)

Postcondition
Violation

precond_make:
a > 0

execute
create {ACCOUNT} acc.make(a, n)

call
create {ACCOUNT} acc.make(a, n)

account_inv:
balance > 0

not (account_inv)

precond_withdraw:
0 < a and a < balance

not (precond_withdraw)

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner

not (precond_make)

postcond_make:
acc.balance = a and acc.owner = n

not (postcond_make)

not (postcond_withdraw)

52 of 72

Runtime Monitoring of Contracts (2)
In general, class C with creation procedure cp and any feature f:

STATE:
attributes of

class A

Class
Invariant
Violation

call
a.f(…)

Precondition
Violation

execute
a.f(…)

Postcondition
Violation

precond_make:
Pm

call
create {A} a.make(…)

a_inv:
I

not I

precond_f:
Pf

not Pf

not Pm

postcond_make:
Qm

not Qm

not Qf

execute
create {A} a.make(…)

postcond_f:
Qf

53 of 72

Runtime Monitoring of Contracts (3)

● All contracts are specified as Boolean expressions.
● Right before a feature call (e.g., acc.withdraw(10)):○ The current state of acc is called the pre-state.○ Evaluate feature withdraw’s pre-condition using current values

of attributes and queries.○ Cache values (implicitly) of all expressions involving the old
keyword in the post-condition .

e.g., cache the value of old balance via old balance ∶= balance

● Right after the feature call:○ The current state of acc is called the post-state.○ Evaluate class ACCOUNT’s invariant using current values of
attributes and queries.○ Evaluate feature withdraw’s post-condition using both current
and “cached” values of attributes and queries.

54 of 72

Experimenting Contract Violations in Eiffel

● Download the Eiffel project archive (a zip file) here:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/codes/DbCIntroEiffel.zip

● Unzip and compile the project in Eiffel Studio.
● Follow the in-code comments to re-produce the various

contract violations and understand from the stack trace how
they occur.

55 of 72

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntroEiffel.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntroEiffel.zip

DbC in Eiffel: Precondition Violation (1.1)
The client need not handle all possible contract violations:
class BANK_APP

inherit

ARGUMENTS

create

make

feature -- Initialization

make

-- Run application.

local

alan: ACCOUNT

do

-- A precondition violation with tag "positive_balance"

create {ACCOUNT} alan.make ("Alan", -10)

end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance").

56 of 72

DbC in Eiffel: Precondition Violation (1.2)

57 of 72

DbC in Eiffel: Precondition Violation (2.1)
The client need not handle all possible contract violations:
class BANK_APP

inherit

ARGUMENTS

create

make

feature -- Initialization

make

-- Run application.

local

mark: ACCOUNT

do

create {ACCOUNT} mark.make ("Mark", 100)

-- A precondition violation with tag "non_negative_amount"

mark.withdraw(-1000000)

end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non negative amount").

58 of 72

DbC in Eiffel: Precondition Violation (2.2)

59 of 72

DbC in Eiffel: Precondition Violation (3.1)
The client need not handle all possible contract violations:
class BANK_APP

inherit

ARGUMENTS

create

make

feature -- Initialization

make

-- Run application.

local

tom: ACCOUNT

do

create {ACCOUNT} tom.make ("Tom", 100)

-- A precondition violation with tag "affordable_amount"

tom.withdraw(150)

end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable amount").

60 of 72

DbC in Eiffel: Precondition Violation (3.2)

61 of 72

DbC in Eiffel: Class Invariant Violation (4.1)
The client need not handle all possible contract violations:
class BANK_APP

inherit

ARGUMENTS

create

make

feature -- Initialization

make

-- Run application.

local

jim: ACCOUNT

do

create {ACCOUNT} tom.make ("Jim", 100)

jim.withdraw(100)

-- A class invariant violation with tag "positive_balance"

end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

62 of 72

DbC in Eiffel: Class Invariant Violation (4.2)

63 of 72

DbC in Eiffel: Postcondition Violation (5.1)
The client need not handle all possible contract violations:
class BANK_APP

inherit ARGUMENTS

create make

feature -- Initialization

make

-- Run application.

local

jeremy: ACCOUNT

do

-- Faulty implementation of withdraw in ACCOUNT:

-- balance := balance + amount

create {ACCOUNT} jeremy.make ("Jeremy", 100)

jeremy.withdraw(150)

-- A postcondition violation with tag "balance_deducted"

end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance deducted").

64 of 72

DbC in Eiffel: Postcondition Violation (5.2)

65 of 72

Beyond this lecture...
1. Review your Lab0 tutorial about how DbC is supported in Eiffel.
2. Explore in Eclipse how contract checks are manually-coded :

https://www.eecs.yorku.ca/˜jackie/teaching/lectures/

2020/F/EECS3311/codes/DbCIntro.zip

3. Recall the 4th requirement of the bank problem (see here):

REQ4 : Given a bank, we may add a new account in it.
Design the header of this add method, implement it, and
encode proper pre-condition and post-condition for it.
Q. What postcondition can you think of? Does it require any
skill from EECS1090? What attribute value(s) do you need to
manually store in the pre-state?

4. 3 short courses which will help your labs and project:○ Eiffel Syntax: here.○ Common Syntax/Type Errors in Eiffel: here.○ Drawing Design Diagrams: here.
66 of 72

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.1-Eiffel-vs-Java.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.2-Eiffel-Common-Errors.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.3-Design-Diagrams.pdf

Index (1)

Learning Objectives

Part 1

Motivation: Catching Defects – When?

What this Course Is About (1)

What this Course Is About (2)

Terminology: Contract, Client, Supplier

Client, Supplier, Contract in OOP (1)

Client, Supplier, Contract in OOP (2)

What is a Good Design?

Part 2.1

A Simple Problem: Bank Accounts
67 of 72

Index (2)
Playing with the Various Versions in Java

V1: An Account Class

V1: Why Not a Good Design? (1)

V1: Why Not a Good Design? (2)

V1: Why Not a Good Design? (3)

Part 2.2

V1: How Should We Improve it? (1)

V1: How Should We Improve it? (2)

V2: Preconditions ≈ Exceptions

V2: Why Better than V1? (1)

V2: Why Better than V1? (2.1)
68 of 72

Index (3)
V2: Why Better than V1? (2.2)

V2: Why Better than V1? (3.1)

V2: Why Better than V1? (3.2)

V2: Why Still Not a Good Design? (1)

V2: Why Still Not a Good Design? (2.1)

V2: Why Still Not a Good Design? (2.2)

Part 2.3

V2: How Should We Improve it?

V3: Class Invariants ≈ Assertions

V3: Why Better than V2?

V3: Why Still Not a Good Design?
69 of 72

Index (4)
Part 2.4

V4: withdraw implemented incorrectly? (1)

V4: withdraw implemented incorrectly? (2)

Part 2.5

V4: How Should We Improve it?

V5: Postconditions ≈ Assertions

V5: Why Better than V4?

Part 2.6

Evolving from V1 to V5

V5: Contract between Client and Supplier

DbC in Java
70 of 72

Index (5)
DbC in Eiffel: Supplier

DbC in Eiffel: Contract View of Supplier

DbC in Eiffel: Anatomy of a Class

DbC in Eiffel: Anatomy of a Command

DbC in Eiffel: Anatomy of a Query

Part 3

Runtime Monitoring of Contracts (1)

Runtime Monitoring of Contracts (2)

Runtime Monitoring of Contracts (3)

Experimenting Contract Violations in Eiffel

DbC in Eiffel: Precondition Violation (1.1)
71 of 72

Index (6)
DbC in Eiffel: Precondition Violation (1.2)

DbC in Eiffel: Precondition Violation (2.1)

DbC in Eiffel: Precondition Violation (2.2)

DbC in Eiffel: Precondition Violation (3.1)

DbC in Eiffel: Precondition Violation (3.2)

DbC in Eiffel: Class Invariant Violation (4.1)

DbC in Eiffel: Class Invariant Violation (4.2)

DbC in Eiffel: Postcondition Violation (5.1)

DbC in Eiffel: Postcondition Violation (5.2)

Beyond this lecture...

72 of 72

Modularity

Abstract Data Types (ADTs)

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Criterion of Modularity , Modular Design

2. Abstract Data Types (ADTs)

2 of 16

Modularity (1): Childhood Activity

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.org and https://www.wish.com

3 of 16

https://commons.wikimedia.org
https://www.wish.com

Modularity (2): Daily Construction

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Source: https://usermanual.wiki/
4 of 16

https://usermanual.wiki/

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUs).

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: www.embeddedlinux.org.cn and https://en.wikipedia.org
5 of 16

www.embeddedlinux.org.cn
https://en.wikipedia.org

Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

TIME

H

H-(EPS/2)

QH=1(TRUE)

NC(No change)

L

L+(EPS/2)

H-EPS

L+EPS

QH=0(FASLE)

QL=0(FALSE)

QL=1(TRUE)

NC(No change)

X

152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3
6 of 16

https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.
sorted­collections

SORTED_MAP_ADT [K, V]*

feature ­­ model
 model: FUN[K, V]

 sorted_keys: ARRAY [K]

feature ­­ commands
 extend (key: K; val: V)

 require ¬has (key)

 remove (key: K)

 require has (key)

feature ­­ queries
 item(key:K): V

 has (key: K): BOOLEAN

invariant
 ∀i ∈ [1, model.count):
 sorted_keys[i] < sorted_keys[i+1]

 sorted_keys.count = model.count

 ∀k ∈ model.domain : k ∈ sorted_keys

+

SORTED_MODEL_MAP [K, V]

+

SORTED_MAP_

CURSOR [K, V]

*

SORTED_MAP_

DESIGN [K, V]

+

SORTED_RBT_

MAP [K, V]

+

SORTED_LINEAR_

MAP [K, V]

+

SORTED_BST_

MAP [K, V]

SORTED_ADT [K, V]*

feature ­­ model
 model: SEQ [KV_PAIR[K,V]]

feature ­­ commands
 extend (a_item: TUPLE [key: K; value: V])

 require ¬has (a_item.key)

 remove (a_key: K)

 require has (a_key)

feature ­­ queries
 item alias "[]" (a_key: K): V
 require has (a_key)

 as_array: ARRAY[KV_PAIR[K,V]]

invariant
 ∀i ∈ [1, model.count):
 model[i].key < model[i+1].key

 ∀i ∈ [1, model.count]:
 as_array[i] ~ model[i]

+

SORTED_

LINEAR [K, V]

+

SORTED_

TREE [K, V]

+

SORTED_

BST [K, V]

+

SORTED_

RBT [K, V]

new_cursor+

implementation

implementation

implementation

implementation

sorted­maps

student­design

ITERATION_CURSOR [G]*

item*: G

forth*

after*: BOOLEAN

new_cursor*
*

ITERABLE [G]

7 of 16

Design Principle: Modularity

● Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems

via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.

2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.● The UNIX principle: Each command does one thing and does it well.● In objected-oriented design (OOD), each class serves as a module.

3. Conquer original problem by assembling sub-solutions.● In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.● A modular design satisfies the criterion of modularity and is:○ Maintainable: fix issues by changing the relevant modules only.○ Extensible: introduce new functionalities by adding new modules.○ Reusable: a module may be used in different compositions● Opposite of modularity: A superman module doing everything.

8 of 16

Abstract Data Types (ADTs)

● Given a problem, decompose its solution into modules .
● Each module implements an abstract data type (ADT) :○ filters out irrelevant details○ contains a list of declared data and well-specified operations

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier’s Obligations:○ Implement all operations○ Choose the “right” data structure (DS)● Client’s Benefits:○ Correct output○ Efficient performance● The internal details of an implemented ADT should be hidden.
9 of 16

Building ADTs for Reusability

● ADTs are reusable software components
e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs● An ADT, once thoroughly tested, can be reused by:○ Suppliers of other ADTs○ Clients of Applications● As a supplier, you are obliged to:○ Implement given ADTs using other ADTs (e.g., arrays, linked lists,

hash tables, etc.)○ Design algorithms that make use of standard ADTs● For each ADT that you build, you ought to be clear about:○ The list of supported operations (i.e., interface)● The interface of an ADT should be more than method signatures and
natural language descriptions:

● How are clients supposed to use these methods? [preconditions]

● What are the services provided by suppliers? [postconditions]

○ Time (and sometimes space) complexity of each operation
10 of 16

Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.● A reasonably intuitive overview of the ADT.
Java 8 List API

11 of 16

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTs (2)

Methods described in a natural language can be ambiguous:

12 of 16

Why Eiffel Contract Views are ADTs (1)

class interface ARRAYED_CONTAINER

feature -- Commands

assign_at (i: INTEGER; s: STRING)
-- Change the value at position ’i’ to ’s’.

require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:

imp.count = (old imp.twin).count
item_assigned:

imp [i] ∼ s

others_unchanged:

across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER

13 of 16

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

14 of 16

Beyond this lecture...

1. Q. Can you think of more real-life examples of leveraging the
power of modularity?

2. Visit the Java API page:
https://docs.oracle.com/javase/8/docs/api

Visit collection classes which you used in EECS2030 (e.g.,
ArrayList, HashMap) and EECS2011.
Q. Can you identify/justify some example methods which
illustrate that these Java collection classes are not true ADTs
(i.e., ones with well-specified interfaces)?

3. Constrast with the corresponding library classes and features in
EiffelStudio (e.g., ARRAYED LIST, HASH TABLE).
Q. Are these Eiffel features better specified w.r.t.
obligations/benefits of clients/suppliers?

15 of 16

https://docs.oracle.com/javase/8/docs/api

Index (1)

Learning Objectives

Modularity (1): Childhood Activity

Modularity (2): Daily Construction

Modularity (3): Computer Architecture

Modularity (4): System Development

Modularity (5): Software Design

Design Principle: Modularity

Abstract Data Types (ADTs)

Building ADTs for Reusability

Why Java Interfaces Unacceptable ADTs (1)

Why Java Interfaces Unacceptable ADTs (2)

16 of 16

Index (2)

Why Eiffel Contract Views are ADTs (1)

Why Eiffel Contract Views are ADTs (2)

Beyond this lecture...

17 of 16

Copying Objects
Writing Complete Postconditions

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. 3 Levels of Copying Objects:

Reference vs. Shallow vs. Deep
2. Use of the old keyword in Postconditions
3. Writing Complete Postconditions using logical quantifications:

Universal (∀) vs. Existential (∃)

2 of 41

Part 1

Copying Objects

3 of 41

Copying Objects
Say variables c1 and c2 are both declared of type C. [c1, c2: C]
● There is only one attribute a declared in class C.
● c1.a and c2.a are references to objects.

a

C

c1

a

C

c2

c1.a

c2.a

4 of 41

Copying Objects: Reference Copy
Reference Copy c1 := c2○ Copy the address stored in variable c2 and store it in c1.⇒ Both c1 and c2 point to the same object.⇒ Updates performed via c1 also visible to c2. [aliasing]

a

C

c1

a

C

c2

c1.a

c2.a

5 of 41

Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin○ Create a temporary, behind-the-scene object c3 of type C.○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a○ Make a reference copy of c3: c1 := c3⇒ c1 and c2 are not pointing to the same object. [c1 /= c2]⇒ c1.a and c2.a are pointing to the same object.⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

6 of 41

Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin○ Create a temporary, behind-the-scene object c3 of type C.○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin○ Make a reference copy of c3: c1 := c3⇒ c1 and c2 are not pointing to the same object.⇒ c1.a and c2.a are not pointing to the same object.⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin

7 of 41

Copying Objects

EECS, York University Object Oriented Software Construction 15-05-27 16:29 28

Shallow and deep cloning

!  Initial situation:

!  Result of:

b := a

c := a.twin

d := a.deep_twin

“Almaviva” name
landlord

loved_one

a
O1

“Figaro”
O2

“Susanna”
O3

b

“Almaviva” O4

c

“Almaviva” name
landlord

loved_one

O5

“Figaro”
O6

“Susanna”
O7

d

8 of 41

Example: Collection Objects (1)
○ In any OOPL, when a variable is declared of a type that

corresponds to a known class (e.g., STRING, ARRAY,
LINKED LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).○ Assume the following variables of the same type:

local

imp : ARRAY[STRING]
old_imp: ARRAY[STRING]

do

create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Tom", 3)

● Before we undergo a change on imp, we “ copy ” it to old imp.
● After the change is completed, we compare imp vs. old imp.
● Can a change always be visible between “old” and “new ” imp?

9 of 41

Example: Collection Objects (2)
● Variables imp and old imp store address(es) of some array(s).● Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

imp[1] imp[2] imp[3]

imp

old_imp

??

10 of 41

Reference Copy of Collection Object

1 old imp := imp

2 Result := old_imp = imp -- Result = true
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j

6 all imp [j] ∼ old_imp [j]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value “Jim”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

11 of 41

Shallow Copy of Collection Object (1)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j

6 all imp [j] ∼ old_imp [j]
7 end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Jim”

STRING

value

12 of 41

Shallow Copy of Collection Object (2)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count is j

6 all imp [j] ∼ old_imp [j]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Mark***”

13 of 41

Deep Copy of Collection Object (1)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j

6 all imp [j] ∼ old_imp [j] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Jim”

STRING

value

14 of 41

Deep Copy of Collection Object (2)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count is j

6 all imp [j] ∼ old_imp [j] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Mark***”

15 of 41

Experiment: Copying Objects

● Download the Eiffel project archive (a zip file) here:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/codes/copying_objects.zip

● Unzip and compile the project in Eiffel Studio.
● Reproduce the illustrations explained in lectures.

16 of 41

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/copying_objects.zip

Part 2

Writing Complete Postconditions

17 of 41

How are contracts checked at runtime?○ All contracts are specified as Boolean expressions.○ Right before a feature call (e.g., acc.withdraw(10)):● The current state of acc is called its pre-state.● Evaluate pre-condition using current values of attributes/queries.
● Cache values, via := , of old expressions in the post-condition .

e.g., old accounts[i].id [old accounts i id ∶= accounts[i].id]

e.g., (old accounts[i]).id [old accounts i ∶= accounts[i]]

e.g., (old accounts[i].twin).id [old accounts i twin ∶= accounts[i].twin]

e.g., (old accounts)[i].id [old accounts ∶= accounts]

e.g., (old accounts.twin)[i].id [old accounts twin ∶= accounts.twin]

e.g., (old Current).accounts[i].id [old current ∶= Current]

e.g., (old Current.twin).accounts[i].id [old current twin ∶= Current.twin]○ Right after the feature call:● The current state of acc is called its post-state.
● Evaluate post-condition using both current values and “cached”

values of attributes and queries.● Evaluate invariant using current values of attributes and queries.18 of 41

When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .
● The second contract is much harder to specify:○ Reference aliasing [ref copy vs. shallow copy vs. deep copy]○ Iterable structure [use across]
19 of 41

Account
class

ACCOUNT

inherit

ANY

redefine is_equal end

create

make

feature -- Attributes

owner: STRING

balance: INTEGER

feature -- Commands

make (n: STRING)
do

owner := n

balance := 0
end

deposit(a: INTEGER)
do

balance := balance + a

ensure

balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN

do

Result :=
owner ∼ other.owner

and balance = other.balance
end

end

20 of 41

Bank
class BANK

create make

feature

accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end

account_of (n: STRING): ACCOUNT

require -- the input name exists

existing: across accounts is acc some acc.owner ∼ n end

-- not (across accounts is acc all acc.owner /∼ n end)

do . . . ensure Result.owner ∼ n end

add (n: STRING)
require -- the input name does not exist

non_existing: across accounts is acc all acc.owner /∼ n end

-- not (across accounts is acc some acc.owner ∼ n end)

local new_account: ACCOUNT

do

create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end

end

21 of 41

Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)
VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?

1 Correct Incomplete No

2 Wrong Incomplete No

3 Wrong Complete (reference copy) No

4 Wrong Complete (shallow copy) No

5 Wrong Complete (deep copy) Yes

22 of 41

Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b
accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts

23 of 41

Version 1:
Incomplete Contracts, Correct Implementation
class BANK

deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end

local i: INTEGER

do

from i := accounts.lower
until i > accounts.upper
loop

if accounts[i].owner ∼ n then accounts[i].deposit(a) end

i := i + 1
end

ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

end

end

24 of 41

Test of Version 1

class TEST_BANK

test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local

b: BANK

do

comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v1 ("Steve", 100)

Result :=
b.account_of("Bill").balance = 0

and b.account_of("Steve").balance = 100
check Result end

end

end

25 of 41

Test of Version 1: Result

26 of 41

Version 2:
Incomplete Contracts, Wrong Implementation
class BANK

deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end

local i: INTEGER

do . . .
-- imp. of version 1, followed by a deposit into 1st account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

end

end

Current postconditions lack a check that accounts other than n
are unchanged.

27 of 41

Test of Version 2

class TEST_BANK

test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local

b: BANK

do

comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v2 ("Steve", 100)

Result :=
b.account_of("Bill").balance = 0

and b.account_of("Steve").balance = 100
check Result end

end

end

28 of 41

Test of Version 2: Result

29 of 41

Version 3:
Complete Contracts with Reference Copy
class BANK

deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end

local i: INTEGER

do . . .
-- imp. of version 1, followed by a deposit into 1st account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :
across old accounts is acc

all

acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)
end

end

end

30 of 41

Test of Version 3

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local

b: BANK

do

comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v3 ("Steve", 100)

Result :=
b.account_of("Bill").balance = 0

and b.account_of("Steve").balance = 100
check Result end

end

end

31 of 41

Test of Version 3: Result

32 of 41

Version 4:
Complete Contracts with Shallow Object Copy
class BANK

deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end

local i: INTEGER

do . . .
-- imp. of version 1, followed by a deposit into 1st account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :
across old accounts.twin is acc

all

acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)
end

end

end

33 of 41

Test of Version 4

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN

local

b: BANK

do

comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v4 ("Steve", 100)

Result :=
b.account_of("Bill").balance = 0

and b.account_of("Steve").balance = 100
check Result end

end

end

34 of 41

Test of Version 4: Result

35 of 41

Version 5:
Complete Contracts with Deep Object Copy
class BANK

deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end

local i: INTEGER

do . . .
-- imp. of version 1, followed by a deposit into 1st account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :
across old accounts.deep twin is acc

all

acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)
end

end

end

36 of 41

Test of Version 5

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local

b: BANK

do

comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v5 ("Steve", 100)

Result :=
b.account_of("Bill").balance = 0

and b.account_of("Steve").balance = 100
check Result end

end

end

37 of 41

Test of Version 5: Result

38 of 41

Experiment: Complete Postconditions

● Download the Eiffel project archive (a zip file) here:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/codes/array_math_contract.zip

● Unzip and compile the project in Eiffel Studio.
● Reproduce the illustrations explained in lectures.

39 of 41

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/array_math_contract.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/array_math_contract.zip

Beyond this lecture

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [×]
○ accounts = old accounts.twin [×]
○ accounts = old accounts.deep twin [×]
○ accounts ∼ old accounts [×]
○ accounts ∼ old accounts.twin [×]
○ accounts ∼ old accounts.deep twin [✓]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?
40 of 41

Index (1)

Learning Objectives

Part 1

Copying Objects

Copying Objects: Reference Copy

Copying Objects: Shallow Copy

Copying Objects: Deep Copy

Example: Copying Objects

Example: Collection Objects (1)

Example: Collection Objects (2)

Reference Copy of Collection Object

Shallow Copy of Collection Object (1)
41 of 41

Index (2)
Shallow Copy of Collection Object (2)

Deep Copy of Collection Object (1)

Deep Copy of Collection Object (2)

Experiment: Copying Objects

Part 2

How are contracts checked at runtime?

When are contracts complete?

Account

Bank

Roadmap of Illustrations

Object Structure for Illustration
42 of 41

Index (3)
Version 1:
Incomplete Contracts, Correct Implementation

Test of Version 1

Test of Version 1: Result
Version 2:
Incomplete Contracts, Wrong Implementation

Test of Version 2

Test of Version 2: Result
Version 3:
Complete Contracts with Reference Copy

Test of Version 3

Test of Version 3: Result
43 of 41

Index (4)
Version 4:
Complete Contracts with Shallow Object Copy

Test of Version 4

Test of Version 4: Result
Version 5:
Complete Contracts with Deep Object Copy

Test of Version 5

Test of Version 5: Result

Experiment: Complete Postconditions

Beyond this lecture

44 of 41

Use of Generics

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. How to write a generic class (as a supplier)

2. How to use a generic class (as a client)

2 of 9

Generic Collection Class: Motivation (1)

class STRING _STACK

feature {NONE} -- Implementation

imp: ARRAY[STRING] ; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: STRING do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: STRING) do imp[i] := v; i := i + 1 end

-- Add ’v’ to top of stack.

pop do i := i - 1 end

-- Remove top of stack.

end

○ Does how we implement string stack operations (e.g., top, push,

pop) depends on features specific to element type STRING (e.g.,

at, append)? [NO!]○ How would you implement another class ACCOUNT STACK?

3 of 9

Generic Collection Class: Motivation (2)

class ACCOUNT _STACK

feature {NONE} -- Implementation

imp: ARRAY[ACCOUNT] ; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: ACCOUNT do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: ACCOUNT) do imp[i] := v; i := i + 1 end

-- Add ’v’ to top of stack.

pop do i := i - 1 end

-- Remove top of stack.

end

○ Does how we implement account stack operations (e.g., top,

push, pop) depends on features specific to element type

ACCOUNT (e.g., deposit, withdraw)? [NO!]○ A collection (e.g., table, tree, graph) is meant for the storage and

retrieval of elements, not how those elements are manipulated.
4 of 9

Generic Collection Class: Supplier

● Your design “smells” if you have to create an almost identical

new class (hence code duplicates) for every stack element

type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).● Instead, as supplier, use G to parameterize element type:

class STACK [G]

feature {NONE} -- Implementation

imp: ARRAY[G] ; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: G do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: G) do imp[i] := v; i := i + 1 end

-- Add ’v’ to top of stack.

pop do i := i - 1 end

-- Remove top of stack.

end

5 of 9

Generic Collection Class: Client (1.1)

As client, declaring ss: STACK[STRING] instantiates every

occurrence of G as STRING.

class STACK [�G STRING]

feature {NONE} -- Implementation

imp: ARRAY[�G STRING] ; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: �G STRING do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: �G STRING) do imp[i] := v; i := i + 1 end

-- Add ’v’ to top of stack.

pop do i := i - 1 end

-- Remove top of stack.

end

6 of 9

Generic Collection Class: Client (1.2)

As client, declaring ss: STACK[ACCOUNT] instantiates every

occurrence of G as ACCOUNT.

class STACK [�G ACCOUNT]

feature {NONE} -- Implementation

imp: ARRAY[�G ACCOUNT] ; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: �G ACCOUNT do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: �G ACCOUNT) do imp[i] := v; i := i + 1 end

-- Add ’v’ to top of stack.

pop do i := i - 1 end

-- Remove top of stack.

end

7 of 9

Generic Collection Class: Client (2)

As client, instantiate the type of G to be the one needed.

1 test_stacks: BOOLEAN

2 local

3 ss: STACK[STRING] ; sa: STACK[ACCOUNT]
4 s: STRING ; a: ACCOUNT

5 do

6 ss.push("A")
7 ss.push(create {ACCOUNT}.make ("Mark", 200))
8 s := ss.top
9 a := ss.top

10 sa.push(create {ACCOUNT}.make ("Alan", 100))
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

● L3 commits that ss stores STRING objects only.○ L8 and L10 valid ; L9 and L11 invalid .● L4 commits that sa stores ACCOUNT objects only.○ L12 and L14 valid ; L13 and L15 invalid .
8 of 9

Index (1)

Learning Objectives

Generic Collection Class: Motivation (1)

Generic Collection Class: Motivation (2)

Generic Collection Class: Supplier

Generic Collection Class: Client (1.1)

Generic Collection Class: Client (1.2)

Generic Collection Class: Client (2)

9 of 9

Abstractions via Mathematical Models

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. Creating a mathematical abstraction for alternative

implementations

2. Two design principles: Information Hiding and Single Choice
3. Review of the basic discrete math (self-guided)

2 of 19

Motivating Problem: Complete Contracts

● Recall what we learned in the Complete Contracts lecture:

○ In post-condition , for each attribute , specify the relationship

between its pre-state value and its post-state value.○ Use the old keyword to refer to post-state values of expressions.○ For a composite-structured attribute (e.g., arrays, linked-lists,

hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

● Let’s now revisit this technique by specifying a LIFO stack .

3 of 19

Motivating Problem: LIFO Stack (1)

● Let’s consider three different implementation strategies:

Stack Feature
Array Linked List

Strategy 1 Strategy 2 Strategy 3

count imp.count

top imp[imp.count] imp.first imp.last

push(g) imp.force(g, imp.count + 1) imp.put front(g) imp.extend(g)

pop
imp.list.remove tail (1) list.start imp.finish

list.remove imp.remove

● Given that all strategies are meant for implementing the same

ADT , will they have identical contracts?

4 of 19

Motivating Problem: LIFO Stack (2.1)
class LIFO_STACK[G] create make

feature {NONE} -- Strategy 1: array

imp: ARRAY[G]
feature -- Initialization

make do create imp.make_empty ensure imp.count = 0 end

feature -- Commands

push(g: G)
do imp.force(g, imp.count + 1)
ensure

changed: imp[count] ∼ g

unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end

end

pop
do imp.remove_tail(1)
ensure

changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end

end

5 of 19

Motivating Problem: LIFO Stack (2.2)
class LIFO_STACK[G] create make

feature {NONE} -- Strategy 2: linked-list first item as top

imp: LINKED_LIST[G]
feature -- Initialization

make do create imp.make ensure imp.count = 0 end

feature -- Commands

push(g: G)
do imp.put_front(g)
ensure

changed: imp.first ∼ g

unchanged: across 2 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item - 1] end

end

pop
do imp.start ; imp.remove
ensure

changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item + 1] end

end

6 of 19

Motivating Problem: LIFO Stack (2.3)
class LIFO_STACK[G] create make

feature {NONE} -- Strategy 3: linked-list last item as top

imp: LINKED_LIST[G]
feature -- Initialization

make do create imp.make ensure imp.count = 0 end

feature -- Commands

push(g: G)
do imp.extend(g)
ensure

changed: imp.last ∼ g

unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end

end

pop
do imp.finish ; imp.remove
ensure

changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end

end

7 of 19

Design Principles:
Information Hiding & Single Choice

● Information Hiding (IH):

○ Hide supplier’s design decisions that are likely to change.○ Violation of IH means that your design’s public API is unstable.○ Change of supplier’s secrets should not affect clients relying upon

the existing API.

● Single Choice Principle (SCP):

○ When a change is needed, there should be a single place (or a

minimal number of places) where you need to make that change.○ Violation of SCP means that your design contains redundancies.

8 of 19

Motivating Problem: LIFO Stack (3)
● Postconditions of all 3 versions of stack are complete .

i.e., Not only the new item is pushed/popped , but also the

remaining part of the stack is unchanged .● But they violate the principle of information hiding :

Changing the secret , internal workings of data structures

should not affect any existing clients.● How so?

The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:

● Top of stack may be imp[count] , imp.first , or imp.last .

● Remaining part of stack may be across 1 |..| count - 1 or

across 2 |..| count .

⇒ Changing the implementation strategy from one to another will

also change the contracts for all features .

⇒ This also violates the Single Choice Principle .
9 of 19

Math Models: Command vs Query
○ Use MATHMODELS library to create math objects (SET, REL, SEQ).○ State-changing commands: Implement an Abstraction Function

class LIFO_STACK[G -> attached ANY] create make

feature {NONE} -- Implementation

imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]

do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

end

○ Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make

feature -- Abstraction function of the stack ADT

model: SEQ[G]

feature -- Commands

push (g: G)
ensure model ∼ (old model.deep_twin).appended(g) end

10 of 19

Implementing an Abstraction Function (1)

class LIFO_STACK[G -> attached ANY] create make

feature {NONE} -- Implementation Strategy 1

imp: ARRAY[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]
do create Result.make from array (imp)
ensure

counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make empty ensure model.count = 0 end

push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ∼ (old model.deep twin).appended(g) end

pop do imp.remove tail(1)

ensure popped: model ∼ (old model.deep twin).front end

end

11 of 19

Abstracting ADTs as Math Models (1)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] imp: ARRAY[G]

abstraction
function

abstraction
function

convert the current array
into a math sequence

convert the current array
into a math sequence

imp.force(g, imp.count + 1)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 1 Abstraction function : Convert the implementation
array to its corresponding model sequence.● Contract for the put(g: G) feature remains the same:

model ∼ (old model.deep_twin).appended(g)

12 of 19

Implementing an Abstraction Function (2)
class LIFO_STACK[G -> attached ANY] create make

feature {NONE} -- Implementation Strategy 2 (first as top)

imp: LINKED LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.prepend(cursor.item) end

ensure

counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[count - i.item + 1]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put front(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end

pop do imp.start ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end

end

13 of 19

Abstracting ADTs as Math Models (2)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction
function

abstraction
function

convert the current liked list
into a math sequence

convert the current linked list
into a math sequence

imp.put_front(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 2 Abstraction function : Convert the implementation
list (first item is top) to its corresponding model sequence.● Contract for the put(g: G) feature remains the same:

model ∼ (old model.deep_twin).appended(g)

14 of 19

Implementing an Abstraction Function (3)
class LIFO_STACK[G -> attached ANY] create make

feature {NONE} -- Implementation Strategy 3 (last as top)

imp: LINKED LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.append(cursor.item) end

ensure

counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end

pop do imp.finish ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end

end

15 of 19

Abstracting ADTs as Math Models (3)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction
function

abstraction
function

convert the current liked list
into a math sequence

convert the current linked list
into a math sequence

imp.extend(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 3 Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.● Contract for the put(g: G) feature remains the same:

model ∼ (old model.deep_twin).appended(g)

16 of 19

Solution: Abstracting ADTs as Math Models
● Writing contracts in terms of implementation attributes (arrays,

LL’s, hash tables, etc.) violates information hiding principle.● Instead:○ For each ADT, create an abstraction via a mathematical model .

e.g., Abstract a LIFO STACK as a mathematical sequence .○ For each ADT, define an abstraction function (i.e., a query)

whose return type is a kind of mathematical model .

e.g., Convert implementation array to mathematical sequence○ Write contracts in terms of the abstract math model .

e.g., When pushing an item g onto the stack, specify it as

appending g into its model sequence.○ Upon changing the implementation:● No change on what the abstraction is, hence no change on contracts.● Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.

e.g., Convert implementation linked-list to mathematical sequence
⇒ The Single Choice Principle is obeyed.

17 of 19

Beyond this lecture . . .

● Familiarize yourself with the features of class SEQ.

18 of 19

Index (1)

Learning Objectives

Motivating Problem: Complete Contracts

Motivating Problem: LIFO Stack (1)

Motivating Problem: LIFO Stack (2.1)

Motivating Problem: LIFO Stack (2.2)

Motivating Problem: LIFO Stack (2.3)
Design Principles:
Information Hiding & Single Choice

Motivating Problem: LIFO Stack (3)

Math Models: Command vs Query

Implementing an Abstraction Function (1)
19 of 19

Index (2)
Abstracting ADTs as Math Models (1)

Implementing an Abstraction Function (2)

Abstracting ADTs as Math Models (2)

Implementing an Abstraction Function (3)

Abstracting ADTs as Math Models (3)

Solution: Abstracting ADTs as Math Models

Beyond this lecture . . .

20 of 19

Drawing a Design Diagram

using the Business Object Notation (BON)

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

● Purpose of a Design Diagram: an Abstraction of Your Design
● Architectural Relation: Client-Supplier vs. Inheritance
● Presenting a class: Compact vs. Detailed
● Denoting a Class or Feature: Deferred vs. Effective

2 of 26

Why a Design Diagram?

● SOURCE CODE is not an appropriate form for communication.
● Use a DESIGN DIAGRAM showing selective sets of important:○ clusters (i.e., packages)○ classes

[deferred vs. effective]
[generic vs. non-generic]○ architectural relations

[client-supplier vs. inheritance]○ routines (queries and commands)
[deferred vs. effective vs. redefined]○ contracts

[precondition vs. postcondition vs. class invariant]
● Your design diagram is called an abstraction of your system:
○ Being selective on what to show, filtering out irrelevant details○ Presenting contractual specification in a mathematical form

(e.g., ∀ instead of across . . . all . . . end).
3 of 26

Classes:

Detailed View vs. Compact View (1)

● Detailed view shows a selection of:○ features (queries and/or commands)○ contracts (class invariant and feature pre-post-conditions)○ Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

● Compact view shows only the class name.
○ Use the compact view if readers should not be bothered with

such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED LIST, HASH TABLE)

4 of 26

Classes:

Detailed View vs. Compact View (2)

Detailed View Compact View

FOO

feature	--	{	A,	B,	C	}
		--	features	exported	to	classes	A,	B,	and	C
feature	--	{	NONE	}
		--	private	features
invariant
		inv_1:	0	<	balance	<	1,000,000

FOO

5 of 26

Contracts: Mathematical vs. Programming

○ When presenting the detailed view of a class, you should include
contracts of features which you judge as important .○ Consider an array-based linear container:

ARRAYED_CONTAINER+

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	the	container

feature	--	Commands
		assign_at+	(i:	INTEGER;	s:	STRING)
						--	Change	the	value	at	position	'i'	to	's'.
				require
						valid_index:	1	≤	i	≤	count
				ensure
						size_unchanged:	imp.count	=	(old	imp.twin).count
						item_assigned:	imp[i]	~	s
						others_unchanged:	∀j	:	1	≤	j	≤	imp.count	:	j	≠	i	⇒imp[j]	~	(old	imp.twin)	[j]			

feature	--	{	NONE	}
		imp+:	ARRAY[STRING]
				--	Implementation	of	an	arrayed-container

invariant
				consistency:	imp.count	=	count

● A tag should be included for each contract.● Use mathematical symbols (e.g., ∀, ∃, ≤) instead of programming
symbols (e.g., across . . . all . . . , across . . . some . . . , <=).

6 of 26

Classes: Generic vs. Non-Generic

● A class is generic if it declares at least one type parameters.
○ Collection classes are generic: ARRAY[G], HASH TABLE[G, H], etc.○ Type parameter(s) of a class may or may not be instantiated :

HASH_TABLE[G,	H] MY_TABLE_1[STRING,	INTEGER] MY_TABLE_2[PERSON,	INTEGER]

○ If necessary, present a generic class in the detailed form:

DATABASE[G]+

feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	imp:	ARRAY[G]

invariant
		--	some	class	invariant	here

MY_DB_1[STRING]+

feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	imp:	ARRAY[STRING]

invariant
		--	some	class	invariant	here

MY_DB_2[PERSON]+

feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	imp:	ARRAY[PERSON]

invariant
		--	some	class	invariant	here

● A class is non-generic if it declares no type parameters.

7 of 26

Deferred vs. Effective

Deferred means unimplemented (≈ abstract in Java)

Effective means implemented

8 of 26

Classes: Deferred vs. Effective

● A deferred class has at least one feature unimplemented .○ A deferred class may only be used as a static type (for
declaration), but cannot be used as a dynamic type.○ e.g., By declaring list: LIST[INTEGER] (where LIST is a
deferred class), it is invalid to write:
● create list.make● create {LIST[INTEGER]} list.make

● An effective class has all features implemented .○ An effective class may be used as both static and dynamic types.○ e.g., By declaring list: LIST[INTEGER], it is valid to write:
● create {LINKED LIST[INTEGER]} list.make● create {ARRAYED LIST[INTEGER]} list.make

where LINKED LIST and ARRAYED LIST are both effective
descendants of LIST.

9 of 26

Features: Deferred, Effective, Redefined (1)

A deferred feature is declared with its header only
(i.e., name, parameters, return type).○ The word “deferred” means a descendant class would later

implement this feature.○ The resident class of the deferred feature must also be deferred .

deferred class

DATABASE[G]
feature -- Queries

search (g: G): BOOLEAN

-- Does item ‘g‘ exist in database?

deferred end

end

10 of 26

Features: Deferred, Effective, Redefined (2)

● An effective feature implements some inherited deferred
feature.
class

DATABASE_V1[G]
inherit

DATABASE[G]
feature -- Queries

search (g: G): BOOLEAN

-- Perform a linear search on the database.

do end

end

● A descendant class may still later re-implement this feature.

11 of 26

Features: Deferred, Effective, Redefined (3)

● A redefined feature re-implements some inherited effective
feature.
class

DATABASE_V2[G]
inherit

DATABASE_V1[G]
redefine search end

feature -- Queries

search (g: G): BOOLEAN

-- Perform a binary search on the database.

do end

end

● A descendant class may still later re-implement this feature.

12 of 26

Classes: Deferred vs. Effective (2.1)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

● Deferred or effective classes may be in the compact form:

DATABASE[G]* DATABASE_V1[G]+ DATABASE_V2[G]+

LIST[G]* LINKED_LIST[G]+ ARRAYED_LIST[G]+

LIST[LIST[PERSON]]* LINKED_LIST[INTEGER]+ ARRAYED_LIST[G]+

13 of 26

Classes: Deferred vs. Effective (2.2)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.● Deferred or effective classes may be in the detailed form:

DATABASE[G]*
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item*	(g:	G)
						--	Add	new	item	`g`	into	database.
				require	
						non_existing_item:	¬	exists	(g)
				ensure	
						size_incremented:	count	=	old	count	+	1
						item_added:	exists	(g)

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database
				ensure	
						correct_result:	Result	=	data.count

		exists*	(g:	G):	BOOLEAN
						--	Does	item	`g`	exist	in	database?
				ensure	
						correct_result:	Result	=	(∃i	:	1	≤	i	≤	count	:	data[i]	~	g)

DATABASE_V1[G]+
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item+	(g:	G)
						--	Append	new	item	`g`	into	end	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists+	(g:	G):	BOOLEAN
						--	Perform	a	linear	search	on	`data`	array.

DATABASE_V2[G]+
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item++	(g:	G)
						--	Insert	new	item	`g`	into	the	right	slot	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists++	(g:	G):	BOOLEAN
						--	Perform	a	binary	search	on	`data`	array.

		invariant
				sorted_data:		∀i	:	1	≤	i	<	count	:	data[i]	<	data[i	+	1]

14 of 26

Class Relations: Inheritance (1)

● An inheritance hierarchy is formed using red arrows.○ Arrow’s origin indicates the child /descendant class.○ Arrow’s destination indicates the parent /ancestor class.● You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

*

LIST[G]

MY_LIST_INTERFACE[G]*
feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	some	implementation	features	here

invariant
		--	some	class	invariant	here

+

MY_LIST_IMP_ONE[G]+

+

MY_LIST_IMP_TWO[G]+

15 of 26

Class Relations: Inheritance (2)

More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy Features being (Re-)Implemented

DATABASE[G]*

DATABASE_V1[G]+

DATABASE_V2[G]+

DATABASE[G]*
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item*	(g:	G)
						--	Add	new	item	`g`	into	database.
				require	
						non_existing_item:	¬	exists	(g)
				ensure	
						size_incremented:	count	=	old	count	+	1
						item_added:	exists	(g)

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database
				ensure	
						correct_result:	Result	=	data.count

		exists*	(g:	G):	BOOLEAN
						--	Does	item	`g`	exist	in	database?
				ensure	
						correct_result:	Result	=	(∃i	:	1	≤	i	≤	count	:	data[i]	~	g)

DATABASE_V1[G]+

DATABASE_V2[G]+
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item++	(g:	G)
						--	Insert	new	item	`g`	into	the	right	slot	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists++	(g:	G):	BOOLEAN
						--	Perform	a	binary	search	on	`data`	array.

		invariant
				sorted_data:		∀i	:	1	≤	i	<	count	:	data[i]	<	data[i	+	1]

16 of 26

Class Relations: Client-Supplier (1)

● A client-supplier (CS) relation exists between two classes:
one (the client) uses the service of another (the supplier).

● Programmatically, there is CS relation if in class CLIENT there
is a variable declaration s1: SUPPLIER .○ A variable may be an attribute, a parameter, or a local variable.

● A green arrow is drawn between the two classes.○ Arrow’s origin indicates the client class.○ Arrow’s destination indicates the supplier class.○ Above the arrow there should be a label indicating the supplier

name (i.e., variable name).○ In the case where supplier is a routine, indicate after the label
name if it is deferred (*), effective (+), or redefined (++).

17 of 26

Class Relations: Client-Supplier (2.1)

class DATABASE

feature {NONE} -- implementation

data: ARRAY[STRING]
feature -- Commands

add_name (nn: STRING)
-- Add name ‘nn‘ to database.

require . . . do . . . ensure . . . end

name_exists (n: STRING): BOOLEAN

-- Does name ‘n‘ exist in database?

require . . .
local

u: UTILITIES

do . . . ensure . . . end

invariant

. . .
end

class UTILITIES

feature -- Queries

search (a: ARRAY[STRING]; n: STRING): BOOLEAN

-- Does name ‘n‘ exist in array ‘a‘?

require . . . do . . . ensure . . . end

end

○ Query data: ARRAY[STRING] indicates two suppliers:
STRING and ARRAY.○ Parameters nn and n may have an arrow with label nn, n ,
pointing to the STRING class.○ Local variable u may have an arrow with label u , pointing to the
UTILITIES class.

18 of 26

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is data: ARRAY[...] ,
where . . . denotes the supplier class STRING being pointed to.

DATABASE+
feature	
		add_name+	(nn:	STRING)
						--	Add	name	`nn`	into	database.
				require
								...
				ensure
								...

		name_exists+	(n:	STRING):	BOOLEAN
						--	Does	name	`n`	exist?
				require
								...
				ensure
								...

invariant
		...

+
STRING

n,	nn

data+:	ARRAY[...]

UTILITIES+
feature	
		search+	(a:	ARRAY[STRING];	n:	STRING):	BOOLEAN
						--	Does	name	`n`	exist	in	array	`a`?
				require
								...
				ensure
								...

u

19 of 26

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is data .
The supplier’s name should be complete: ARRAY[STRING]

DATABASE+
feature	
		add_name+	(nn:	STRING)
						--	Add	name	`nn`	into	database.
				require
								...
				ensure
								...

		name_exists+	(n:	STRING):	BOOLEAN
						--	Does	name	`n`	exist?
				require
								...
				ensure
								...

invariant
		...

+
ARRAY[STRING]

n,	nn

u

data+

+
STRING

+
UTILITIES

20 of 26

Class Relations: Client-Supplier (3.1)

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED LIST).● DESIGN ONE:
class DATABASE_V1

feature {NONE} -- implementation

imp: ARRAYED_LIST[PERSON]
. . . -- more features and contracts

end

● DESIGN TWO:
class DATABASE_V2

feature {NONE} -- implementation

imp: LIST[PERSON]
. . . -- more features and contracts

end

Question: Which design is better? [DESIGN TWO]
Rationale: Program to the interface, not the implementation.

21 of 26

Class Relations: Client-Supplier (3.2.1)

We may focus on the PERSON supplier class, which may not
help judge which design is better.

DATABASE_V1+
feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	some	implementation	features	here

invariant
		--	some	class	invariant	here

+

PERSON

imp+:	ARRAYED_LIST[...]

DATABASE_V2+
feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	some	implementation	features	here

invariant
		--	some	class	invariant	here

+

PERSON

imp+:	LIST[...]

22 of 26

Class Relations: Client-Supplier (3.2.2)

Alternatively, we may focus on the LIST supplier class, which in
this case helps us judge which design is better.
DATABASE_V1+

feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	some	implementation	features	here

invariant
		--	some	class	invariant	here

+

ARRAYED_LIST[PERSON]

imp+

DATABASE_V2+
feature	

		--	some	public	features	here

feature	--	{	NONE	}

		--	some	implementation	features	here

invariant
		--	some	class	invariant	here

*

LIST[PERSON]

+

ARRAYED_LIST[PERSON]

+

LINKED_LIST[PERSON]

imp+

23 of 26

Clusters: Grouping Classes

Use clusters to group classes into logical units.

base-library

model

*
LIST[G]

+
ARRAYED_LIST[G]

+
LINKED_LIST[G]

imp

DATABASE[G]+
feature	--	Commands
		add_item++	(g:	G)
						--	Insert	new	item	`g`	into	the	right	slot	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists++	(g:	G):	BOOLEAN
						--	Perform	a	binary	search	on	`data`	array.

		invariant
				sorted_data:		∀i	:	1	≤	i	<	count	:	data[i]	<	data[i	+	1]

DATABASE[G]*

DATABASE_V1[G]+

DATABASE_TESTS+
db

tests

24 of 26

Beyond this lecture

● Your Lab0 introductory tutorial series contains the following
classes:○ BIRTHDAY○ BIRTHDAY BOOK○ TEST BIRTHDAY○ TEST BIRTHDAY BOOK○ TEST LIBRARY○ BAD BIRTHDAY VIOLATING DAY SET○ BIRTHDAY BOOK VIOLATING NAME ADDED TO END

Draw a design diagram showing the architectural relations
among the above classes.

25 of 26

Index (1)

Learning Objectives

Why a Design Diagram?

Classes:

Detailed View vs. Compact View (1)

Classes:

Detailed View vs. Compact View (2)

Contracts: Mathematical vs. Programming

Classes: Generic vs. Non-Generic

Deferred vs. Effective

Classes: Deferred vs. Effective

Features: Deferred, Effective, Redefined (1)

26 of 26

Index (2)

Features: Deferred, Effective, Redefined (2)

Features: Deferred, Effective, Redefined (3)

Classes: Deferred vs. Effective (2.1)

Classes: Deferred vs. Effective (2.2)

Class Relations: Inheritance (1)

Class Relations: Inheritance (2)

Class Relations: Client-Supplier (1)

Class Relations: Client-Supplier (2.1)

Class Relations: Client-Supplier (2.2.1)

Class Relations: Client-Supplier (2.2.2)

Class Relations: Client-Supplier (3.1)

27 of 26

Index (3)

Class Relations: Client-Supplier (3.2.1)

Class Relations: Client-Supplier (3.2.2)

Clusters: Grouping Classes

Beyond this lecture

28 of 26

Case Study: Abstraction of a Birthday Book

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Asserting Set Equality in Postconditions (Exercise)
2. The basics of discrete math (Self-Guided Study)

FUN is a REL, but not vice versa.

3. Creating a mathematical abstraction for a birthday book
4. Using commands and queries from two mathmodels classes:

REL and FUN

2 of 24

Math Review: Set Definitions and Membership

● A set is a collection of objects.○ Objects in a set are called its elements or members.○ Order in which elements are arranged does not matter.○ An element can appear at most once in the set.● We may define a set using:○ Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}○ Set Comprehension: Implicitly specify the condition that all
members satisfy.
e.g., {x � 1 ≤ x ≤ 10 ∧ x is an odd number}● An empty set (denoted as {} or �) has no members.● We may check if an element is a member of a set:
e.g., 5 ∈ {1,3,5,7,9} [true]
e.g., 4 �∈ {x � x ≤ 1 ≤ 10,x is an odd number} [true]● The number of elements in a set is called its cardinality .

e.g., ��� = 0, �{x � x ≤ 1 ≤ 10,x is an odd number}� = 5
3 of 24

Math Review: Set Relations

Given two sets S1 and S2:
● S1 is a subset of S2 if every member of S1 is a member of S2.

S1 ⊆ S2 ⇐⇒ (∀x ● x ∈ S1 ⇒ x ∈ S2)

● S1 and S2 are equal iff they are the subset of each other.

S1 = S2 ⇐⇒ S1 ⊆ S2 ∧S2 ⊆ S1

● S1 is a proper subset of S2 if it is a strictly smaller subset.

S1 ⊂ S2 ⇐⇒ S1 ⊆ S2 ∧ �S1� < �S2�
4 of 24

Math Review: Set Operations

Given two sets S1 and S2:
● Union of S1 and S2 is a set whose members are in either.

S1 ∪S2 = {x � x ∈ S1 ∨ x ∈ S2}

● Intersection of S1 and S2 is a set whose members are in both.

S1 ∩S2 = {x � x ∈ S1 ∧ x ∈ S2}

● Difference of S1 and S2 is a set whose members are in S1 but
not S2.

S1 �S2 = {x � x ∈ S1 ∧ x �∈ S2}
5 of 24

Math Review: Power Sets

The power set of a set S is a set of all S’ subsets.

P(S) = {s � s ⊆ S}

The power set contains subsets of cardinalities 0, 1, 2, . . . , �S�.
e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

�������������

�,{1}, {2}, {3},{1,2}, {2,3}, {3,1},{1,2,3}

�������������
6 of 24

Math Review: Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross product of theses sets is
a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) � ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}= { (e1,e2,e3) � e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }
= {(a,2,$), (a,2,&), (a,4,$), (a,4,&),(b,2,$), (b,2,&), (b,4,$), (b,4,&)}

7 of 24

Math Models: Relations (1)

● A relation is a collection of mappings, each being an ordered

pair that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}○ � is an empty relation.○ S × T is a relation (say r1) that maps from each member of S to

each member in T : {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}○ {(x ,y) ∶ S × T � x ≠ 1} is a relation (say r2) that maps only some
members in S to every member in T : {(2,a), (2,b), (3,a), (3,b)}.● Given a relation r :○ Domain of r is the set of S members that r maps from.

dom(r) = {s ∶ S � (∃t ● (s, t) ∈ r)}
e.g., dom(r1) = {1,2,3}, dom(r2) = {2,3}○ Range of r is the set of T members that r maps to.

ran(r) = {t ∶ T � (∃s ● (s, t) ∈ r)}
e.g., ran(r1) = {a,b} = ran(r2)

8 of 24

Math Models: Relations (2)

● We use the power set operator to express the set of all possible

relations on S and T :
P(S × T)

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T)
● Or alternatively, we write:

r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T)
9 of 24

Math Models: Relations (3.1)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}
● r.domain : set of first-elements from r○ r.domain = { d � (d , r) ∈ r }○ e.g., r.domain = {a,b,c,d ,e, f}
● r.range : set of second-elements from r

○ r.range = { r � (d , r) ∈ r }○ e.g., r.range = {1,2,3,4,5,6}
● r.inverse : a relation like r except elements are in reverse order○ r.inverse = { (r ,d) � (d , r) ∈ r }○ e.g., r.inverse = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}

10 of 24

Math Models: Relations (3.2)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}● r.domain restricted(ds) : sub-relation of r with domain ds.○ r.domain restricted(ds) = { (d , r) � (d , r) ∈ r ∧ d ∈ ds }○ e.g., r.domain restricted({a, b}) = {(a,1), (b,2), (a,4), (b,5)}● r.domain subtracted(ds) : sub-relation of r with domain not ds.○ r.domain subtracted(ds) = { (d , r) � (d , r) ∈ r ∧ d �∈ ds }○ e.g., r.domain subtracted({a, b}) ={(c,3), (c,6), (d,1), (e,2), (f,3)}● r.range restricted(rs) : sub-relation of r with range rs.○ r.range restricted(rs) = { (d , r) � (d , r) ∈ r ∧ r ∈ rs }○ e.g., r.range restricted({1, 2}) = {(a,1), (b,2), (d ,1), (e,2)}● r.range subtracted(ds) : sub-relation of r with range not ds.○ r.range subtracted(rs) = { (d , r) � (d , r) ∈ r ∧ r �∈ rs }○ e.g., r.range subtracted({1, 2}) ={{(c,3), (a,4), (b,5), (c,6), (f ,3)}}
11 of 24

Math Models: Relations (3.3)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}
● r.overridden(t) : a relation which agrees on r outside domain of

t .domain, and agrees on t within domain of t .domain○ r.overridden(t) = t ∪ r .domain subtracted(t .domain)○
r .overridden({(a,3), (c,4)}���

t

)
= {(a,3), (c,4)}���

t

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}���
r .domain subtracted(t .domain����������������������������

{a,c}
)

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}
12 of 24

Math Review: Functions (1)

A function f on sets S and T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T .

∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ f ∧ (s, t2) ∈ f ⇒ t1 = t2

e.g., Say S = {1,2,3} and T = {a,b}, which of the following
relations are also functions?○ S × T [No]○ (S × T) − {(x ,y) � (x ,y) ∈ S × T ∧ x = 1} [No]○ {(1,a), (2,b), (3,a)} [Yes]○ {(1,a), (2,b)} [Yes]

13 of 24

Math Review: Functions (2)

● We use set comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

{r ∶ S↔ T �(∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)}
● This set (of possible functions) is a subset of the set (of

possible relations): P(S × T) and S↔ T .
● We abbreviate this set of possible functions as S→ T and use it

to declare a function variable f :

f ∶ S→ T

14 of 24

Math Review: Functions (3.1)

Given a function f ∶ S→ T :
● f is injective (or an injection) if f does not map two members of

S to the same member of T .

f is injective ⇐⇒(∀s1 ∶ S;s2 ∶ S; t ∶ T ● (s1, t) ∈ r ∧ (s2, t) ∈ r ⇒ s1 = s2)
e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

● f is surjective (or a surjection) if f maps to all members of T .

f is surjective ⇐⇒ ran(f) = T

● f is bijective (or a bijection) if f is both injective and surjective.
15 of 24

Math Review: Functions (3.2)

16 of 24

Math Models: Command-Query Separation

Command Query

domain restrict domain restricted
domain restrict by domain restricted by
domain subtract domain subtracted

domain subtract by domain subtracted by

range restrict range restricted
range restrict by range restricted by
range subtract range subtracted

range subtract by range subtracted by

override overridden
override by overridden by

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}● Commands modify the context relation objects.
r.domain restrict({a}) changes r to {(a,1), (a,4)}

● Queries return new relations without modifying context objects.
r.domain restricted({a}) returns {(a,1), (a,4)} with r untouched

17 of 24

Math Models: Example Test

test_rel: BOOLEAN

local

r, t: REL[STRING, INTEGER]
ds: SET[STRING]

do

create r.make_from_tuple_array (
<<["a", 1], ["b", 2], ["c", 3],

["a", 4], ["b", 5], ["c", 6],
["d", 1], ["e", 2], ["f", 3]>>)

create ds.make_from_array (<<"a">>)
-- r is not changed by the query ‘domain_subtracted’
t := r.domain subtracted (ds)
Result :=
t /∼ r and not t.domain.has ("a") and r.domain.has ("a")

check Result end

-- r is changed by the command ‘domain_subtract’
r.domain subtract (ds)
Result :=
t ∼ r and not t.domain.has ("a") and not r.domain.has ("a")

end

18 of 24

Case Study: A Birthday Book

● A birthday book stores a collection of entries, where each entry
is a pair of a person’s name and their birthday.

● No two entries stored in the book are allowed to have the same
name.

● Each birthday is characterized by a month and a day.
● A birthday book is first created to contain an empty collection of

entires.
● Given a birthday book, we may:○ Inquire about the number of entries currently stored in the book○ Add a new entry by supplying its name and the associated birthday○ Remove the entry associated with a particular person○ Find the birthday of a particular person○ Get a reminder list of names of people who share a given birthday

19 of 24

Birthday Book: Decisions

● Design Decision○ Classes○ Client Supplier vs. Inheritance○ Mathematical Model? [e.g., REL or FUN]○ Contracts
● Implementation Decision○ Two linear structures (e.g., arrays, lists) [O(n)]○ A balanced search tree (e.g., AVL tree) [O(log ⋅ n)]○ A hash table [O(1)]
● Implement an abstraction function that maps implementation

to the math model.

20 of 24

Birthday Book: Design

BIRTHDAY_BOOK
model:	FUN[NAME,	BIRTHDAY]

			--	abstraction	function

count:	INTEGER	

			--	number	of	entries

put(n:	NAME;	d:	BIRTHDAY)

			ensure	
							model_operation:	model	~	(old	model.deep_twin).overriden_by	([n,d])
							--	infix	symbol	for	override	operator:	@<+

remind(d:	BIRTHDAY):	ARRAY[NAME]

			ensure	
						nothing_changed:	model	~	(old	model.deep_twin)
						same_counts:	Result.count	=	(model.range_restricted_by(d)).count
						same_contents:	∀	name	∈	(model.range_restricted_by(d)).domain:	name	∈	Result
						--	infix	symbol	for	range	restriction:	model	@>	(d)

invariant:
			consistent_book_and_model_counts:	count	=	model.count

NAME
item:	STRING

invariant
			item[1]	∈	A..Z

	

BIRTHDAY
day:	INTEGER

month:	INTEGER

invariant
			1	≤	month	≤	12

			1	≤	day	≤	31

	

model:	FUN[NAME,	..]

remind:	ARRAY[..]

21 of 24

Birthday Book: Implementation

BIRTHDAY_BOOK
model:	FUN[NAME,	BIRTHDAY]
						--	abstraction	function
			do
						--	promote	hashtable	to	function
			ensure
						same_counts:	Result.count	=	implementation.count
						same_contents:	∀	[name,	date]	∈	Result:	[name,	date]	∈	implementation
			end

put(n:	NAME;	d:	BIRTHDAY)
			do
						--	implement	using	hashtable
			ensure
						model_operation:	model	~	(old	model.deep_twin)	@<+	[n,d]
			end

remind(d:	BIRTHDAY):	ARRAY[NAME]
			do
						--	implement	using	hashtable
			ensure
						nothing_changed:	model	~	(old	model.deep_twin)
						same_counts:	Result.count	=	(model	@>	d).count
						same_contents:	∀	name	∈	(model	@>	d).domain:	name	∈	Result	
			end

count:	INTEGER	--	number	of	names

feature	{NONE}
			implementation:	HASH_TABLE[BIRTHDAY,	NAME]

invariant:
			consistent_book_and_model_counts:	count	=	model.count
			consistent_book_and_imp_counts:	count	=	implementation.count

*
HASHABLE

BIRTHDAY
day:	INTEGER
month:	INTEGER

invariant
			1	≤	month	≤	12
			1	≤	day	≤	31

	

model:	FUN[NAME,	..]

remind:	ARRAY[..]

NAME
item:	STRING

invariant
			item[1]	∈	A..Z

	

22 of 24

Beyond this lecture . . .

● Familiarize yourself with the features of class REL, FUN, and
SET.

● Exercise:○ Consider an alternative implementation using two linear structures
(e.g., here in Java).○ Implement the design of birthday book covered in lectures.○ Create another LINEAR BIRTHDAY BOOK class and modify the
implementation of abstraction function accordingly.
Do all contracts still pass? What should change? What remain
unchanged?

23 of 24

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#oop_java

Index (1)

Learning Objectives

Math Review: Set Definitions and Membership

Math Review: Set Relations

Math Review: Set Operations

Math Review: Power Sets

Math Review: Set of Tuples

Math Models: Relations (1)

Math Models: Relations (2)

Math Models: Relations (3.1)

Math Models: Relations (3.2)

Math Models: Relations (3.3)

24 of 24

Index (2)

Math Review: Functions (1)

Math Review: Functions (2)

Math Review: Functions (3.1)

Math Review: Functions (3.2)

Math Models: Command-Query Separation

Math Models: Example Test

Case Study: A Birthday Book

Birthday Book: Decisions

Birthday Book: Design

Birthday Book: Implementation

Beyond this lecture . . .

25 of 24

Design Pattern: Iterator

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Motivating Problem of the Iterator Design Pattern
2. Supplier: Implementing the Iterator Design Pattern
3. Client: Using the Iterator Design Pattern
4. A Challenging Exercise (architecture & generics)

2 of 22

What are design patterns?

● Solutions to recurring problems that arise when software is
being developed within a particular context .○ Heuristics for structuring your code so that it can be systematically

maintained and extended.○ Caveat : A pattern is only suitable for a particular problem.○ Therefore, always understand problems before solutions!

3 of 22

Iterator Pattern: Motivation (1)

Supplier:
class

CART
feature

orders: ARRAY[ORDER]

end

class

ORDER
feature

price: INTEGER

quantity: INTEGER

end

Problems?

Client:
class

SHOP
feature

cart: CART
checkout: INTEGER

do

from

i := cart.orders.lower
until

i > cart.orders.upper
do

Result := Result +

cart.orders[i].price
*

cart.orders[i].quantity
i := i + 1

end

end

end

4 of 22

Iterator Pattern: Motivation (2)

Supplier:
class

CART
feature

orders: LINKED LIST[ORDER]

end

class

ORDER
feature

price: INTEGER

quantity: INTEGER

end

Client’s code must be modi-
fied to adapt to the supplier’s
change on implementation.

Client:
class

SHOP
feature

cart: CART
checkout: INTEGER

do

from

cart.orders.start
until

cart.orders.after
do

Result := Result +

cart.orders.item.price
*

cart.orders.item.quantity
end

end

end

5 of 22

Iterator Pattern: Architecture

iterable_collection

client

BANK+

feature	--	Queries
			accounts+:	ITERABLE[ACCOUNT]
						--	List	of	active	accounts	in	the	bank

			account_of+	(name:	STRING):	ACCOUNT
									--	The	account	object	whose	owner	is	`name`.
						require

									owner_exists:	
												∃acc	:	acc	∈	accounts	:	acc.owner	~	name
						ensure

									correct_result:
												Result.owner	~	name

feature	--	Commands
			withdraw_from+	(n:	STRING;	a:	INTEGER)	
									--	Withdraw	amount	`a`	from	account	with	owner	`n`.
						require	

									owner_exists:	
												∃acc	:	acc	∈	accounts	:	acc.owner	~	n
									positive_amount:	
												a	>	0	

									affordable_amount:	
												a	≤	account_of	(name).balance

						ensure

									number_of_accounts_unchanged:	
												accounts.count	=	old	accounts.count

									balance_of_name_decreased:
												account_of	(n).balance	=	old	account_of	(n).balance	-	a

									others_unchanged:
												∀	acc	:	acc	∈	accounts.deep_twin	:
																												acc.owner	/~	n	⇒	acc	~	account_of	(acc.owner)

invariant

			unique_account_owners:
						∀acc1,	acc2	:	acc1	∈	accounts	∧	acc2	∈	accounts	:		
																																acc1.owner	~	acc2.owner	

																																⇒	

																																account_of	(acc1)	=	account_of	(acc2)

ITERATION_CURSOR[G]*

feature	--	Access
			item*:	G
									--	Item	at	the	current	cursor	position
						require

									valid_position:		¬	after

feature	--	Status	report
			after*:	BOOLEAN
									--	Are	there	no	more	items	to	iterate	over?

feature	--	Cursor	movement
			forth*	
									--	Move	to	next	position.
						require

									valid_position:		¬	after

ITERABLE[G]*

feature	--	Access
			new_cursor*:	ITERATION_CURSOR[G]
						--	Fresh	cursor	associated	with	current	structure
						ensure

									result_attached:	Result	≠	Void

new_cursor*

*
INDEXABLE_ITERATION_CURSOR[G]

+
ARRAY_ITERATION_CURSOR[G]

+
LINKED_LIST_ITERATION_CURSOR[G]

+
HASH_TABLE_ITERATION_CURSOR[G,	K]

+
ARRAY[G]

+
LINKED_LIST[G]

+
HASH_TABLE[G,	K]

new_cursor+
new_cursor+

new_cursor+

supplier

accounts+

6 of 22

Iterator Pattern: Supplier’s Side
● Information Hiding Principle :
○ Hide design decisions that are likely to change (i.e., stable API).○ Change of secrets does not affect clients using the existing API.

e.g., changing from ARRAY to LINKED LIST in the CART class
● Steps:

1. Let the supplier class inherit from the deferred class
ITERABLE[G] .

2. This forces the supplier class to implement the inherited feature:
new cursor: ITERATION CURSOR [G] , where the type parameter
G may be instantiated (e.g., ITERATION CURSOR[ORDER]).

2.1 If the internal, library data structure is already iterable
e.g., imp: ARRAY[ORDER], then simply return imp.new cursor.

2.2 Otherwise, say imp: MY TREE[ORDER], then create a new class
MY TREE ITERATION CURSOR that inherits from
ITERATION CURSOR[ORDER] , then implement the 3 inherited
features after , item, and forth accordingly.

7 of 22

Iterator Pattern: Supplier’s Implementation (1)

class

CART
inherit

ITERABLE[ORDER]

. . .

feature {NONE} -- Information Hiding
orders: ARRAY[ORDER]

feature -- Iteration
new_cursor: ITERATION_CURSOR[ORDER]
do

Result := orders.new_cursor
end

When the secrete implementation is already iterable, reuse it!

8 of 22

Iterator Pattern: Supplier’s Imp. (2.1)

class

GENERIC_BOOK[G]
inherit

ITERABLE[TUPLE[STRING, G]]

. . .
feature {NONE} -- Information Hiding
names: ARRAY[STRING]

records: ARRAY[G]
feature -- Iteration
new_cursor: ITERATION_CURSOR[TUPLE[STRING, G]]

local

cursor: MY ITERATION CURSOR[G]
do

create cursor.make (names, records)
Result := cursor

end

No Eiffel library support for iterable arrays⇒ Implement it yourself!

9 of 22

Iterator Pattern: Supplier’s Imp. (2.2)
class

MY_ITERATION_CURSOR[G]
inherit

ITERATION_CURSOR[TUPLE[STRING, G]]

feature -- Constructor
make (ns: ARRAY[STRING]; rs: ARRAY[G])
do . . . end

feature {NONE} -- Information Hiding
cursor_position: INTEGER

names: ARRAY[STRING]

records: ARRAY[G]
feature -- Cursor Operations
item: TUPLE[STRING, G]
do . . . end

after: Boolean

do . . . end

forth
do . . . end

You need to implement the three inherited features:
item, after, and forth.

10 of 22

Iterator Pattern: Supplier’s Imp. (2.3)

Visualizing iterator pattern at runtime:

1 2 3 … names.upper

1 2 3 … records.upper

ArrayedMap
inherit ITERABLE[TUPLE[STRING, G]]

names

records

new_cursor

ITERATION_CURSOR[TUPLE[STRING, G]]

values_1

values_2

item
after, forth

1cursor_position

11 of 22

Exercises

1. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.

2. Draw the BON diagram showing how the iterator pattern is
applied to the supplier classes:○ GENERIC BOOK (a descendant of ITERABLE) and○ MY ITERATION CURSOR (a descendant of

ITERATION CURSOR).

12 of 22

Resources

● Tutorial Videos on Generic Parameters and the Iterator Pattern
● Tutorial Videos on Information Hiding and the Iterator Pattern
● Tutorial on Making a Birthday Book (implemented using

HASH TABLE) ITERABLE

13 of 22

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#generic_parameter
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#information_hiding
https://www.youtube.com/watch?v=TrgpbQ6d3Ag&list=PL5dxAmCmjv_5O2hx1ARzjI5LQhkX477bw&index=14
https://www.youtube.com/watch?v=TrgpbQ6d3Ag&list=PL5dxAmCmjv_5O2hx1ARzjI5LQhkX477bw&index=14

Iterator Pattern: Client’s Side

Information hiding : the clients do not at all depend on how the
supplier implements the collection of data; they are only interested
in iterating through the collection in a linear manner.
Steps:

1. Obey the code to interface, not to implementation principle.
2. Let the client declare an attribute of interface type

ITERABLE[G] (rather than implementation type ARRAY,
LINKED LIST, or MY TREE).
e.g., cart: CART, where CART inherits ITERATBLE[ORDER]

3. Eiffel supports, in both implementation and contracts, the
across syntax for iterating through anything that’s iterable.

14 of 22

Iterator Pattern:
Clients using across for Contracts (1)
class

CHECKER
feature -- Attributes
collection: ITERABLE [INTEGER]

feature -- Queries
is all positive: BOOLEAN

-- Are all items in collection positive?
do

. . .
ensure

across

collection is item
all

item > 0

end

end

● Using all corresponds to a universal quantification (i.e., ∀).● Using some corresponds to an existential quantification (i.e., ∃).
15 of 22

Iterator Pattern:
Clients using across for Contracts (2)
class BANK
. . .
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT

-- Search on accounts sorted in non-descending order.
require

across

1 |..| (accounts.count - 1) is i
all

accounts [i].id <= accounts [i + 1].id
end

do

. . .
ensure

Result.id = acc_id
end

This precondition corresponds to:
∀i ∶ INTEGER � 1 ≤ i < accounts.count ● accounts[i].id ≤ accounts[i +1].id

16 of 22

Iterator Pattern:
Clients using across for Contracts (3)
class BANK
. . .
accounts: LIST [ACCOUNT]
contains_duplicate: BOOLEAN

-- Does the account list contain duplicate?
do

. . .
ensure∀i, j ∶ INTEGER �

1 ≤ i ≤ accounts.count ∧ 1 ≤ j ≤ accounts.count ●
accounts[i] ∼ accounts[j]⇒ i = j

end

● Exercise: Convert this mathematical predicate for
postcondition into Eiffel.● Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

17 of 22

Iterator Pattern:
Clients using Iterable in Imp. (1)
class BANK
accounts: ITERABLE [ACCOUNT]
max_balance: ACCOUNT

-- Account with the maximum balance value.
require ??
local

cursor: ITERATION_CURSOR[ACCOUNT]; max: ACCOUNT
do

from cursor := accounts. new cursor ; max := cursor. item

until cursor. after
do

if cursor. item .balance > max.balance then

max := cursor. item
end

cursor. forth
end

ensure ??
end

18 of 22

Iterator Pattern:
Clients using Iterable in Imp. (2)

1 class SHOP
2 cart: CART
3 checkout: INTEGER

4 -- Total price calculated based on orders in the cart.

5 require ??
6 do

7 across

8 cart is order
9 loop

10 Result := Result + order.price * order.quantity
11 end

12 ensure ??
13 end

● Class CART should inherit from ITERABLE[ORDER] .
● L10 implicitly declares cursor: ITERATION CURSOR[ORDER]

and does cursor := cart.new cursor

19 of 22

Iterator Pattern:
Clients using Iterable in Imp. (3)
class BANK
accounts: LIST[ACCOUNT] -- Q: Can ITERABLE[ACCOUNT] work?
max_balance: ACCOUNT

-- Account with the maximum balance value.
require ??
local

max: ACCOUNT
do

max := accounts [1]

across

accounts is acc
loop

if acc.balance > max.balance then

max := acc
end

end

ensure ??
end

20 of 22

Beyond this lecture . . .

● Tutorial Videos on Iterator Pattern
● Exercise: Architecture & Generics

21 of 22

Index (1)

Learning Objectives

What are design patterns?

Iterator Pattern: Motivation (1)

Iterator Pattern: Motivation (2)

Iterator Pattern: Architecture

Iterator Pattern: Supplier’s Side

Iterator Pattern: Supplier’s Implementation (1)

Iterator Pattern: Supplier’s Imp. (2.1)

Iterator Pattern: Supplier’s Imp. (2.2)

Iterator Pattern: Supplier’s Imp. (2.3)

Exercises
22 of 22

Index (2)

Resources

Iterator Pattern: Client’s Side
Iterator Pattern:
Clients using across for Contracts (1)
Iterator Pattern:
Clients using across for Contracts (2)
Iterator Pattern:
Clients using across for Contracts (3)
Iterator Pattern:
Clients using Iterable in Imp. (1)
Iterator Pattern:
Clients using Iterable in Imp. (2)

23 of 22

Index (3)
Iterator Pattern:
Clients using Iterable in Imp. (3)

Beyond this lecture . . .

24 of 22

Singleton Design Pattern

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. Modeling Concept of Expanded Types (Compositions)

2. Once Routines in Eiffel vs. Static Methods in Java

3. Export Status

4. Sharing via Inheritance (w.r.t. SCP and Cohesion)

5. Singleton Design Pattern

2 of 23

Expanded Class: Modelling
● We may want to have objects which are:○ Integral parts of some other objects○ Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.

All workstations share the same network.

3 of 23

Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end

class MONITOR . . . end class NETWORK . . . end

class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:

expanded class KEYBOARD . . . end

expanded class CPU . . . end

expanded class MONITOR . . . end

class NETWORK . . . end

class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

end

4 of 23

Expanded Class: Programming (3)

expanded class

B
feature

change_i (ni: INTEGER)

do

i := ni
end

feature

i: INTEGER

end

1 test_expanded
2 local

3 eb1, eb2: B
4 do

5 check eb1.i = 0 and eb2.i = 0 end

6 check eb1 = eb2 end

7 eb2.change_i (15)

8 check eb1.i = 0 and eb2.i = 15 end

9 check eb1 /= eb2 end

10 eb1 := eb2
11 check eb1.i = 15 and eb2.i = 15 end

12 eb1.change_i (10)

13 check eb1.i = 10 and eb2.i = 15 end

14 check eb1 /= eb2 end

15 end

● L5: object of expanded type is automatically initialized.

● L10,L12,L13: no sharing among objects of expanded type.

● L6,L9,L14: = compares contents between expanded objects.

5 of 23

Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on

a class).

● Every type is either referenced or expanded .

● In reference types:○ y denotes a reference to some object○ x := y attaches x to same object as does y○ x = y compares references

● In expanded types:○ y denotes some object (of expanded type)○ x := y copies contents of y into x○ x = y compares contents [x ∼ y]

6 of 23

Reference vs. Expanded (2)
Problem: Every published book has an author. Every author may

publish more than one books. Should the author field of a book

reference-typed or expanded-typed?

reference-typed author expanded-typed author

Hyperlinked author page Physical printed copies

7 of 23

Singleton Pattern: Motivation

Consider two problems:

1. Bank accounts share a set of data.

e.g., interest and exchange rates, minimum and maximum

balance, etc.

2. Processes are regulated to access some shared, limited

resources.

e.g., printers

8 of 23

Shared Data via Inheritance
Descendant:

class DEPOSIT inherit SHARED DATA

-- ‘maximum_balance’ relevant
end

class WITHDRAW inherit SHARED DATA

-- ‘minimum_balance’ relevant
end

class INT_TRANSFER inherit SHARED DATA

-- ‘exchange_rate’ relevant
end

class ACCOUNT inherit SHARED DATA

feature

-- ‘interest_rate’ relevant
deposits: DEPOSIT_LIST
withdraws: WITHDRAW_LIST

end

Ancestor:

class

SHARED DATA

feature

interest_rate: REAL

exchange_rate: REAL

minimum_balance: INTEGER

maximum_balance: INTEGER

. . .
end

Problems?

9 of 23

Sharing Data via Inheritance: Architecture

○ Irreverent features are inherited.⇒ Descendants’ cohesion is broken.○ Same set of data is duplicated as instances are created.⇒ Updates on these data may result in inconsistency .

10 of 23

Sharing Data via Inheritance: Limitation

● Each descendant instance at runtime owns a separate copy of

the shared data.

● This makes inheritance not an appropriate solution for both

problems:○ What if the interest rate changes? Apply the change to all

instantiated account objects?○ An update to the global lock must be observable by all regulated

processes.

Solution:○ Separate notions of data and its shared access in two separate

classes.○ Encapsulate the shared access itself in a separate class.

11 of 23

Introducing the Once Routine in Eiffel (1.1)
1 class A
2 create make
3 feature -- Constructor
4 make do end

5 feature -- Query
6 new_once_array (s: STRING): ARRAY[STRING]

7 -- A once query that returns an array.
8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result.force (s, Result.count + 1)

11 end

12 new_array (s: STRING): ARRAY[STRING]

13 -- An ordinary query that returns an array.
14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result.force (s, Result.count + 1)

17 end

18 end

L9 & L10 executed only once for initialization.

L15 & L16 executed whenever the feature is called.
12 of 23

Introducing the Once Routine in Eiffel (1.2)

1 test_query: BOOLEAN

2 local

3 a: A
4 arr1, arr2: ARRAY[STRING]

5 do

6 create a.make
7

8 arr1 := a.new_array ("Alan")

9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end

11

12 arr2 := a.new_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Mark"
14 check Result end

15

16 Result := not (arr1 = arr2)
17 check Result end

18 end

13 of 23

Introducing the Once Routine in Eiffel (1.3)

1 test_once_query: BOOLEAN

2 local

3 a: A
4 arr1, arr2: ARRAY[STRING]

5 do

6 create a.make
7

8 arr1 := a.new_once_array ("Alan")

9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end

11

12 arr2 := a.new_once_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Alan"
14 check Result end

15

16 Result := arr1 = arr2
17 check Result end

18 end

14 of 23

Introducing the Once Routine in Eiffel (2)
r (. . .): T

once

-- Some computations on Result
. . .

end

● The ordinary do . . . end is replaced by once . . . end.● The first time the once routine r is called by some client, it

executes the body of computations and returns the computed

result.● From then on, the computed result is “cached”.● In every subsequent call to r , possibly by different clients, the

body of r is not executed at all; instead, it just returns the

“cached” result, which was computed in the very first call.● How does this help us?
Cache the reference to the same shared object !

15 of 23

Approximating Once Routine in Java (1)
We may encode Eiffel once routines in Java:

class BankData {

BankData() { }

double interestRate;
void setIR(double r);
. . .

}

class BankDataAccess {

static boolean initOnce;
static BankData data;
static BankData getData() {

if(!initOnce) {

data = new BankData();
initOnce = true;

}

return data;
}

}

class Account {

BankData data;
Account() {

data = BankDataAccess.getData();
}

}

Problem?

Multiple BankData objects may

be created in Account,

breaking the singleton!

Account() {

data = new BankData();
}

16 of 23

Approximating Once Routine in Java (2)

We may encode Eiffel once routines in Java:

class BankData {

private BankData() { }

double interestRate;
void setIR(double r);
static boolean initOnce;
static BankData data;
static BankData getData() {

if(!initOnce) {

data = new BankData();
initOnce = true;

}

return data;
}

}

Problem?

Loss of Cohesion: Data

and Access to Data are

two separate concerns,

so should be decoupled

into two different classes!

17 of 23

Singleton Pattern in Eiffel (1)
Supplier:

class DATA

create {DATA ACCESS} make
feature {DATA ACCESS}

make do v := 10 end

feature -- Data Attributes
v: INTEGER

change_v (nv: INTEGER)

do v := nv end

end

expanded class

DATA ACCESS

feature

data: DATA

-- The one and only access
once create Result.make end

invariant data = data

Client:

test: BOOLEAN

local

access: DATA ACCESS

d1, d2: DATA

do

d1 := access.data
d2 := access.data
Result := d1 = d2
and d1.v = 10 and d2.v = 10

check Result end

d1.change_v (15)

Result := d1 = d2
and d1.v = 15 and d2.v = 15

end

end

Writing create d1.make in test

feature does not compile. Why?

18 of 23

Singleton Pattern in Eiffel (2)
Supplier:

class BANK DATA

create {BANK DATA ACCESS} make
feature {BANK DATA ACCESS}

make do . . . end

feature -- Data Attributes
interest_rate: REAL

set_interest_rate (r: REAL)

. . .
end

expanded class

BANK DATA ACCESS

feature

data: BANK DATA

-- The one and only access
once create Result.make end

invariant data = data

Client:

class

ACCOUNT
feature

data: BANK DATA

make (. . .)
-- Init. access to bank data.

local

data_access: BANK DATA ACCESS

do

data := data_access.data
. . .

end

end

Writing create data.make in

client’s make feature does not

compile. Why?

19 of 23

Testing Singleton Pattern in Eiffel
test_bank_shared_data: BOOLEAN

-- Test that a single data object is manipulated
local acc1, acc2: ACCOUNT
do

comment("t1: test that a single data object is shared")

create acc1.make ("Bill")

create acc2.make ("Steve")

Result := acc1.data = acc2.data
check Result end

Result := acc1.data ∼ acc2.data
check Result end

acc1.data.set_interest_rate (3.11)

Result :=

acc1.data.interest_rate = acc2.data.interest_rate
and acc1.data.interest_rate = 3.11

check Result end

acc2.data.set_interest_rate (2.98)

Result :=

acc1.data.interest_rate = acc2.data.interest_rate
and acc1.data.interest_rate = 2.98

end

20 of 23

Singleton Pattern: Architecture

client_1

DATA+

create	{DATA_ACCESS}	--	Creation	Restriction
			make

feature	{DATA_ACCESS}	--	Update	Restriction
			make+
						--	Initialize	a	data	object

feature	--	Data
			v:	SOME_DATA_CLASS

									--	An	example	query
			c
									--	An	example	command	

DATA_ACCESS+

feature	--	Data
			data+:	DATA
						--	Reference	to	a	shared	data	object
									once
												create	Result.make
									end		

invariant
			shared_instance:
						data	=	data

data+

supplier_of_shared_data

data_access+

+

APPLICATION_1

client_2

+

APPLICATION_2

client_3

+

APPLICATION_3

data_access+

data_access+

Important Exercises: Instantiate this architecture to the

problem of shared bank data.

Draw it in draw.io.

21 of 23

Beyond this lecture
The singleton pattern is instantiated in the ETF framework:

● ETF MODEL (shared data)

● ETF MODEL ACCESS (exclusive once access)

● ETF COMMAND and its effective descendants:

deferred class

ETF_COMMAND
feature -- Attributes
model: ETF_MODEL

feature {NONE}

make(. . .)
local

ma: ETF_MODEL_ACCESS
do

. . .
model := ma.m

end

end

class

ETF_MOVE
inherit

ETF_MOVE_INTERFACE
-- which inherits ETF_COMMAND

feature -- command
move(. . .)
do

. . .
model.some_routine (. . .)
. . .

end

end

22 of 23

Index (1)

Learning Objectives

Expanded Class: Modelling

Expanded Class: Programming (2)

Expanded Class: Programming (3)

Reference vs. Expanded (1)

Reference vs. Expanded (2)

Singleton Pattern: Motivation

Shared Data via Inheritance

Sharing Data via Inheritance: Architecture

Sharing Data via Inheritance: Limitation

Introducing the Once Routine in Eiffel (1.1)
23 of 23

Index (2)
Introducing the Once Routine in Eiffel (1.2)

Introducing the Once Routine in Eiffel (1.3)

Introducing the Once Routine in Eiffel (2)

Approximating Once Routines in Java (1)

Approximating Once Routines in Java (2)

Singleton Pattern in Eiffel (1)

Singleton Pattern in Eiffel (2)

Testing Singleton Pattern in Eiffel

Singleton Pattern: Architecture

Beyond this lecture

24 of 23

Eiffel Testing Framework (ETF):
Automated Regression & Acceptance Testing

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. User Interface: Concrete vs. Abstract

2. Use Case: Interleaving Model, Events & (Abstract) States

3. Acceptance Tests vs. Unit Tests
4. Regression Tests

2 of 21

Required Tutorial

All technical details of ETF are discussed in this tutorial series:

https://www.youtube.com/playlist?list=PL5dxAmCmjv_

5unIgLB9XiLwBey105y3kI

3 of 21

https://www.youtube.com/playlist?list=PL5dxAmCmjv_5unIgLB9XiLwBey105y3kI
https://www.youtube.com/playlist?list=PL5dxAmCmjv_5unIgLB9XiLwBey105y3kI

Take-Home Message

● Your remaining assignments are related to ETF: Lab3 & Project.
● You are no longer just given partially implemented classes:○ Design decisions have already been made for you.○ You are just to fill in the blanks (to-do’s).
● ETF is in Eiffel, but try to see beyond what it allows you do:

1. Design your own classes and routines.
2. Practice design principles:

e.g., DbC, modularity, information hiding, single-choice, cohesion.
3. Practice design patterns:

e.g., iterator, singleton.
4. Practice acceptance testing and regression testing.

4 of 21

Bank ATM: Concrete User Interfaces
An ATM app has many concrete (implemented, functioning) UIs.

PHYSICAL INTERFACE MOBILE INTERFACE

5 of 21

UI, Model, TDD

● Separation of Concerns○ The (Concrete) User Interface
Users typically interact with your application via some GUI.
e.g., web app, mobile app, or desktop app○ The Model (Business Logic)
Develop an application via classes and features.
e.g., a bank storing, processing, retrieving accounts & transactions

● Test Driven Development (TDD) In practice:○ The model should be independent of the UI or View.○ Do not wait to test the model when the concrete UI is built.

⇒ Test your software as if it was a real app
way before dedicating to the design of an actual GUI.

⇒ Use an abstract UI (e.g., a cmd-line UI) for this purpose.

6 of 21

Prototyping System with Abstract UI
● For you to quickly prototype a working system, you do not

need to spend time on developing a elaborate, full-fledged GUI.● The Eiffel Testing Framework (ETF) allows you to:○ Generate a starter project from the specification of an abstract UI .○ Focus on developing the business model .○ Test your business model as if it were a real app.● Q. What is an abstract UI?
Events abstracting observable interactions with the concrete
GUI (e.g., button clicks, text entering).● Q. Events vs. Features (attributes & routines)?

Events Features
interactions computations

external internal
observable hidden

acceptance tests unit tests
users, customers programmers, developers

7 of 21

Bank ATM: Abstract UI

Abstract UI is the list of events abstracting observable interactions
with the concrete GUI (e.g., button clicks, text entering).

system bank

new(id: STRING)

-- create a new bank account for "id"

deposit(id: STRING; amount: INTEGER)

-- deposit "amount" into the account of "id"

withdraw(id: STRING; amount: INTEGER)

-- withdraw "amount" from the account of "id"

transfer(id1: STRING; id2: STRING; amount: INTEGER)

-- transfer "amount" from "id1" to "id2"

8 of 21

Bank ATM: Abstract States
Abstract State is a representation of the system:○ Including relevant details of functionalities under testing○ Excluding other irrelevant details

e.g., An abstract state may show each account’s owner:

{alan, mark, tom}

e.g., An abstract state may also show each account’s balance:

{alan: 200, mark: 300, tom: 700}

e.g., An abstract state may show account’s transactions:

Account Owner: alan

List of transactions:

+ deposit (Oct 15): $100

- withdraw (Oct 18): $50

Account Owner: mark

List of transactions:

9 of 21

Bank ATM: Inputs of Acceptance Tests

An acceptance test is a use case of the system under test,
characterized by sequential occurrences of abstract events.
For example:

new("alan")

new("mark")

deposit("alan", 200)

deposit("mark", 100)

transfer("alan", "mark", 50)

10 of 21

Bank ATM: Outputs of Acceptance Tests (1)

Output from running an acceptance test is a sequence
interleaving abstract states and abstract events:

S0->e1->S1->e2->S2-> . . .

where:○ S0 is the initial state.○ Si is the pre-state of event ei+1 [i ≥ 0]
e.g., S0 is the pre-state of e1, S1 is the pre-state of e2○ Si is the post-state of event ei [i ≥ 1]
e.g., S1 is the post-state of e1, S2 is the post-state of e2

11 of 21

Bank ATM: Outputs of Acceptance Tests (2)
Consider an example acceptance test output:

{}
->new("alan")

{alan: 0}
->new("mark")

{alan: 0, mark: 0}
->deposit("alan", 200)

{alan: 200, mark: 0}
->deposit("mark", 100)

{alan: 200, mark: 100}
->transfer("alan", "mark", 50)

{alan: 150, mark: 150}

● Initial State? {}● What role does the state {alan: 200, mark: 0} play?○ Post-State of deposit("alan", 200)○ Pre-State of deposit("mark", 100)

12 of 21

Bank ATM: Acceptance Tests vs. Unit Tests

Q. Difference between an acceptance test and a unit test?

{}
->new("alan")

{alan: 0}
->deposit("alan", 200)

{alan: 200}

test: BOOLEAN

local acc: ACCOUNT

do create acc.make("alan")

acc.add(200)

Result := acc.balance = 200

end

A.○ Writing a unit test requires knowledge about the programming

language and details of implementation.⇒Written and run by developers○ Writing an acceptance test only requires familiarity with the
abstract UI and abstract state.⇒Written and run by customers [for communication]⇒Written and run by developers [for testing]

13 of 21

ETF in a Nutshell

● Eiffel Testing Framework (ETF) facilitates engineers to write
and execute input-output-based acceptance tests.○ Inputs are specified as traces of events (or sequences).○ The abstract UI of the system under development (SUD) is

defined by declaring the list of input events that might occur.○ Outputs are interleaved states and events logged to the terminal,
and their formats may be customized.

● An executable ETF project tailored for the SUD can already be
generated, using these event declarations (specified in a plain
text file), with a default business model .
○ Once the business model is implemented, there is a small

number of steps to follow for developers to connect it to the
generated ETF.○ Once connected, developers may re-run all acceptance tests

and observe if the expected state effects occur.
14 of 21

Workflow: Develop-Connect-Test

ETF

monitored
events

Code
Skeleton

business
model

use
cases

Abstract
State

implement

(re)new

generate

connect to

define

test fix or add

debug

run

derive

redefine

15 of 21

ETF: Abstract UI and Acceptance Test

16 of 21

ETF: Generating a New Project

17 of 21

ETF: Architecture

user_commands

*
ETF_COMMAND

+
ETF_NEW

+
ETF_DEPOSIT

+
ETF_WITHDRAW

+
ETF_TRANSFER

+
ETF_MODEL

model

+
ETF_MODEL_ACCESS

mmodel_access

model

● Classes in the model cluster are hidden from the users.
● All commands reference to the same model (bank) instance.
● When a user’s request is made:○ A command object of the corresponding type is created, which

invokes relevant feature(s) in the model cluster.○ Updates to the model are published to the output handler.

18 of 21

ETF: Implementing an Abstract Command

19 of 21

Beyond this lecture
The singleton pattern is instantiated in the ETF framework:
● ETF MODEL (shared data)
● ETF MODEL ACCESS (exclusive once access)
● ETF COMMAND and its effective descendants:

deferred class

ETF_COMMAND

feature -- Attributes

model: ETF_MODEL

feature {NONE}

make(. . .)
local

ma: ETF_MODEL_ACCESS

do

. . .
model := ma.m

end

end

class

ETF_DEPOSIT

inherit

ETF_DEPOSIT_INTERFACE

-- which inherits ETF_COMMAND

feature -- command

deposit(. . .)
do

. . .
model.some_routine (. . .)
. . .

end

end

20 of 21

Index (1)

Learning Objectives

Required Tutorial

Take-Home Message

Bank ATM: Concrete User Interfaces

UI, Model, TDD

Prototyping System with Abstract UI

Bank ATM: Abstract UI

Bank ATM: Abstract States

Bank ATM: Inputs of Acceptance Tests

Bank ATM: Outputs of Acceptance Tests (1)

Bank ATM: Outputs of Acceptance Tests (2)
21 of 21

Index (2)
Bank ATM: Acceptance Tests vs. Unit Tests

ETF in a Nutshell

Workflow: Develop-Connect-Test

ETF: Abstract UI and Acceptance Test

ETF: Generating a New Project

ETF: Architecture

ETF: Implementing an Abstract Command

Beyond this lecture

22 of 21

Inheritance
Readings: OOSCS2 Chapters 14 – 16

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Design Attempts without Inheritance (w.r.t. Cohesion, SCP)
2. Using Inheritance for Code Reuse
3. Static Type & Polymorphism
4. Dynamic Type & Dynamic Binding
5. Type Casting
6. Polymorphism & Dynamic Binding:

Routine Arguments, Routine Return Values, Collections

2 of 60

Aspects of Inheritance

● Code Reuse
● Substitutability○ Polymorphism and Dynamic Binding

[compile-time type checks]
○ Sub-contracting

[runtime behaviour checks]

3 of 60

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

4 of 60

The COURSE Class

class

COURSE

create -- Declare commands that can be used as constructors
make

feature -- Attributes
title: STRING

fee: REAL

feature -- Commands
make (t: STRING; f: REAL)

-- Initialize a course with title ’t’ and fee ’f’.
do

title := t
fee := f

end

end

5 of 60

No Inheritance: RESIDENT STUDENT Class
class RESIDENT STUDENT
create make
feature -- Attributes
name: STRING

courses: LINKED_LIST[COURSE]

premium rate: REAL
feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set pr (r: REAL) do premium rate := r end
register (c: COURSE) do courses.extend (c) end

feature -- Queries
tuition: REAL

local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end

Result := base * premium rate
end

end

6 of 60

No Inheritance: NON RESIDENT STUDENT Class
class NON RESIDENT STUDENT
create make
feature -- Attributes
name: STRING

courses: LINKED_LIST[COURSE]

discount rate: REAL
feature -- Constructor
make (n: STRING)
do name := n ; create courses.make end

feature -- Commands

set dr (r: REAL) do discount rate := r end
register (c: COURSE) do courses.extend (c) end

feature -- Queries
tuition: REAL

local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end

Result := base * discount rate
end

end

7 of 60

No Inheritance: Testing Student Classes
test_students: BOOLEAN

local

c1, c2: COURSE
jim: RESIDENT_STUDENT
jeremy: NON_RESIDENT_STUDENT

do

create c1.make ("EECS2030", 500.0)
create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25)
jim.register (c1)
jim.register (c2)
Result := jim.tuition = 1250
check Result end

create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75)
jeremy.register (c1)
jeremy.register (c2)
Result := jeremy.tuition = 750

end

8 of 60

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.
⇒ This violates the Single Choice Principle :
when a change is needed, there should be a single place (or
a minimal number of places) where you need to make that
change.

9 of 60

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,
register(Course c)
do

if courses.count >= MAX_CAPACITY then

-- Error: maximum capacity reached.
else

courses.extend (c)
end

end

We need to change the register commands in both student
classes!
⇒ Violation of the Single Choice Principle

10 of 60

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?
e.g.,
tuition: REAL

local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end

Result := base * inflation rate * . . .
end

We need to change the tuition query in both student
classes.
⇒ Violation of the Single Choice Principle

11 of 60

No Inheritance:
A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
rs : LINKED_LIST[RESIDENT STUDENT]
nrs : LINKED_LIST[NON RESIDENT STUDENT]
add_rs (rs: RESIDENT STUDENT) do . . . end

add_nrs (nrs: NON RESIDENT STUDENT) do . . . end

register_all (Course c) -- Register a common course ’c’.
do

across rs as c loop c.item.register (c) end

across nrs as c loop c.item.register (c) end

end

end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the
same manner, separately !

12 of 60

Inheritance Architecture

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

13 of 60

Inheritance: The STUDENT Parent Class

1 class STUDENT
2 create make
3 feature -- Attributes
4 name: STRING

5 courses: LINKED_LIST[COURSE]
6 feature -- Commands that can be used as constructors.
7 make (n: STRING) do name := n ; create courses.make end

8 feature -- Commands
9 register (c: COURSE) do courses.extend (c) end

10 feature -- Queries
11 tuition: REAL

12 local base: REAL

13 do base := 0.0
14 across courses as c loop base := base + c.item.fee end

15 Result := base
16 end

17 end

14 of 60

Inheritance:
The RESIDENT STUDENT Child Class

1 class

2 RESIDENT_STUDENT
3 inherit

4 STUDENT
5 redefine tuition end

6 create make
7 feature -- Attributes

8 premium rate : REAL

9 feature -- Commands
10 set pr (r: REAL) do premium_rate := r end

11 feature -- Queries
12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base * premium rate end

15 end

● L3: RESIDENT STUDENT inherits all features from STUDENT.● There is no need to repeat the register command● L14: Precursor returns the value from query tuition in STUDENT.15 of 60

Inheritance:
The NON RESIDENT STUDENT Child Class

1 class

2 NON_RESIDENT_STUDENT
3 inherit

4 STUDENT
5 redefine tuition end

6 create make
7 feature -- Attributes

8 discount rate : REAL

9 feature -- Commands
10 set dr (r: REAL) do discount_rate := r end

11 feature -- Queries
12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base * discount rate end

15 end

● L3: NON RESIDENT STUDENT inherits all features from STUDENT.● There is no need to repeat the register command● L14: Precursor returns the value from query tuition in STUDENT.
16 of 60

Inheritance Architecture Revisited

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

● The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

● Each “specialized” class is called a child , sub , or
descendent class.

17 of 60

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:○ Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class○ Define an “specialized” version of the class which:
● inherits definitions of all attributes, commands, and queries

e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition

This means code reuse and elimination of code duplicates!
● defines new features if necessary

e.g., set pr for RESIDENT STUDENT
e.g., set dr for NON RESIDENT STUDENT● redefines features if necessary
e.g., compounded tuition for RESIDENT STUDENT
e.g., discounted tuition for NON RESIDENT STUDENT

18 of 60

Testing the Two Student Sub-Classes
test_students: BOOLEAN

local

c1, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT
do

create c1.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")
jim.set_pr (1.25) ; jim.register (c1); jim.register (c2)
Result := jim.tuition = 1250
check Result end

create jeremy.make ("J. Gibbons")
jeremy.set_dr (0.75); jeremy.register (c1); jeremy.register (c2)
Result := jeremy.tuition = 750
end

● The software can be used in exactly the same way as before
(because we did not modify feature signatures).● But now the internal structure of code has been made
maintainable using inheritance .

19 of 60

Static Type vs. Dynamic Type
● In object orientation , an entity has two kinds of types:○ static type is declared at compile time [unchangeable]

An entity’s ST determines what features may be called upon it.○ dynamic type is changeable at runtime● In Java:
Student s = new Student("Alan");
Student rs = new ResidentStudent("Mark");

● In Eiffel:
local s: STUDENT

rs: STUDENT
do create {STUDENT} s.make ("Alan")

create {RESIDENT STUDENT} rs.make ("Mark")

○ In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:
local s: STUDENT
do create s.make ("Alan")

20 of 60

Inheritance Architecture Revisited

NON_RESIDENT_STUDENT

STUDENT

RESIDENT_STUDENT

name: STRING
courses: LINKED_LIST[COURSE]

register (c: COURSE)+
tuition: REAL+

/* new features */
premium_rate: REAL
set_pr (r: REAL)+
/* redefined features */
tuition: REAL++

/* new features */
discount_rate: REAL
set_dr (r: REAL)+
/* redefined features */
tuition: REAL++

s1,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON RESIDENT STUDENT
create {STUDENT} s1.make ("S1")
create {RESIDENT STUDENT} s2.make ("S2")
create {NON RESIDENT STUDENT} s3.make ("S3")
create {RESIDENT STUDENT} rs.make ("RS")
create {NON RESIDENT STUDENT} nrs.make ("NRS")

name courses reg tuition pr set pr dr set dr

s1. ✓ ×
s2. ✓ ×
s3. ✓ ×
rs. ✓ ✓ ×
nrs. ✓ × ✓

21 of 60

Polymorphism: Intuition (1)

1 local

2 s: STUDENT
3 rs: RESIDENT_STUDENT
4 do

5 create s.make ("Stella")
6 create rs.make ("Rachael")
7 rs.set_pr (1.25)
8 s := rs /* Is this valid? */
9 rs := s /* Is this valid? */

● Which one of L8 and L9 is valid? Which one is invalid?○ L8: What kind of address can s store? [STUDENT]
∴ The context object s is expected to be used as:
● s.register(eecs3311) and s.tuition○ L9: What kind of address can rs store? [RESIDENT STUDENT]
∴ The context object rs is expected to be used as:
● rs.register(eecs3311) and rs.tuition● rs.set pr (1.50) [increase premium rate]

22 of 60

Polymorphism: Intuition (2)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */● rs := s (L6) should be invalid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● rs declared of type RESIDENT STUDENT∴ calling rs.set pr(1.50) can be expected.● rs is now pointing to a STUDENT object.● Then, what would happen to rs.set pr(1.50)?
CRASH ∵ rs.premium rate is undefined !!

23 of 60

Polymorphism: Intuition (3)
1 local s: STUDENT ; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3 create {RESIDENT_STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /* Is this valid? */
6 rs := s /* Is this valid? */● s := rs (L5) should be valid :

“Stella”name

STUDENTs:STUDENT

“Rachael”name

RESIDENT_STUDENT

rs:RESIDENT_STUDENT

courses

courses

1.25premium_rate

…

…

● Since s is declared of type STUDENT, a subsequent call
s.set pr(1.50) is never expected.● s is now pointing to a RESIDENT STUDENT object.● Then, what would happen to s.tuition?

OK ∵ s.premium rate is just never used !!
24 of 60

Dynamic Binding: Intuition (1)
1 local c : COURSE ; s : STUDENT
2 rs : RESIDENT STUDENT ; nrs : NON RESIDENT STUDENT
3 do create c.make ("EECS3311", 100.0)
4 create {RESIDENT STUDENT} rs.make("Rachael")
5 create {NON RESIDENT STUDENT} nrs.make("Nancy")
6 rs.set_pr(1.25); rs.register(c)
7 nrs.set_dr(0.75); nrs.register(c)
8 s := rs; ; check s .tuition = 125.0 end

9 s := nrs; ; check s .tuition = 75.0 end

After s := rs (L7), s points to a RESIDENT STUDENT object.⇒ Calling s .tuition applies the premium rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT

courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

25 of 60

Dynamic Binding: Intuition (2)
1 local c : COURSE ; s : STUDENT
2 rs : RESIDENT STUDENT ; nrs : NON RESIDENT STUDENT
3 do create c.make ("EECS3311", 100.0)
4 create {RESIDENT STUDENT} rs.make("Rachael")
5 create {NON RESIDENT STUDENT} nrs.make("Nancy")
6 rs.set_pr(1.25); rs.register(c)
7 nrs.set_dr(0.75); nrs.register(c)
8 s := rs; ; check s .tuition = 125.0 end

9 s := nrs; ; check s .tuition = 75.0 end

After s:=nrs (L8), s points to a NON RESIDENT STUDENT object.⇒ Calling s .tuition applies the discount rate.

“Rachael”name

RESIDENT_STUDENTrs:RESIDENT_STUDENT

courses

1.25premium_rate

“Nancy”name

NON_RESIDENT_STUDENTnrs:NON_RESIDENT_STUDENT
courses

0.75discount_rate

“EECS3311”title

COURSE

100.0fee

s:STUDENT

26 of 60

Multi-Level Inheritance Architecture (1)

DOMESTIC_RESIDENT_STUDENT DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

DOMESTIC_STUDENT FOREIGN_STUDENT

STUDENT

27 of 60

Multi-Level Inheritance Architecture (2)

IPHONE_XS_MAX IPHONE_11_PRO HUAWEI SAMSUNG

IOS ANDROID

SMART_PHONE

HUAWEI_P30_PRO HUAWEI_MATE_20_PRO GALAXY_S10 GALAXY_S10_PLUS

dial -- basic feature
surf_web -- basic feature

surf_web -- redefined using safari
facetime -- new feature

surf_web -- redefined using firefox
skype -- new feature

side_sync quick_take

zoomage

28 of 60

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.○ Every class can be used as a type: the set of runtime objects.● Use of inheritance creates a hierarchy of classes:○ (Implicit) Root of the hierarchy is ANY.○ Each inherit declaration corresponds to an upward arrow.○ The inherit relationship is transitive: when A inherits B and B

inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.● Ancestor vs. Descendant classes:○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, inherits.● A inherits all features from its ancestor classes.∴ A’s instances have a wider range of expected usages (i.e.,

attributes, queries, commands) than instances of its ancestor classes.○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.● Code defined in A is inherited to all its descendant classes.

29 of 60

Inheritance Accumulates Code for Reuse
● The lower a class is in the type hierarchy, the more code it

accumulates from its ancestor classes:○ A descendant class inherits all code from its ancestor classes.○ A descendant class may also:● Declare new attributes.● Define new queries or commands.
● Redefine inherited queries or commands.● Consequently:○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).○ When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.○ e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT STUDENT or a NON RESIDENT STUDENT object.○ Justification: A descendant class contains at least as many
features as defined in its ancestor classes (but not vice versa!).

30 of 60

Substitutions via Assignments
● By declaring v1:C1 , reference variable v1 will store the

address of an object of class C1 at runtime.● By declaring v2:C2 , reference variable v2 will store the
address of an object of class C2 at runtime.● Assignment v1:=v2 copies the address stored in v2 into v1.
○ v1 will instead point to wherever v2 is pointing to. [object alias]

……

C1v1

……

C2v2

● In such assignment v1:=v2 , we say that we substitute an
object of type C1 with an object of type C2.● Substitutions are subject to rules!

31 of 60

Rules of Substitution
Given an inheritance hierarchy:
1. When expecting an object of class A, it is safe to substitute it

with an object of any descendant class of A (including A).○ e.g., When expecting an IOS phone, you can substitute it with
either an IPHONE XS MAX or IPHONE 11 PRO.○ ∵ Each descendant class of A is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.○ ∴ All features defined in A are guaranteed to be available in the
new substitute.

2. When expecting an object of class A, it is unsafe to substitute
it with an object of any ancestor class of A’s parent .○ e.g., When expecting an IOS phone, you cannot substitute it with

just a SMART PHONE, because the facetime feature is not
supported in an ANDROID phone.○ ∵ Class A may have defined new features that do not exist in any
of its parent’s ancestor classes .

32 of 60

Reference Variable: Static Type
● A reference variable’s static type is what we declare it to be.○ e.g., jim:STUDENT declares jim’s static type as STUDENT.
○ e.g., my phone:SMART PHONE

declares a variable my phone of static type SmartPhone.○ The static type of a reference variable never changes.● For a reference variable v , its static type C defines the
expected usages of v as a context object .

● A feature call v.m(. . .) is compilable if m is defined in C .
○ e.g., After declaring jim:STUDENT , we
● may call register and tuition on jim● may not call set pr (specific to a resident student) or set dr

(specific to a non-resident student) on jim○ e.g., After declaring my phone:SMART PHONE , we
● may call dial and surf web on my phone● may not call facetime (specific to an IOS phone) or skype (specific

to an Android phone) on my phone
33 of 60

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.
○ The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.○ There are two ways to re-assigning a reference variable.

34 of 60

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.○ e.g., Given the declaration jim:STUDENT :

● create {RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to RESIDENT STUDENT.
● create {NON RESIDENT STUDENT} jim.make("Jim")

changes the dynamic type of jim to NON RESIDENT STUDENT.
○ e.g., Given an alternative declaration jim:RESIDENT STUDENT :

● e.g., create {STUDENT} jim.make("Jim") is illegal
because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT STUDENT).

35 of 60

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.○ e.g.,
jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON RESIDENT STUDENT
create {STUDENT} jim.make (. . .)
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.make (. . .)

● rs := jim ×● nrs := jim ×● jim := rs ✓
changes the dynamic type of jim to the dynamic type of rs● jim := nrs ✓
changes the dynamic type of jim to the dynamic type of nrs

36 of 60

Polymorphism and Dynamic Binding (1)
● Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).○ Consequently, there are multiple possible versions of each feature
that may be called.● e.g., 3 possibilities of tuition on a STUDENT reference variable:

In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium rate
In NON RESIDENT STUDENT: base amount with discount rate● Dynamic binding : When a feature m is called on an object

variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
jim: STUDENT; rs: RESIDENT STUDENT; nrs: NON STUDENT
create {RESIDENT STUDENT} rs.make (. . .)
create {NON RESIDENT STUDENT} nrs.nrs (. . .)
jim := rs

jim.tuitoion; /* version in RESIDENT STUDENT */
jim := nrs

jim.tuition; /* version in NON RESIDENT STUDENT */
37 of 60

Polymorphism and Dynamic Binding (2.1)
1 test_polymorphism_students
2 local

3 jim: STUDENT
4 rs: RESIDENT STUDENT
5 nrs: NON RESIDENT STUDENT
6 do

7 create {STUDENT} jim.make ("J. Davis")
8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")

10 jim := rs ✓
11 rs := jim ×
12 jim := nrs ✓
13 rs := jim ×
14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT , so we may abbreviate:
L7: create jim.make ("J. Davis")

L8: create rs.make ("J. Davis")

L9: create nrs.make ("J. Davis")
38 of 60

Polymorphism and Dynamic Binding (2.2)
test_dynamic_binding_students: BOOLEAN

local

jim: STUDENT
rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE

do

create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs
Result := jim.tuition = 750.0
check Result end

create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)
nrs.set_dr (0.5)

jim := nrs
Result := jim.tuition = 250.0

end
39 of 60

Reference Type Casting: Motivation
1 local jim: STUDENT; rs: RESIDENT STUDENT
2 do create {RESIDENT STUDENT} jim.make ("J. Davis")
3 rs := jim
4 rs.setPremiumRate(1.5)

● Line 2 is legal : RESIDENT_STUDENT is a descendant class of the
static type of jim (i.e., STUDENT).● Line 3 is illegal : jim’s static type (i.e., STUDENT) is not a
descendant class of rs’s static type (i.e., RESIDENT_STUDENT).● Eiffel compiler is unable to infer that jim’s dynamic type in
Line 4 is RESIDENT_STUDENT. [Undecidable]● Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):
check attached {RESIDENT STUDENT} jim as rs_jim then

rs := rs_jim
rs.set_pr (1.5)

end

40 of 60

Reference Type Casting: Syntax
1 check attached {RESIDENT STUDENT} jim as rs_jim then

2 rs := rs_jim
3 rs.set_pr (1.5)
4 end

L1 is an assertion:○ attached RESIDENT STUDENT jim is a Boolean expression

that is to be evaluated at runtime .
● If it evaluates to true, then the as rs jim expression has the effect

of assigning “the cast version” of jim to a new variable rs jim.● If it evaluates to false, then a runtime assertion violation occurs.○ Dynamic Binding : Line 4 executes the correct version of set pr.● It is approximately the same as following Java code:
if(jim instanceof ResidentStudent) {
ResidentStudent rs = (ResidentStudent) jim;
rs.set_pr(1.5);

}
else { throw new Exception("Cast Not Done."); }

41 of 60

Notes on Type Cast (1)

● check attached {C} y then . . . end always compiles
● What if C is not an ancestor of y’s DT ?
⇒ A runtime assertion violation occurs!
∵ y’s DT cannot fulfill the expectation of C.

42 of 60

Notes on Type Cast (2)
● Given v of static type ST , it is violation-free to cast v to C , as

long as C is a descendant or ancestor class of ST .● Why Cast?○ Without cast, we can only call features defined in ST on v.○ By casting v to C , we create an alias of the object pointed by v,
with the new static type C .
⇒ All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 11 PRO} my_phone.make
-- can only call features defined in IOS on myPhone
-- dial, surf_web, facetime ✓ quick_take, skype, side_sync, zoomage ×

check attached {SMART PHONE} my_phone as sp then

-- can now call features defined in SMART_PHONE on sp
-- dial, surf_web ✓ facetime, quick_take, skype, side_sync, zoomage ×

end

check attached {IPHONE 11 PRO} my_phone as ip11_pro then

-- can now call features defined in IPHONE_11_PRO on ip11_pro
-- dial, surf_web, facetime, quick_take ✓ skype, side_sync, zoomage ×

end

43 of 60

Notes on Type Cast (3)

A cast check attached {C} v as ... triggers an assertion
violation if C is not along the ancestor path of v’s DT .

test_smart_phone_type_cast_violation
local mine: ANDROID
do create {HUAWEI} mine.make

-- ST of mine is ANDROID; DT of mine is HUAWEI
check attached {SMART PHONE} mine as sp then ... end

-- ST of sp is SMART_PHONE; DT of sp is HUAWEI
check attached {HUAWEI} mine as huawei then ... end

-- ST of huawei is HUAWEI; DT of huawei is HUAWEI
check attached {SAMSUNG} mine as samsung then ... end

-- Assertion violation
-- ∵ SAMSUNG is not ancestor of mine’s DT (HUAWEI)
check attached {HUAWEI P30 PRO} mine as p30_pro then ... end

-- Assertion violation
-- ∵ HUAWEI_P30_PRO is not ancestor of mine’s DT (HUAWEI)

end

44 of 60

Polymorphism: Routine Call Parameters
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss : ARRAY[STUDENT] -- ss[i] has static type Student
3 add_s (s: STUDENT) do ss[0] := s end

4 add_rs (rs: RESIDENT STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON RESIDENT STUDENT) do ss[0] := nrs end

● L4: ss[0]:=rs is valid. ∵ RHS’s ST RESIDENT STUDENT is
a descendant class of LHS’s ST STUDENT.● Say we have a STUDENT MANAGEMENT SYSETM object sms:○ ∵ call by value , sms.add rs(o) attempts the following

assignment (i.e., replace parameter rs by a copy of argument o):
rs := o

○ Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class C, then we may call feature m by passing objects whose
static types are C’s descendants.

45 of 60

Polymorphism: Routine Call Arguments

test_polymorphism_feature_arguments
local

s1, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON RESIDENT STUDENT
sms: STUDENT_MANAGEMENT_SYSTEM

do

create sms.make
create {STUDENT} s1.make ("s1")
create {RESIDENT_STUDENT} s2.make ("s2")
create {NON_RESIDENT_STUDENT} s3.make ("s3")
create {RESIDENT_STUDENT} rs.make ("rs")
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (s1) ✓ sms.add_s (s2) ✓ sms.add_s (s3) ✓
sms.add_s (rs) ✓ sms.add_s (nrs) ✓
sms.add_rs (s1) × sms.add_rs (s2) × sms.add_rs (s3) ×
sms.add_rs (rs) ✓ sms.add_rs (nrs) ×
sms.add_nrs (s1) × sms.add_nrs (s2) × sms.add_nrs (s3) ×
sms.add_nrs (rs) × sms.add_nrs (nrs) ✓

end

46 of 60

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT MANAGEMENT SYSETM
that contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST[STUDENT]
add_student(s: STUDENT)
do

students.extend (s)
end

registerAll (c: COURSE)
do

across

students as s
loop

s.item.register (c)
end

end

end

47 of 60

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

test_sms_polymorphism: BOOLEAN

local

rs: RESIDENT_STUDENT
nrs: NON_RESIDENT_STUDENT
c: COURSE
sms: STUDENT_MANAGEMENT_SYSTEM

do

create rs.make ("Jim")
rs.set_pr (1.5)
create nrs.make ("Jeremy")
nrs.set_dr (0.5)
create sms.make
sms.add_s (rs)
sms.add_s (nrs)
create c.make ("EECS3311", 500)
sms.register_all (c)
Result := sms.ss[1].tuition = 750 and sms.ss[2].tuition = 250

end

48 of 60

Polymorphism: Return Values (1)
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss: LINKED_LIST[STUDENT]
3 add_s (s: STUDENT)
4 do

5 ss.extend (s)
6 end

7 get_student(i: INTEGER): STUDENT
8 require 1 <= i and i <= ss.count
9 do

10 Result := ss[i]
11 end

12 end

● L2: ST of each stored item (ss[i]) in the list: [STUDENT]● L3: ST of input parameter s: [STUDENT]● L7: ST of return value (Result) of get student: [STUDENT]● L11: ss[i]’s ST is descendant of Result’ ST .
Question: What can be the dynamic type of s after Line 11?
Answer: All descendant classes of Student.

49 of 60

Polymorphism: Return Values (2)
1 test_sms_polymorphism: BOOLEAN

2 local

3 rs: RESIDENT_STUDENT ; nrs: NON_RESIDENT_STUDENT
4 c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM
5 do

6 create rs.make ("Jim") ; rs.set_pr (1.5)
7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
9 create c.make ("EECS3311", 500) ; sms.register_all (c)

10 Result :=
11 sms.get_student(1).tuition = 750
12 and sms.get_student(2).tuition = 250
13 end

● L11: get student(1)’s dynamic type? [RESIDENT_STUDENT]
● L11: Version of tuition? [RESIDENT_STUDENT]
● L12: get student(2)’s dynamic type? [NON_RESIDENT_STUDENT]
● L12: Version of tuition? [NON_RESIDENT_STUDENT]
50 of 60

Design Principle: Polymorphism
● When declaring an attribute a: T⇒ Choose static type T which “accumulates” all features that

you predict you will want to call on a.
e.g., Choose s: STUDENT if you do not intend to be specific about
which kind of student s might be.⇒ Let dynamic binding determine at runtime which version of
tuition will be called.● What if after declaring s: STUDENT you find yourself often

needing to cast s to RESIDENT STUDENT in order to access
premium rate?
check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(. . .) end

⇒ Your design decision should have been: s:RESIDENT_STUDENT● Same design principle applies to:○ Type of feature parameters: f(a: T)○ Type of queries: q(...): T
51 of 60

Static Type vs. Dynamic Type:
When to consider which?

● Whether or not an OOP code compiles depends only on the
static types of relevant variables.
∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Eiffel code being executed at runtime
e.g., which version of the routine is called
e.g., if a check attached {. . .} as . . . then . . . end

assertion error will occur
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

52 of 60

Summary: Type Checking Rules

CODE CONDITION TO BE TYPE CORRECT

x := y y’s ST a descendant of x’s ST

x.f(y)
Feature f defined in x’s ST
y’s ST a descendant of f’s parameter’s ST

z := x.f(y)
Feature f defined in x’s ST
y’s ST a descendant of f’s parameter’s ST
ST of m’s return value a descendant of z’s ST

check attached {C} y Always compiles
check attached {C} y as temp C a descendant of x’s ST
then x := temp end

check attached {C} y as temp Feature f defined in x’s ST
then x.f(temp) end C a descendant of f’s parameter’s ST

Even if check attached {C} y then . . . end always compiles,

a runtime assertion error occurs if C is not an ancestor of y’s DT!

53 of 60

Beyond this lecture . . .

● Written Notes: Static Types, Dynamic Types, Type Casts
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/notes/EECS3311_F20_Notes_Static_Types_Cast.pdf

● Recommended Exercise 1:
Expand the student inheritance design (here) to reproduce the
various fragments of polymorphism and dynamic binding.

● Recommended Exercise 2:
Create a new project (using eiffel-new) to reproduce the various
fragments related to the running example of smart phones.

54 of 60

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/notes/EECS3311_F20_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/notes/EECS3311_F20_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/inheritance.zip
https://www.eecs.yorku.ca/~eiffel/eiffel-new/

Index (1)

Learning Objectives

Aspects of Inheritance

Why Inheritance: A Motivating Example

The COURSE Class

No Inheritance: RESIDENT STUDENT Class

No Inheritance: NON RESIDENT STUDENT Class

No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)
55 of 60

Index (2)
No Inheritance:
A Collection of Various Kinds of Students

Inheritance Architecture

Inheritance: The STUDENT Parent Class
Inheritance:
The RESIDENT STUDENT Child Class
Inheritance:
The NON RESIDENT STUDENT Child Class

Inheritance Architecture Revisited

Using Inheritance for Code Reuse

Testing the Two Student Sub-Classes

Static Type vs. Dynamic Type
56 of 60

Index (3)
Inheritance Architecture Revisited

Polymorphism: Intuition (1)

Polymorphism: Intuition (2)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2)

Multi-Level Inheritance Architecture (1)

Multi-Level Inheritance Architecture (2)

Inheritance Forms a Type Hierarchy

Inheritance Accumulates Code for Reuse

Substitutions via Assignments
57 of 60

Index (4)
Rules of Substitution

Reference Variable: Static Type

Reference Variable: Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.1)

Polymorphism and Dynamic Binding (2.2)

Reference Type Casting: Motivation

Reference Type Casting: Syntax
58 of 60

Index (5)
Notes on Type Cast (1)

Notes on Type Cast (2)

Notes on Type Cast (3)

Polymorphism: Routine Call Parameters

Polymorphism: Routine Call Arguments
Why Inheritance:
A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)

Design Principle: Polymorphism
59 of 60

Index (6)
Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

Beyond this lecture . . .

60 of 60

Generics

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. A general collection ARRAY[ANY]: storage vs. retrieval

2. A generic collection ARRAY[G]: storage vs. retrieval

3. Generics vs. Inheritance

2 of 18

Motivating Example: A Book of Any Objects
class BOOK

names: ARRAY[STRING]

records: ARRAY[ANY]

-- Create an empty book

make do . . . end

-- Add a name-record pair to the book

add (name: STRING; record: ANY) do . . . end

-- Return the record associated with a given name

get (name: STRING): ANY do . . . end

end

Question: Which line has a type error?

1 birthday: DATE; phone_number: STRING

2 b: BOOK; is_wednesday: BOOLEAN

3 create {BOOK} b.make

4 phone_number := "416-677-1010"

5 b.add ("SuYeon", phone_number)

6 create {DATE} birthday.make(1975, 4, 10)

7 b.add ("Yuna", birthday)

8 is_wednesday := b.get("Yuna").get_day_of_week = 4

3 of 18

Motivating Example: Observations (1)
● In the BOOK class:○ In the attribute declaration

records: ARRAY[ANY]

● ANY is the most general type of records.● Each book instance may store any object whose static type is a

descendant class of ANY .

○ Accordingly, from the return type of the get feature, we only know

that the returned record has the static type ANY , but not certain

about its dynamic type (e.g., DATE, STRING, etc.).∴ a record retrieved from the book, e.g., b.get("Yuna"), may

only be called upon features defined in its static type (i.e,. ANY).● In the tester code of the BOOK class:○ In Line 1, the static types of variables birthday (i.e., DATE) and

phone_number (i.e., STRING) are descendant classes of ANY.∴ Line 5 and Line 7 compile.

4 of 18

Motivating Example: Observations (2)
Due to polymorphism , in a collection, the dynamic types of

stored objects (e.g., phone number and birthday) need not

be the same.○ Features specific to the dynamic types (e.g., get_day_of_week

of class Date) may be new features that are not inherited from

ANY.○ This is why Line 8 would fail to compile, and may be fixed using an

explicit cast :

check attached {DATE} b.get("Yuna") as yuna_bday then

is_wednesday := yuna_bday.get_day_of_week = 4

end

○ But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get("SuYeon") as suyeon_bday then

is_wednesday := suyeon_bday.get_day_of_week = 4

end

⇒ An assertion violation at runtime!
5 of 18

Motivating Example: Observations (2.1)

● It seems that a combination of attached check (similar to an

instanceof check in Java) and type cast can work.

● Can you see any potential problem(s)?

● Hints:○ Extensibility and Maintainability○ What happens when you have a large number of records of

distinct dynamic types stored in the book

(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY CONTAINER,

DICTIONARY, etc.)? [all classes are descendants of ANY]

6 of 18

Motivating Example: Observations (2.2)
Say a client stores 100 distinct record objects into the book.

rec1: C1
. . . -- declarations of rec2 to rec99

rec100: C100
create {C1} rec1.make(. . .) ; b.add(. . ., rec1)

. . . -- additions of rec2 to rec99

create {C100} rec100.make(. . .) ; b.add(. . ., rec100)

where static types C1 to C100 are descendant classes of ANY.○ Every time you retrieve a record from the book, you need to check

“exhaustively” on its dynamic type before calling some feature(s).

-- assumption: ’f1’ specific to C1, ’f2’ specific to C2, etc.

if attached {C1} b.get("Jim") as c1 then

c1.f1

. . . -- cases for C2 to C99

elseif attached {C100} b.get("Jim") as c100 then

c100.f100

end

○ Writing out this list multiple times is tedious and error-prone!
7 of 18

Motivating Example: Observations (3)
We need a solution that:● Eliminates runtime assertion violations due to wrong casts● Saves us from explicit attached checks and type casts

As a sketch, this is how the solution looks like:● When the user declares a BOOK object b, they must commit to

the kind of record that b stores at runtime.

e.g., b stores either DATE objects (and its descendants) only

or String objects (and its descendants) only, but not a mix .● When attempting to store a new record object rec into b, if

rec’s static type is not a descendant class of the type of book

that the user previously commits to, then:○ It is considered as a compilation error○ Rather than triggering a runtime assertion violation● When attempting to retrieve a record object from b, there is no
longer a need to check and cast.∵ Static types of all records in b are guaranteed to be the same.

8 of 18

Parameters
● In mathematics:○ The same function is applied with different argument values.

e.g., 2 + 3, 1 + 1, 10 + 101, etc.○ We generalize these instance applications into a definition.

e.g., + ∶ (Z ×Z)→Z is a function that takes two integer

parameters and returns an integer.● In object-oriented programming:○ We want to call a feature, with different argument values, to

achieve a similar goal.

e.g., acc.deposit(100), acc.deposit(23), etc.○ We generalize these possible feature calls into a definition.

e.g., In class ACCOUNT, a feature deposit(amount: REAL)

takes a real-valued parameter .● When you design a mathematical function or a class feature,

always consider the list of parameters , each of which

representing a set of possible argument values.
9 of 18

Generics: Design of a Generic Book
class BOOK[G]

names: ARRAY[STRING]

records: ARRAY[G]

-- Create an empty book

make do . . . end

/* Add a name-record pair to the book */

add (name: STRING; record: G) do . . . end

/* Return the record associated with a given name */

get (name: STRING): G do . . . end

end

Question: Which line has a type error?

1 birthday: DATE; phone_number: STRING

2 b: BOOK[DATE] ; is_wednesday: BOOLEAN

3 create BOOK[DATE] b.make

4 phone_number = "416-67-1010"

5 b.add ("SuYeon", phone_number)

6 create {DATE} birthday.make (1975, 4, 10)

7 b.add ("Yuna", birthday)

8 is_wednesday := b.get("Yuna").get_day_of_week == 4

10 of 18

Generics: Observations
● In class BOOK:○ At the class level, we parameterize the type of records :

class BOOK[G]

○ Every occurrence of ANY is replaced by E.● As far as a client of BOOK is concerned, they must instantiate G.⇒ This particular instance of book must consistently store items of

that instantiating type.● As soon as E instantiated to some known type (e.g., DATE,

STRING), every occurrence of E will be replaced by that type.● For example, in the tester code of BOOK:○ In Line 2, we commit that the book b will store DATE objects only.○ Line 5 fails to compile. [∵ STRING not descendant of DATE]○ Line 7 still compiles. [∵ DATE is descendant of itself]○ Line 8 does not need any attached check and type cast, and

does not cause any runtime assertion violation.∵ All attempts to store non-DATE objects are caught at compile time.

11 of 18

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

NO!!!!!!!!!!!!!!!!!!!!!!!○ It allows all kinds of objects to be stored.∵ All classes are descendants of ANY .○ We can expect very little from an object retrieved from this book.∵ The static type of book’s items are ANY , root of the class

hierarchy, has the minimum amount of features available for use.∵ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

12 of 18

Instantiating Generic Parameters
● Say the supplier provides a generic DICTIONARY class:

class DICTIONARY[V, K] -- V type of values; K type of keys

add_entry (v: V; k: K) do . . . end

remove_entry (k: K) do . . . end

end

● Clients use DICTIONARY with different degrees of instantiations:

class DATABASE_TABLE[K, V]
imp: DICTIONARY[V, K]

end

e.g., Declaring DATABSE_TABLE[INTEGER, STRING] instantiates

DICTIONARY[STRING, INTEGER] .

class STUDENT_BOOK[V]
imp: DICTIONARY[V, STRING]

end

e.g., Declaring STUDENT_BOOK[ARRAY[COURSE]] instantiates

DICTIONARY[ARRAY[COURSE], STRING] .
13 of 18

Generics vs. Inheritance (1)

14 of 18

Generics vs. Inheritance (2)

15 of 18

Beyond this lecture . . .

● Study the “Generic Parameters and the Iterator Pattern” Tutorial

Videos.

16 of 18

http://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#design
http://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#design

Index (1)

Learning Objectives

Motivating Example: A Book of Any Objects

Motivating Example: Observations (1)

Motivating Example: Observations (2)

Motivating Example: Observations (2.1)

Motivating Example: Observations (2.2)

Motivating Example: Observations (3)

Parameters

Generics: Design of a Generic Book

Generics: Observations

Bad Example of using Generics
17 of 18

Index (2)
Instantiating Generic Parameters

Generics vs. Inheritance (1)

Generics vs. Inheritance (2)

Beyond this lecture . . .

18 of 18

The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Motivating Problem: Interactive Systems
2. First Design Attempt: Assembly Style
3. Second Design Attempt: Hierarchical , Procedural Sylte
4. Template & State Design Patterns: OO, Polymorphic

2 of 31

Motivating Problem
Consider the reservation panel of an online booking system:

3 of 31

https://www.cheapflights.co.uk/

State Transition Diagram
Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

(2)
Flight Enquiry

(1)
Initial

(3)
Seat Enquiry

(5)
Confirmation

(4)
Reservation

3

3

2

3

23

2

2

2

3

(6)
Final

1

4 of 31

Design Challenges

1. The state-transition graph may large and sophisticated .
A large number N of states has O(N2) transitions

2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:

Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.g., Add a new state “Dietary Requirements”

3. A general solution is needed for such interactive systems .
e.g., taobao, eBay, amazon, etc.

5 of 31

https://world.taobao.com/
https://www.ebay.ca/
https://www.amazon.ca/

A First Attempt

1 Initial panel:
-- Actions for Label 1.

2 Flight Enquiry panel:
-- Actions for Label 2.

3 Seat Enquiry panel:
-- Actions for Label 3.

4 Reservation panel:
-- Actions for Label 4.

5 Confirmation panel:
-- Actions for Label 5.

6 Final panel:
-- Actions for Label 6.

3 Seat Enquiry panel:
from

Display Seat Enquiry Panel

until

not (wrong answer or wrong choice)
do

Read user’s answer for current panel

Read user’s choice C for next step

if wrong answer or wrong choice then

Output error messages

end

end

Process user’s answer

case C in

2: goto 2 Flight Enquiry panel
3: goto 4 Reservation panel

end

6 of 31

A First Attempt: Good Design?

● Runtime execution ≈ a “bowl of spaghetti” .
⇒ The system’s behaviour is hard to predict, trace, and debug.

● Transitions hardwired as system’s central control structure.
⇒ The system is vulnerable to changes/additions of
states/transitions.

● All labelled blocks are largely similar in their code structures.
⇒ This design “smells” due to duplicates/repetitions!

● The branching structure of the design exactly corresponds to
that of the specific transition graph.
⇒ The design is application-specific and not reusable for
other interactive systems.

7 of 31

A Top-Down, Hierarchical Solution
● Separation of Concern Declare the transition table as a

feature the system, rather than its central control structure:
transition (src: INTEGER; choice: INTEGER): INTEGER

-- Return state by taking transition ’choice’ from ’src’ state.
require valid_source_state: 1 ≤ src ≤ 6

valid_choice: 1 ≤ choice ≤ 3
ensure valid_target_state: 1 ≤ Result ≤ 6

● We may implement transition via a 2-D array.
`````````̀SRC STATE

CHOICE 1 2 3

1 (Initial) 6 5 2
2 (Flight Enquiry) – 1 3
3 (Seat Enquiry) – 2 4
4 (Reservation) – 3 5
5 (Confirmation) – 4 1
6 (Final) – – –APPLICATION

app

transition: ARRAY2[INTEGER] 1 2
app.states

INITIAL

3 4 5 6

states: ARRAY[STATE]

FINALFLIGHT_
ENQUIRY

SEAT_
ENQUIRY

RESERVATION CONFIRMATION

6

1

5

2

2

3

1 3

2 4

3 5

4 1

1

2

3

4

5

6

state

choice

8 of 31



Hierarchical Solution: Good Design?

● This is a more general solution.
∵ State transitions are separated from the system’s central

control structure.
⇒ Reusable for another interactive system by making
changes only to the transition feature.

● How does the central control structure look like in this design?

9 of 31



Hierarchical Solution:
Top-Down Functional Decomposition

Modules of execute session and execute state are general
enough on their control structures. ⇒ reusable

10 of 31



Hierarchical Solution: System Control
All interactive sessions share the following control pattern:○ Start with some initial state.○ Repeatedly make state transitions (based on choices read from

the user) until the state is final (i.e., the user wants to exit).

execute_session
-- Execute a full interactive session.

local

current state , choice: INTEGER

do

from

current_state := initial

until

is final (current_state)
do

choice := execute state ( current state )
current_state := transition (current_state, choice)

end

end

11 of 31



Hierarchical Solution: State Handling (1)
The following control pattern handles all states:

execute_state ( current state : INTEGER): INTEGER

-- Handle interaction at the current state.
-- Return user’s exit choice.

local

answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER

do

from

until

valid_answer
do

display( current state )
answer := read answer( current state )
choice := read choice( current state )
valid_answer := correct( current state , answer)
if not valid_answer then message( current state , answer)

end

process( current state , answer)
Result := choice

end

12 of 31



Hierarchical Solution: State Handling (2)

FEATURE CALL FUNCTIONALITY

display(s) Display screen outputs associated with state s

read answer(s) Read user’s input for answers associated with state s

read choice(s) Read user’s input for exit choice associated with state s

correct(s, answer) Is the user’s answer valid w.r.t. state s?
process(s, answer) Given that user’s answer is valid w.r.t. state s,

process it accordingly.
message(s, answer) Given that user’s answer is not valid w.r.t. state s,

display an error message accordingly.

Q: How similar are the code structures of the above
state-dependant commands or queries?

13 of 31



Hierarchical Solution: State Handling (3)
A: Actions of all such state-dependant features must explicitly
discriminate on the input state argument.
display(current_state: INTEGER)
require

valid_state: 1 ≤ current_state ≤ 6
do

if current_state = 1 then

-- Display Initial Panel
elseif current_state = 2 then

-- Display Flight Enquiry Panel
. . .
else

-- Display Final Panel
end

end

○ Such design smells !∵ Same list of conditional repeats for all state-dependant features.○ Such design violates the Single Choice Principle .
e.g., To add/delete a state⇒ Add/delete a branch in all such features.14 of 31



Hierarchical Solution: Visible Architecture

15 of 31



Hierarchical Solution: Pervasive States

Too much data transmission: current state is passed○ From execute session (Level 3) to execute state (Level 2)○ From execute state (Level 2) to all features at Level 1
16 of 31



Law of Inversion
If your routines exchange too many data, then

put your routines in your data.

e.g.,
execute state (Level 2) and all features at Level 1:● Pass around (as inputs) the notion of current state● Build upon (via discriminations) the notion of current state

execute state ( s: INTEGER )
display ( s: INTEGER )
read answer ( s: INTEGER )
read choice ( s: INTEGER )
correct ( s: INTEGER ; answer: ANSWER)
process ( s: INTEGER ; answer: ANSWER)
message ( s: INTEGER ; answer: ANSWER)

⇒ Modularize the notion of state as class STATE.
⇒ Encapsulate state-related information via a STATE interface.⇒ Notion of current state becomes implicit : the Current class.

17 of 31



Grouping by Data Abstractions

18 of 31



Architecture of the State Pattern

*
STATE

+
INITIAL

+
HELP

+
FINAL

+
FLIGHT_ENQUIRY

+
SEAT_ENQUIRY

+
RESERVATION

+
CONFIRMATION

state_implementations

read*
display*
correct*
process*
message*

execute+
+

APPLICATION ▶
state+

19 of 31



The STATE ADT
deferred class STATE
read
-- Read user’s inputs
-- Set ’answer’ and ’choice’
deferred end

answer: ANSWER
-- Answer for current state

choice: INTEGER

-- Choice for next step
display
-- Display current state
deferred end

correct: BOOLEAN

deferred end

process
require correct
deferred end

message
require not correct
deferred end

execute
local

good: BOOLEAN

do

from

until

good
loop

display
-- set answer and choice
read
good := correct
if not good then

message
end

end

process
end

end

20 of 31



The Template Design Pattern
Consider the following fragment of Eiffel code:

1 s: STATE

2 create {SEAT ENQUIRY} s.make
3 s.execute
4 create {CONFIRMATION} s.make
5 s.execute

L2 and L4: the same version of effective feature execute
(from the deferred class STATE) is called. [ template ]
L2: specific version of effective features display, process,
etc., (from the effective descendant class SEAT ENQUIRY ) is
called. [ template instantiated for SEAT ENQUIRY ]
L4: specific version of effective features display, process,
etc., (from the effective descendant class CONFIRMATION ) is
called. [ template instantiated for CONFIRMATION ]

21 of 31



APPLICATION Class: Array of STATE

APPLICATION
app

transition: ARRAY2[INTEGER] 1 2
app.states

INITIAL

3 4 5 6

states: ARRAY[STATE]

FINALFLIGHT_
ENQUIRY

SEAT_
ENQUIRY

RESERVATION CONFIRMATION

6

1

5

2

2

3

1 3

2 4

3 5

4 1

1

2

3

4

5

6

state

choice

22 of 31



APPLICATION Class (1)
class APPLICATION create make
feature {TEST_APPLICATION} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
-- State transitions: transition[state, choice]

states: ARRAY[STATE]
-- State for each index, constrained by size of ‘transition’

feature

initial: INTEGER

number_of_states: INTEGER

number_of_choices: INTEGER

make(n, m: INTEGER)
do number_of_states := n

number_of_choices := m
create transition.make_filled(0, n, m)
create states.make_empty

end

invariant

transition.height = number of states

transition.width = number of choices
end

23 of 31



APPLICATION Class (2)
class APPLICATION
feature {TEST_APPLICATION} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature

put_state(s: STATE; index: INTEGER)
require 1 ≤ index ≤ number_of_states
do states.force(s, index) end

choose_initial(index: INTEGER)
require 1 ≤ index ≤ number_of_states
do initial := index end

put_transition(tar, src, choice: INTEGER)
require

1 ≤ src ≤ number_of_states
1 ≤ tar ≤ number_of_states
1 ≤ choice ≤ number_of_choices

do

transition.put(tar, src, choice)
end

end

24 of 31



Example Test: Non-Interactive Session
test_application: BOOLEAN

local

app: APPLICATION ; current_state: STATE ; index: INTEGER

do

create app.make (6, 3)
app.put_state (create {INITIAL}.make, 1)
-- Similarly for other 5 states.
app.choose_initial (1)
-- Transit to FINAL given current state INITIAL and choice 1.
app.put_transition (6, 1, 1)
-- Similarly for other 10 transitions.

index := app.initial
current_state := app.states [index]

Result := attached {INITIAL} current_state
check Result end

-- Say user’s choice is 3: transit from INITIAL to FLIGHT_STATUS
index := app.transition.item (index, 3)
current_state := app.states [index]

Result := attached {FLIGHT_ENQUIRY} current_state
end

25 of 31



APPLICATION Class (3): Interactive Session
class APPLICATION
feature {TEST_APPLICATION} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature

execute_session
local

current_state: STATE

index: INTEGER

do

from

index := initial
until

is_final (index)
loop

current state := states[index] -- polymorphism

current state.execute -- dynamic binding

index := transition.item (index, current_state.choice)
end

end

end

26 of 31



Building an Application
○ Create instances of STATE.

s1: STATE

create {INITIAL} s1.make

○ Initialize an APPLICATION.
create app.make(number_of_states, number_of_choices)

○ Perform polymorphic assignments on app.states.
app.put_state(create {INITIAL}.make, 4)

○ Choose an initial state.
app.choose_initial(1)

○ Build the transition table.
app.put_transition(6, 1, 1)

○ Run the application.
app.execute_session

27 of 31



Top-Down, Hierarchical vs. OO Solutions

● In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually

discriminate on the argument value, via a a list of conditionals.
e.g., Given display(current state: INTEGER) , the
calls display(1) and display(2) behave differently.

● The third (OO) solution, called the State Pattern, makes such
conditional implicit and automatic, by making STATE as a
deferred class (whose descendants represent all types of
states), and by delegating such conditional actions to
dynamic binding .

e.g., Given s: STATE , behaviour of the call s.display
depends on the dynamic type of s (such as INITIAL vs.
FLIGHT ENQUIRY).

28 of 31



Index (1)

Learning Objectives

Motivating Problem

State Transition Diagram

Design Challenges

A First Attempt

A First Attempt: Good Design?

A Top-Down, Hierarchical Solution

Hierarchical Solution: Good Design?
Hierarchical Solution:
Top-Down Functional Decomposition

Hierarchical Solution: System Control
29 of 31



Index (2)
Hierarchical Solution: State Handling (1)

Hierarchical Solution: State Handling (2)

Hierarchical Solution: State Handling (3)

Hierarchical Solution: Visible Architecture

Hierarchical Solution: Pervasive States

Law of Inversion

Grouping by Data Abstractions

Architecture of the State Pattern

The STATE ADT

The Template Design Pattern

APPLICATION Class: Array of STATE
30 of 31



Index (3)
APPLICATION Class (1)

APPLICATION Class (2)

Example Test: Non-Interactive Session

APPLICATION Class (3): Interactive Session

Building an Application

Top-Down, Hierarchical vs. OO Solutions

31 of 31



Observer Design Pattern

Event-Driven Design

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Objectives

1. Motivating Problem: Distributed Clients and Servers
2. First Design Attempt: Remote Procedure Calls
3. Second Design Attempt: Observer Design Pattern

4. Third Design Attempt: Event-Driven Design (Java vs. Eiffel)
5. Use of agent

[ ≈ C function pointers ≈ C# delegates ≈ Java lambda ]

2 of 37



Motivating Problem

● A weather station maintains weather data such as temperature,
humidity , and pressure.● Various kinds of applications on these weather data should
regularly update their displays:○ Forecast : if expecting for rainy weather due to reduced pressure.○ Condition: temperature in celsius and humidity in percentages.○ Statistics: minimum/maximum/average measures of temperature.

3 of 37



First Design: Weather Station

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the
weather data reference.

4 of 37



Implementing the First Design (1)

class WEATHER_DATA create make
feature -- Data
temperature: REAL

humidity: REAL

pressure: REAL

feature -- Queries
correct_limits(t,p,h: REAL): BOOLEAN

ensure

Result implies -36 <=t and t <= 60
Result implies 50 <= p and p <= 110
Result implies 0.8 <= h and h <= 100

feature -- Commands
make (t, p, h: REAL)
require

correct limits(t, p, h)
ensure

temperature = t and pressure = p and humidity = h
invariant

correct limits(temperature, pressure, humidity)
end

5 of 37



Implementing the First Design (2.1)

class FORECAST create make
feature -- Attributes
current_pressure: REAL

last_pressure: REAL

weather_data: WEATHER_DATA
feature -- Commands
make(wd: WEATHER_DATA)
ensure weather data = wd

update
do last_pressure := current_pressure

current_pressure := weather_data.pressure
end

display
do update

if current_pressure > last_pressure then

print("Improving weather on the way!%N")
elseif current_pressure = last_pressure then

print("More of the same%N")
else print("Watch out for cooler, rainy weather%N") end

end

end

6 of 37



Implementing the First Design (2.2)

class CURRENT_CONDITIONS create make
feature -- Attributes
temperature: REAL

humidity: REAL

weather_data: WEATHER_DATA
feature -- Commands
make(wd: WEATHER_DATA)
ensure weather data = wd

update
do temperature := weather_data.temperature

humidity := weather_data.humidity
end

display
do update

io.put_string("Current Conditions: ")
io.put_real (temperature) ; io.put_string (" degrees C and ")
io.put_real (humidity) ; io.put_string (" percent humidity%N")

end

end

7 of 37



Implementing the First Design (2.3)

class STATISTICS create make
feature -- Attributes
weather_data: WEATHER_DATA
current_temp: REAL

max, min, sum_so_far: REAL

num_readings: INTEGER

feature -- Commands
make(wd: WEATHER_DATA)
ensure weather data = wd

update
do current_temp := weather_data.temperature

-- Update min, max if necessary.
end

display
do update

print("Avg/Max/Min temperature = ")
print(sum_so_far / num_readings + "/" + max + "/" min + "%N")

end

end

8 of 37



Implementing the First Design (3)

1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)
11 cc.display ; fd.display ; sd.display
12 cc.display ; fd.display ; sd.display
13
14 wd.set_measurements (11, 90, 20)
15 cc.display ; fd.display ; sd.display
16 end

17 end

L14: Updates occur on cc, fd, sd even with the same data.

9 of 37



First Design: Good Design?

● Each application (CURRENT CONDITION, FORECAST,
STATISTICS) cannot know when the weather data change.
⇒ All applications have to periodically initiate updates in order
to keep the display results up to date.
∵ Each inquiry of current weather data values is a remote call .
∴Waste of computing resources (e.g., network bandwidth)
when there are actually no changes on the weather data.

● To avoid such overhead, it is better to let:○ Each application is subscribed/attached/registered to the
weather data.○ The weather data publish/notify new changes.⇒ Updates on the application side occur only when necessary .

10 of 37



Observer Pattern: Architecture

● Observer (publish-subscribe) pattern: one-to-many relation.○ Observers (subscribers) are attached to a subject (publisher ).○ The subject notify its attached observers about changes.● Some interchangeable vocabulary:○ subscribe ≈ attach ≈ register○ unsubscribe ≈ detach ≈ unregister○ publish ≈ notify○ handle ≈ update
11 of 37



Observer Pattern: Weather Station

12 of 37



Implementing the Observer Pattern (1.1)

class SUBJECT create make
feature -- Attributes

observers : LIST[OBSERVER]
feature -- Commands
make
do create {LINKED_LIST[OBSERVER]} observers.make
ensure no observers: observers.count = 0 end

feature -- Invoked by an OBSERVER
attach (o: OBSERVER) -- Add ‘o’ to the observers
require not yet attached: not observers.has (o)
ensure is attached: observers.has (o) end

detach (o: OBSERVER) -- Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is attached: not observers.has (o) end

feature -- invoked by a SUBJECT
notify -- Notify each attached observer about the update.
do across observers as cursor loop cursor.item.update end

ensure all views updated:
across observers as o all o.item.up_to_date_with_subject end

end

end

13 of 37



Implementing the Observer Pattern (1.2)

class WEATHER_DATA
inherit SUBJECT rename make as make subject end
create make
feature -- data available to observers
temperature: REAL

humidity: REAL

pressure: REAL

correct_limits(t,p,h: REAL): BOOLEAN

feature -- Initialization
make (t, p, h: REAL)
do

make subject -- initialize empty observers
set_measurements (t, p, h)

end

feature -- Called by weather station
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)

invariant

correct limits(temperature, pressure, humidity)
end

14 of 37



Implementing the Observer Pattern (2.1)

deferred class

OBSERVER
feature -- To be effected by a descendant
up_to_date_with_subject: BOOLEAN

-- Is this observer up to date with its subject?
deferred

end

update
-- Update the observer’s view of ‘s’

deferred

ensure

up_to_date_with_subject: up_to_date_with_subject
end

end

Each effective descendant class of OBSERVER should:○ Define what weather data are required to be up-to-date.○ Define how to update the required weather data.
15 of 37



Implementing the Observer Pattern (2.2)

class FORECAST
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)
ensure weather_data = a_weather_data

weather data.observers.has (Current)
end

feature -- Queries
up_to_date_with_subject: BOOLEAN

ensure then

Result = current_pressure = weather_data.pressure
update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end

16 of 37



Implementing the Observer Pattern (2.3)

class CURRENT_CONDITIONS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)
ensure weather_data = a_weather_data

weather data.observers.has (Current)
end

feature -- Queries
up_to_date_with_subject: BOOLEAN

ensure then Result = temperature = weather_data.temperature and

humidity = weather_data.humidity
update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end

17 of 37



Implementing the Observer Pattern (2.4)

class STATISTICS
inherit OBSERVER
feature -- Commands
make(a_weather_data: WEATHER_DATA)
do weather_data := a_weather_data

weather data.attach (Current)
ensure weather_data = a_weather_data

weather data.observers.has (Current)
end

feature -- Queries
up_to_date_with_subject: BOOLEAN

ensure then

Result = current_temperature = weather_data.temperature
update
do -- Same as 1st design; Called only on demand
end

display
do -- No need to update; Display contents same as in 1st design
end

end

18 of 37



Implementing the Observer Pattern (3)

1 class WEATHER_STATION create make
2 feature -- Attributes
3 cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
4 wd: WEATHER_DATA
5 feature -- Commands
6 make
7 do create wd.make (9, 75, 25)
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9

10 wd.set_measurements (15, 60, 30.4)

11 wd.notify
12 cc.display ; fd.display ; sd.display
13 cc.display ; fd.display ; sd.display
14
15 wd.set_measurements (11, 90, 20)

16 wd.notify
17 cc.display ; fd.display ; sd.display
18 end

19 end

L13: cc, fd, sd make use of “cached” data values.
19 of 37



Observer Pattern: Limitation? (1)

● The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).● But what if a many-to-many relationship is required for the
application under development?○ Multiple weather data are maintained by weather stations.
○ Each application observes all these weather data.○ But, each application still stores the latest measure only.

e.g., the statistics app stores one copy of temperature○ Whenever some weather station updates the temperature of its
associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.● How can the observer pattern solve this general problem?○ Each weather data maintains a list of subscribed applications.○ Each application is subscribed to multiple weather data.

20 of 37



Observer Pattern: Limitation? (2)

What happens at runtime when building a many-to-many

relationship using the observer pattern?

wd1wd1: WEATHER_DATA 

wd2wd2: WEATHER_DATA 

wdmwdm: WEATHER_DATA 

wdm�1wdm�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

…
…

Graph complexity, with m subjects and n observers? [ O( m ⋅ n ) ]
21 of 37



Event-Driven Design (1)

Here is what happens at runtime when building a many-to-many

relationship using the event-driven design.
wd1wd1: WEATHER_DATA

wd2wd2: WEATHER_DATA

wdnwdn: WEATHER_DATA

wdn�1wdn�1: WEATHER_DATA

application1application1

application2application2

applicationnapplicationn

… …change_on_temperature: EVENT

publish

applicationn�1applicationn�1

subscribe

Graph complexity, with m subjects and n observers? [O( m + n )]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m + n)]

22 of 37



Event-Driven Design (2)

In an event-driven design :
● Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.
e.g., A nuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer ): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

● Each monitored variable is declared as an event :○ An observer is attached /subscribed to the relevant events.
● CURRENT CONDITION attached to events for temperature, humidity.● FORECAST only subscribed to the event for pressure.● STATISTICS only subscribed to the event for temperature.○ A subject notifies/publishes changes to the relevant events.

23 of 37



Event-Driven Design: Implementation

● Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event , it attaches:

1.1 The reference/pointer to an update operation
Such reference/pointer is used for delayed executions.

1.2 Itself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event , it:

2.1 Iterates through all its observers (or listeners)
2.2 Uses the operation reference/pointer (attached earlier) to update the

corresponding observer.

● Both requirements can be satisfied by Eiffel and Java.
● We will compare how an event-driven design for the weather

station problems is implemented in Eiffel and Java.
⇒ It’s much more convenient to do such design in Eiffel.

24 of 37



Event-Driven Design in Java (1)

1 public class Event {
2 Hashtable<Object, MethodHandle> listenersActions;
3 Event() { listenersActions = new Hashtable<>(); }
4 void subscribe(Object listener, MethodHandle action) {

5 listenersActions.put( listener , action );
6 }
7 void publish(Object arg) {
8 for (Object listener : listenersActions.keySet()) {
9 MethodHandle action = listenersActions.get(listener);

10 try {

11 action .invokeWithArguments( listener , arg);
12 } catch (Throwable e) { }
13 }
14 }
15 }

● L5: Both the delayed action reference and its context object (or call
target) listener are stored into the table.

● L11: An invocation is made from retrieved listener and action.
25 of 37



Event-Driven Design in Java (2)

1 public class WeatherData {
2 private double temperature;
3 private double pressure;
4 private double humidity;
5 public WeatherData(double t, double p, double h) {
6 setMeasurements(t, h, p);
7 }
8 public static Event changeOnTemperature = new Event();

9 public static Event changeOnHumidity = new Event();

10 public static Event changeOnPressure = new Event();
11 public void setMeasurements(double t, double h, double p) {
12 temperature = t;
13 humidity = h;
14 pressure = p;
15 changeOnTemperature .publish(temperature);

16 changeOnHumidity .publish(humidity);

17 changeOnPressure .publish(pressure);
18 }
19 }

26 of 37



Event-Driven Design in Java (3)

1 public class CurrentConditions {
2 private double temperature; private double humidity;
3 public void updateTemperature(double t) { temperature = t; }
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {
6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 try {
8 MethodHandle ut = lookup.findVirtual(
9 this.getClass(), "updateTemperature",

10 MethodType.methodType(void.class, double.class));
11 WeatherData.changeOnTemperature.subscribe(this, ut);
12 MethodHandle uh = lookup.findVirtual(
13 this.getClass(), "updateHumidity",
14 MethodType.methodType(void.class, double.class));
15 WeatherData.changeOnHumidity.subscribe(this, uh);
16 } catch (Exception e) { e.printStackTrace(); }
17 }
18 public void display() {
19 System.out.println("Temperature: " + temperature);
20 System.out.println("Humidity: " + humidity); } }

27 of 37



Event-Driven Design in Java (4)

1 public class WeatherStation {
2 public static void main(String[] args) {
3 WeatherData wd = new WeatherData(9, 75, 25);
4 CurrentConditions cc = new CurrentConditions();
5 System.out.println("=======");
6 wd.setMeasurements(15, 60, 30.4);
7 cc.display();
8 System.out.println("=======");
9 wd.setMeasurements(11, 90, 20);

10 cc.display();
11 } }

L4 invokes
WeatherData.changeOnTemperature.subscribe(

cc, ‘‘updateTemperature handle’’)
L6 invokes

WeatherData.changeOnTemperature.publish(15)
which in turn invokes

‘‘updateTemperature handle’’.invokeWithArguments(cc, 15)
28 of 37



Event-Driven Design in Eiffel (1)

1 class EVENT [ARGUMENT -> TUPLE ]
2 create make
3 feature -- Initialization
4 actions: LINKED_LIST[PROCEDURE[ARGUMENT]]
5 make do create actions.make end

6 feature

7 subscribe (an_action: PROCEDURE[ARGUMENT])
8 require action_not_already_subscribed: not actions.has(an_action)
9 do actions.extend (an_action)

10 ensure action_subscribed: action.has(an_action) end

11 publish (args: ARGUMENT)
12 do from actions.start until actions.after
13 loop actions.item.call (args) ; actions.forth end

14 end

15 end

● L1 constrains the generic parameter ARGUMENT: any class that instantiates
ARGUMENT must be a descendant of TUPLE.● L4: The type PROCEDURE encapsulates both the context object and the
reference/pointer to some update operation.

29 of 37



Event-Driven Design in Eiffel (2)

1 class WEATHER_DATA
2 create make
3 feature -- Measurements
4 temperature: REAL ; humidity: REAL ; pressure: REAL

5 correct_limits(t,p,h: REAL): BOOLEAN do . . . end

6 make (t, p, h: REAL) do . . . end

7 feature -- Event for data changes
8 change on temperature : EVENT[TUPLE[REAL]]once create Result end

9 change on humidity : EVENT[TUPLE[REAL]]once create Result end

10 change on pressure : EVENT[TUPLE[REAL]]once create Result end

11 feature -- Command
12 set_measurements(t, p, h: REAL)
13 require correct_limits(t,p,h)
14 do temperature := t ; pressure := p ; humidity := h
15 change on temperature .publish ([t])

16 change on humidity .publish ([p])

17 change on pressure .publish ([h])
18 end

19 invariant correct_limits(temperature, pressure, humidity) end

30 of 37



Event-Driven Design in Eiffel (3)

1 class CURRENT_CONDITIONS
2 create make
3 feature -- Initialization
4 make(wd: WEATHER_DATA)
5 do

6 wd.change on temperature.subscribe (agent update_temperature)
7 wd.change on humidity.subscribe (agent update_humidity)
8 end

9 feature

10 temperature: REAL

11 humidity: REAL

12 update_temperature (t: REAL) do temperature := t end

13 update_humidity (h: REAL) do humidity := h end

14 display do . . . end

15 end

● agent cmd retrieves the pointer to cmd and its context object.

● L6 ≈ . . . (agent Current .update temperature)

● Contrast L6 with L8–11 in Java class CurrentConditions.
31 of 37



Event-Driven Design in Eiffel (4)

1 class WEATHER_STATION create make
2 feature

3 cc: CURRENT_CONDITIONS
4 make
5 do create wd.make (9, 75, 25)
6 create cc.make (wd)
7 wd.set measurements (15, 60, 30.4)
8 cc.display
9 wd.set measurements (11, 90, 20)

10 cc.display
11 end

12 end

L6 invokes
wd.change on temperature.subscribe(

agent cc.update temperature)

L7 invokes
wd.change on temperature.publish([15])

which in turn invokes cc.update temperature(15)
32 of 37



Event-Driven Design: Eiffel vs. Java

● Storing observers/listeners of an event○ Java, in the Event class:
Hashtable<Object, MethodHandle> listenersActions;

○ Eiffel, in the EVENT class:
actions: LINKED_LIST[PROCEDURE[ARGUMENT]]

● Creating and passing function pointers○ Java, in the CurrentConditions class constructor:
MethodHandle ut = lookup.findVirtual(
this.getClass(), "updateTemperature",
MethodType.methodType(void.class, double.class));

WeatherData.changeOnTemperature.subscribe(this, ut);

○ Eiffel, in the CURRENT CONDITIONS class construction:
wd.change on temperature.subscribe (agent update_temperature)

⇒ Eiffel’s type system has been better thought-out for design .
33 of 37



Beyond this lecture. . .

Play with the source code of with the various designs (with an
IDE debugger):○ non observer.zip [ 1st Design Attempt ]○ observer.zip [ Observer Design Pattern ]○ JavaObserverEvent.zip [ Event-Driven Design in Java ]○ observer event.zip [ Event-Driven Design in Eiffel ]

34 of 37

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/non_observer.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/observer.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/JavaObserverEvent.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/observer_event.zip


Index (1)

Learning Objectives

Motivating Problem

First Design: Weather Station

Implementing the First Design (1)

Implementing the First Design (2.1)

Implementing the First Design (2.2)

Implementing the First Design (2.3)

Implementing the First Design (3)

First Design: Good Design?

Observer Pattern: Architecture

Observer Pattern: Weather Station

35 of 37



Index (2)

Implementing the Observer Pattern (1.1)

Implementing the Observer Pattern (1.2)

Implementing the Observer Pattern (2.1)

Implementing the Observer Pattern (2.2)

Implementing the Observer Pattern (2.3)

Implementing the Observer Pattern (2.4)

Implementing the Observer Pattern (3)

Observer Pattern: Limitation? (1)

Observer Pattern: Limitation? (2)

Event-Driven Design (1)

Event-Driven Design (2)

36 of 37



Index (3)

Event-Driven Design: Implementation

Event-Driven Design in Java (1)

Event-Driven Design in Java (2)

Event-Driven Design in Java (3)

Event-Driven Design in Java (4)

Event-Driven Design in Eiffel (1)

Event-Driven Design in Eiffel (2)

Event-Driven Design in Eiffel (3)

Event-Driven Design in Eiffel (4)

Event-Driven Design: Eiffel vs. Java

Beyond this lecture. . .

37 of 37



Subcontracting

Readings: OOSCS2 Chapters 14 – 16

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Aspects of Inheritance

● Code Reuse
● Substitutability○ Polymorphism and Dynamic Binding

[ compile-time type checks ]

○ Sub-contracting
[ runtime behaviour checks ]

2 of 18



Learning Objectives

1. Preconditions: require less vs. require more

2. Postconditions: ensure less vs. ensure more

3. Inheritance and Contracts: Static Analysis
4. Inheritance and Contracts: Runtime Checks

3 of 18



Background of Logic (1)

Given preconditions P1 and P2, we say that

P2 requires less than P1 if

P2 is less strict on (thus allowing more) inputs than P1 does.

{ x � P1(x) } ⊆ { x � P2(x) }

More concisely:

P1 ⇒ P2

e.g., For command withdraw(amount: amount),

P2 ∶ amount ≥ 0 requires less than P1 ∶ amount > 0

What is the precondition that requires the least? [ true ]

4 of 18



Background of Logic (2)

Given postconditions or invariants Q1 and Q2, we say that

Q2 ensures more than Q1 if

Q2 is stricter on (thus allowing less) outputs than Q1 does.

{ x � Q2(x) } ⊆ { x � Q1(x) }
More concisely:

Q2 ⇒ Q1

e.g., For query q(i: INTEGER): BOOLEAN,

Q2 ∶ Result = (i > 0) ∧ (i mod 2 = 0) ensures more than

Q1 ∶ Result = (i > 0) ∨ (i mod 2 = 0)
What is the postcondition that ensures the most? [ false ]

5 of 18



Inheritance and Contracts (1)

● The fact that we allow polymorphism :

local my_phone: SMART PHONE
i_phone: IPHONE 11 PRO
samsung_phone: GALAXY S10 PLUS
huawei_phone: HUAWEI P30 PRO

do my_phone := i_phone
my_phone := samsung_phone
my_phone := huawei_phone

suggests that these instances may substitute for each other.● Intuitively, when expecting SMART PHONE, we can substitute it

by instances of any of its descendant classes.∵ Descendants accumulate code from its ancestors and can thus

meet expectations on their ancestors.● Such substitutability can be reflected on contracts, where a

substitutable instance will:○ Not require more from clients for using the services.○ Not ensure less to clients for using the services.
6 of 18



Inheritance and Contracts (2.1)

SMART_PHONE
get_reminders:	LIST[EVENT]
		require	??
		ensure	??

IPHONE_11_PRO
get_reminders:	LIST[EVENT]
		require	else	??
		ensure	then	??

PHONE_USER
my_phone:	SMART_PHONE

my_phone

7 of 18



Inheritance and Contracts (2.2)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.15 -- 15%

ensure then
�: ∀e ∶ Result � e happens today or tomorrow

end

Contracts in descendant class IPHONE_11_PRO are not suitable.(battery level ≥ 0.1⇒ battery level ≥ 0.15) is not a tautology.

e.g., A client able to get reminders on a SMART_PHONE, when battery

level is 12%, will fail to do so on an IPHONE_11_PRO.
8 of 18



Inheritance and Contracts (2.3)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.15 -- 15%

ensure then
�: ∀e ∶ Result � e happens today or tomorrow

end

Contracts in descendant class IPHONE_11_PRO are not suitable.(e happens ty. or tw.)⇒ (e happens ty.) not tautology.

e.g., A client receiving today’s reminders from SMART_PHONE are

shocked by tomorrow-only reminders from IPHONE_11_PRO.
9 of 18



Inheritance and Contracts (2.4)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.05 -- 5%

ensure then
�: ∀e ∶ Result � e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_11_PRO are suitable.○ Require the same or less ↵⇒ �
Clients satisfying the precondition for SMART_PHONE are not shocked

by not being to use the same feature for IPHONE_11_PRO.
10 of 18



Inheritance and Contracts (2.5)

class SMART_PHONE
get_reminders: LIST[EVENT]
require
↵: battery_level ≥ 0.1 -- 10%

ensure
�: ∀e ∶ Result � e happens today

end

class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end
get_reminders: LIST[EVENT]
require else
�: battery_level ≥ 0.05 -- 5%

ensure then
�: ∀e ∶ Result � e happens today between 9am and 5pm

end

Contracts in descendant class IPHONE_11_PRO are suitable.○ Ensure the same or more �⇒ �
Clients benefiting from SMART_PHONE are not shocked by failing to

gain at least those benefits from same feature in IPHONE_11_PRO.
11 of 18



Contract Redeclaration Rule (1)

● In the context of some feature in a descendant class:○ Use require else to redeclare its precondition.○ Use ensure then to redeclare its postcondition.

● The resulting runtime assertions checks are:○ original_pre or else new_pre

⇒ Clients able to satisfy original pre will not be shocked.∵ true ∨ new pre ≡ true
A precondition violation will not occur as long as clients are able

to satisfy what is required from the ancestor classes.○ original_post and then new_post

⇒ Failing to gain original post will be reported as an issue.∵ false ∧ new post ≡ false
A postcondition violation occurs (as expected) if clients do not

receive at least those benefits promised from the ancestor classes.

12 of 18



Contract Redeclaration Rule (2.1)

class FOO
f

do . . .
end

end

class BAR
inherit FOO redefine f end
f require else new pre

do . . .
end

end

● Unspecified original pre is as if declaring require true∵ true ∨ new pre ≡ true

class FOO
f

do . . .
end

end

class BAR
inherit FOO redefine f end
f
do . . .
ensure then new post
end

end

● Unspecified original post is as if declaring ensure true∵ true ∧ new post ≡ new post
13 of 18



Contract Redeclaration Rule (2.2)

class FOO
f require

original pre
do . . .
end

end

class BAR
inherit FOO redefine f end
f

do . . .
end

end

● Unspecified new pre is as if declaring require else false∵ original pre ∨ false ≡ original pre
class FOO
f

do . . .
ensure

original post
end

end

class BAR
inherit FOO redefine f end
f
do . . .
end

end

● Unspecified new post is as if declaring ensure then true∵ original post ∧ true ≡ original post
14 of 18



Invariant Accumulation

● Every class inherits invariants from all its ancestor classes.● Since invariants are like postconditions of all features, they are

“conjoined” to be checked at runtime.

class POLYGON
vertices: ARRAY[POINT]

invariant
vertices.count ≥ 3

end

class RECTANGLE
inherit POLYGON
invariant
vertices.count = 4

end

● What is checked on a RECTANGLE instance at runtime:(vertices.count ≥ 3) ∧ (vertices.count = 4) ≡ (vertices.count = 4)● Can PENTAGON be a descendant class of RECTANGLE?(vertices.count = 5) ∧ (vertices.count = 4) ≡ false
15 of 18



Inheritance and Contracts (3)

class FOO
f

require
original pre

ensure
original post

end
end

class BAR
inherit FOO redefine f end
f
require else

new pre
ensure then
new post

end
end

(Static) Design Time :

○ original pre ⇒ new pre should be proved as a tautology

○ new post ⇒ original post should be proved as a tautology

(Dynamic) Runtime :

○ original pre ∨ new pre is checked

○ original post ∧ new post is checked

16 of 18



Index (1)

Aspects of Inheritance

Learning Objectives

Background of Logic (1)

Background of Logic (2)

Inheritance and Contracts (1)

Inheritance and Contracts (2.1)

Inheritance and Contracts (2.2)

Inheritance and Contracts (2.3)

Inheritance and Contracts (2.4)

Inheritance and Contracts (2.5)

Contract Redeclaration Rule (1)

17 of 18



Index (2)

Contract Redeclaration Rule (2.1)

Contract Redeclaration Rule (2.2)

Invariant Accumulation

Inheritance and Contracts (3)

18 of 18



The Composite Design Pattern

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Objectives

1. Motivating Problem: Recursive Systems

2. Two Design Attempts

3. Multiple Inheritance

4. Third Design Attempt: Composite Design Pattern
5. Implementing and Testing the Composite Design Pattern

2 of 21



Motivating Problem (1)

● Many manufactured systems, such as computer systems or

stereo systems, are composed of individual components and

sub-systems that contain components.

e.g., A computer system is composed of:

● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.

● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn

containing components (hard-drive, power-supply ) and busses that

contain cards.

● Design a system that will allow us to easily build systems and

calculate their total cost and power consumption.

3 of 21



Motivating Problem (2)
Design for tree structures with whole-part hierarchies.

2 

CABINET 

HARD_DRIVE CARD 

CHASSIS 

POWER_SUPPLY 

DVD-CDROM 

CHASSIS 

Challenge : There are base and recursive modelling artifacts.

4 of 21



Design Attempt 1: Architecture

+
DISK_DRIVE

+
VIDEO_CARD

EQUIPMENT*

feature	
		price:	REAL*
feature	
		add_child(e:	EQUIPMENT)+
						ensure	children[children.count]	=	e

+
CHASSIS

+
BUS

equipment

+
CABINET

*
COMPOSITE_EQUIPMENT

children+:	LIST[..]

+
CLIENT

e+

5 of 21



Design Attempt 1: Flaw?

Q: Any flaw of this first design?

A: Two “composite” features defined at the EQUIPMENT level:○ children: LIST[EQUIPMENT]○ add(child: EQUIPMENT)

⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do

not apply to such features.

6 of 21



Design Attempt 2: Architecture

+
DISK_DRIVE

+
VIDEO_CARD

EQUIPMENT*

feature	
		price:	REAL*

+
CHASSIS

+
BUS

equipment

+
CABINET

children+:	LIST[..]
+

CLIENT
e+

COMPOSITE*

feature		
		add_child(c:	EQUIPMENT)+
						ensure	children[children.count]	=	c

7 of 21



Design Attempt 2: Flaw?

Q: Any flaw of this second design?

A: Two “composite” features defined at the COMPOSITE level:○ children: LIST[EQUIPMENT]○ add(child: EQUIPMENT)

⇒ Multiple instantiations of the composite architecture (e.g.,

equipments, furnitures) require duplicates of the COMPOSITE
class.

8 of 21



Multiple Inheritance:
Combining Abstractions (1)
A class may have two more parent classes.

9 of 21



MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window

10 of 21



MI: Combining Abstractions (2.2)
A: Separating Graphical features and Hierarchical features

class RECTANGLE

feature -- Queries
width, height: REAL

xpos, ypos: REAL

feature -- Commands
make (w, h: REAL)
change_width
change_height
move

end

class TREE[G]

feature -- Queries
descendants: ITERABLE[G]

feature -- Commands
add (c: G)

-- Add a child ‘c‘.
end

class WINDOW
inherit

RECTANGLE

TREE[WINDOW]
end

test_window: BOOLEAN

local w1, w2, w3, w4: WINDOW
do

create w1.make(8, 6) ; create w2.make(4, 3)
create w3.make(1, 1) ; create w4.make(1, 1)
w2.add(w4) ; w1.add(w2) ; w1.add(w3)
Result := w1.descendants.count = 2

end

11 of 21



MI: Name Clashes

In class C, feature foo inherited from ancestor class A clashes

with feature foo inherited from ancestor class B.

12 of 21



MI: Resolving Name Clashes

class C
inherit

A rename foo as fog end

B rename foo as zoo end

. . .

o.foo o.fog o.zoo
o: A ✓ × ×
o: B ✓ × ×
o: C × ✓ ✓

13 of 21



The Composite Pattern: Architecture

+
DISK_DRIVE

+
VIDEO_CARD

EQUIPMENT*

feature	
		price:	REAL*

+
CHASSIS

+
BUS

equipment

+
CABINET

*
COMPOSITE_EQUIPMENT

children+:	LIST[..]
+

CLIENT
e+

COMPOSITE[T]*

feature		
		children:	LIST[T]+
		add_child(c:	T)+
						ensure	children[children.count]	=	c

14 of 21



Implementing the Composite Pattern (1)

deferred class

EQUIPMENT
feature

name: STRING

price: REAL deferred end -- uniform access principle
end

class

CARD
inherit

EQUIPMENT
feature {NONE}
unit_price: REAL

feature

make (n: STRING; p: REAL)
do name := n ; unit_price := p end

price
do Result := unit_price end

end

15 of 21



Implementing the Composite Pattern (2.1)

deferred class

COMPOSITE[T]
feature

children: LINKED_LIST[T]

add (c: T)
do

children.extend (c) -- Polymorphism

end

end

Exercise: Make the COMPOSITE class iterable.

16 of 21



Implementing the Composite Pattern (2.2)

deferred class

COMPOSITE_EQUIPMENT
inherit

EQUIPMENT
COMPOSITE [EQUIPMENT]

feature

make (n: STRING)
-- Child classes will declare this command as a constructor.

do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do

across

children is c
loop

Result := Result + c.price -- dynamic binding

end

end

end

17 of 21



Testing the Composite Pattern

test_composite_equipment: BOOLEAN

local

card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do

create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end

18 of 21



Summay: The Composite Pattern
● Design : Categorize into base artifacts or recursive artifacts.

● Programming :

Build a tree structure representing the whole-part hierarchy .

● Runtime :

Allow clients to treat base objects (leafs) and recursive

compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.

e.g., Given e: EQUIPMENT :

○ e.price may return the unit price of a DISK DRIVE.

○ e.price may sum prices of a CHASIS’ containing equipments.

19 of 21



Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Design Attempt 1: Architecture

Design Attempt 1: Flaw?

Design Attempt 2: Architecture

Design Attempt 2: Flaw?
Multiple Inheritance:
Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2.2)
20 of 21



Index (2)
MI: Name Clashes

MI: Resolving Name Clashes

The Composite Pattern: Architecture

Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

Summary: The Composite Pattern

21 of 21



The Visitor Design Pattern

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Objectives

1. Motivating Problem: Processing Recursive Systems
2. First Design Attempt: Cohesion & Single-Choice Principle?
3. Open-Closed Principle
4. Second Design Attempt: Visitor Design Pattern

5. Implementing and Testing the Visitor Design Pattern

2 of 15



Motivating Problem (1)

Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

EXPERSSION*

  value: INTEGER

CONSTANT+ ADDITION+

COMPOSITE*

left, right: EXPRESSION 

3 of 15



Motivating Problem (2)

Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print postfix),
and type check.

EXPERSSION*

value: INTEGER 
evaluate*
print_prefix*
print_postfix*
type_check* 

CONSTANT+

evaluate+
print_prefix+
print_postfix+ 
type_check+

ADDITION+

evaluate+
print_prefix+
print_postfix+ 
type_check+

COMPOSITE*

left, right: EXPRESSION 

4 of 15



Problems of Extended Composite Pattern

● Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :

To add/delete/modify an operation⇒ Change of all descendants of EXPRESSION
● Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.⇒ Confusing to mix codes for evaluation, pretty printing, and type
checking.⇒We want to avoid “polluting” the classes with these various
unrelated operations.

5 of 15



Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

⇒When extending the behaviour of a system, we:
○ May add/modify the open (unstable) part of system.○ May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:○ ALTERNATIVE 1:

Syntactic constructs of the language may be open, whereas
operations on the language may be closed .○ ALTERNATIVE 2:
Syntactic constructs of the language may be closed , whereas
operations on the language may be open.

6 of 15



Visitor Pattern

● Separation of concerns :
○ Set of language constructs○ Set of operations

⇒ Classes from these two sets are decoupled and organized
into two separate clusters.

● Open-Closed Principle (OCP) : [ ALTERNATIVE 2 ]
○ Closed , staple part of system: set of language constructs○ Open, unstable part of system: set of operations

⇒ OCP helps us determine if Visitor Pattern is applicable .
⇒ If it was decided that language constructs are open and
operations are closed , then do not use Visitor Pattern.

7 of 15



Visitor Pattern: Architecture

expression_operationsexpression_language

EXPERSSION*

CONSTANT+

 accept(v: VISITOR)+ 

ADDITION+

COMPOSITE*

left, right: EXPRESSION 

EVALUATOR+
 visit_constant(c: CONSTANT)+ 
 visit_addition(a: ADDITION)+ 

PRETTY_PRINTER+
 visit_constant(c: CONSTANT)+ 
 visit_addition(a: ADDITION)+ 

TYPE_CHECKER+
 visit_constant(c: CONSTANT)+ 
 visit_addition(a: ADDITION)+ 

VISITOR*
 visit_constant(c: CONSTANT)* 
 visit_addition(a: ADDITION)* 

accept

accept(v: VISITOR)*

 accept(v: VISITOR)+ 

8 of 15



Visitor Pattern Implementation: Structures

Cluster expression language○ Declare deferred feature accept(v: VISITOR) in EXPRSSION.○ Implement accept feature in each of the descendant classes.
class CONSTANT inherit EXPRESSION

. . .
accept(v: VISITOR)
do

v.visit_ constant (Current)
end

end

class ADDITION

inherit EXPRESSION COMPOSITE

. . .
accept(v: VISITOR)
do

v.visit_ addition (Current)
end

end

9 of 15



Visitor Pattern Implementation: Operations

Cluster expression operations○ For each descendant class C of EXPRESSION, declare a deferred

feature visit_c (e: C) in the deferred class VISITOR.

deferred class VISITOR

visit_constant(c: CONSTANT) deferred end

visit_addition(a: ADDITION) deferred end

end

○ Each descendant of VISITOR denotes a kind of operation.
class EVALUATOR inherit VISITOR

value : INTEGER

visit_constant(c: CONSTANT) do value := c.value end

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR

do a.left.accept(eval_left)
a.right.accept(eval_right)

value := eval_left.value + eval_right.value
end

end
10 of 15



Testing the Visitor Pattern

1 test_expression_evaluation: BOOLEAN

2 local add, c1, c2: EXPRESSION ; v: VISITOR

3 do

4 create {CONSTANT} c1.make (1) ; create {CONSTANT} c2.make (2)
5 create {ADDITION} add.make (c1, c2)
6 create {EVALUATOR} v.make
7 add.accept(v)

8 check attached {EVALUATOR} v as eval then

9 Result := eval.value = 3
10 end

11 end

Double Dispatch in Line 7:

1. DT of add is ADDITION⇒ Call accept in ADDITION

v.visit addition (add)

2. DT of v is EVALUATOR⇒ Call visit addition in EVALUATOR

visiting result of add.left + visiting result of add.right
11 of 15



To Use or Not to Use the Visitor Pattern

● In the architecture of visitor pattern, what kind of extensions is
easy and hard? Language structure? Language Operation?○ Adding a new kind of operation element is easy.

To introduce a new operation for generating C code, we only need to
introduce a new descendant class C CODE GENERATOR of VISITOR,
then implement how to handle each language element in that class.
⇒ Single Choice Principle is obeyed .○ Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSION,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new visit multiplication operation.

⇒ Single Choice Principle is violated .● The applicability of the visitor pattern depends on to what
extent the structure will change.⇒ Use visitor if operations applied to structure change often.⇒ Do not use visitor if the structure changes often.

12 of 15



Beyond this Lecture. . .

● Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_
4z5eXGW-ZBgsS2WZTyBHY2

● The Visitor Pattern can be used to facilitate the development of
a language compiler:
https://www.youtube.com/playlist?list=PL5dxAmCmjv_
4FGYtGzcvBeoS-BobRTJLq

13 of 15

https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4z5eXGW-ZBgsS2WZTyBHY2
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq
https://www.youtube.com/playlist?list=PL5dxAmCmjv_4FGYtGzcvBeoS-BobRTJLq


Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Problems of Extended Composite Pattern

Open/Closed Principle

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures

Visitor Pattern Implementation: Operations

Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern

14 of 15



Index (2)

Beyond this Lecture. . .

15 of 15



Program Correctness
OOSC2 Chapter 11

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Objectives

1. Motivating Examples: Program Correctness

2. Hoare Triple

3. Weakest Precondition (wp)
4. Rules of wp Calculus

5. Contract of Loops ( invariant vs. variant )

6. Correctness Proofs of Loops

2 of 51



Assertions: Weak vs. Strong
● Describe each assertion as a set of satisfying value.

x > 3 has satisfying values { x � x > 3 } = { 4,5,6,7, . . . }
x > 4 has satisfying values { x � x > 4 } = { 5,6,7, . . . }

● An assertion p is stronger than an assertion q if p’s set of
satisfying values is a subset of q’s set of satisfying values.○ Logically speaking, p being stronger than q (or, q being weaker

than p) means p⇒ q.○ e.g., x > 4⇒ x > 3● What’s the weakest assertion? [ TRUE ]● What’s the strongest assertion? [ FALSE ]
● In Design by Contract :
○ A weaker invariant has more acceptable object states

e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT○ A weaker precondition has more acceptable input values
○ A weaker postcondition has more acceptable output values

3 of 51



Assertions: Preconditions

Given preconditions P1 and P2, we say that

P2 requires less than P1 if
P2 is less strict on (thus allowing more) inputs than P1 does.

{ x � P1(x) } ⊆ { x � P2(x) }

More concisely:
P1 ⇒ P2

e.g., For command withdraw(amount: INTEGER),
P2 ∶ amount ≥ 0 requires less than P1 ∶ amount > 0

What is the precondition that requires the least? [ true ]
4 of 51



Assertions: Postconditions

Given postconditions or invariants Q1 and Q2, we say that

Q2 ensures more than Q1 if
Q2 is stricter on (thus allowing less) outputs than Q1 does.

{ x � Q2(x) } ⊆ { x � Q1(x) }
More concisely:

Q2 ⇒ Q1

e.g., For query q(i: INTEGER): BOOLEAN,
Q2 ∶ Result = (i > 0) ∧ (i mod 2 = 0) ensures more than

Q1 ∶ Result = (i > 0) ∨ (i mod 2 = 0)
What is the postcondition that ensures the most? [ false ]

5 of 51



Motivating Examples (1)

Is this feature correct?
class FOO

i: INTEGER

increment_by_9

require

i > 3

do

i := i + 9

ensure

i > 13

end

end

Q: Is i > 3 is too weak or too strong?
A: Too weak
∵ assertion i > 3 allows value 4 which would fail postcondition.

6 of 51



Motivating Examples (2)
Is this feature correct?
class FOO

i: INTEGER

increment_by_9

require

i > 5

do

i := i + 9

ensure

i > 13

end

end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong∵ assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
7 of 51



Software Correctness

● Correctness is a relative notion:

consistency of implementation with respect to specification.
⇒ This assumes there is a specification!

● We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : {Q} S {R}
○ e.g., {i > 3} i := i + 9 {i > 13}○ e.g., {i > 5} i := i + 9 {i > 13}
○ If {Q} S {R} can be proved TRUE, then the S is correct.

e.g., {i > 5} i := i + 9 {i > 13} can be proved TRUE.
○ If {Q} S {R} cannot be proved TRUE, then the S is incorrect.

e.g., {i > 3} i := i + 9 {i > 13} cannot be proved TRUE.

8 of 51



Hoare Logic

● Consider a program S with precondition Q and postcondition R.
○ {Q} S {R} is a correctness predicate for program S○ {Q} S {R} is TRUE if program S starts executing in a state

satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

● Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

9 of 51



Hoare Logic and Software Correctness
Consider the contract view of a feature f (whose body of
implementation is S) as a Hoare Triple :

{Q} S {R}
Q is the precondition of f .
S is the implementation of f .
R is the postcondition of f .
○ {true} S {R}

All input values are valid [ Most-user friendly ]○ {false} S {R}
All input values are invalid [ Most useless for clients ]○ {Q} S {true}
All output values are valid [ Most risky for clients; Easiest for suppliers ]○ {Q} S {false}
All output values are invalid [ Most challenging coding task ]○ {true} S {true}
All inputs/outputs are valid (No contracts) [ Least informative ]

10 of 51



Proof of Hoare Triple using wp

{Q} S {R} ≡ Q⇒ wp(S,R)
● wp(S,R) is the weakest precondition for S to establish R .
○ If Q⇒ wp(S,R), then any execution started in a state satisfying Q

will terminate in a state satisfying R.○ If Q �⇒ wp(S,R), then some execution started in a state satisfying
Q will terminate in a state violating R.● S can be:○ Assignments (x := y)○ Alternations (if . . . then . . . else . . . end)○ Sequential compositions (S1 ; S2)○ Loops (from . . . until . . . loop . . . end)● We will learn how to calculate the wp for the above

programming constructs.
11 of 51



Denoting New and Old Values

In the postcondition , for a program variable x :
○ We write x0 to denote its pre-state (old) value.
○ We write x to denote its post-state (new) value.

Implicitly, in the precondition , all program variables have their
pre-state values.

e.g., {b0 > a} b := b - a {b = b0 − a}
● Notice that:○ We may choose to write “b” rather than “b0” in preconditions∵ All variables are pre-state values in preconditions○ We don’t write “b0” in program∵ there might be multiple intermediate values of a variable due to

sequential composition

12 of 51



wp Rule: Assignments (1)

wp(x := e, R) = R[x ∶= e]
R[x ∶= e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

13 of 51



wp Rule: Assignments (2)

Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove {Q} x := e {R}?

{Q} x := e {R} ⇐⇒ Q⇒ R[x ∶= e]�����������������������������������
wp(x := e,R)

14 of 51



wp Rule: Assignments (3) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x > x0}
For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x > x0).

wp(x := x + 1, x > x0)= {Rule of wp: Assignments}
x > x0[x ∶= x0 + 1]= {Replacing x by x0 + 1}
x0 + 1 > x0= {1 > 0 always true}
True

Any precondition is OK. False is valid but not useful.
15 of 51



wp Rule: Assignments (4) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x = 23?

{??} x := x + 1 {x = 23}
For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x = 23).

wp(x := x + 1, x = 23)= {Rule of wp: Assignments}
x = 23[x ∶= x0 + 1]= {Replacing x by x0 + 1}
x0 + 1 = 23= {arithmetic}
x0 = 22

Any precondition weaker than x = 22 is not OK.
16 of 51



wp Rule: Assignments (4) Revisit

Given {??}n ∶= n + 9{n > 13}:
● n > 4 is the weakest precondition (wp) for the given

implementation (n := n + 9) to start and establish the
postcondition (n > 13).

● Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.
e.g., {n > 5}n ∶= n + 9{n > 13} can be proved TRUE.

● Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n > 3}n ∶= n + 9{n > 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n > 13.

17 of 51



wp Rule: Alternations (1)

wp(if B then S1 else S2 end, R) = ����
B ⇒ wp(S1, R)∧¬ B ⇒ wp(S2, R)

����
The wp of an alternation is such that all branches are able to
establish the postcondition R.

18 of 51



wp Rule: Alternations (2)
Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove that {Q} if B then S1 else S2 end {R}?
{Q}
if B then{Q ∧ B } S1 {R}
else{Q ∧ ¬ B } S2 {R}
end{R}

{Q} if B then S1 else S2 end {R}
⇐⇒ ����

{ Q ∧ B } S1 { R }∧{ Q ∧ ¬ B } S2 { R }
���� ⇐⇒

����
(Q ∧ B )⇒ wp(S1, R)∧(Q ∧ ¬ B )⇒ wp(S2, R)

����
19 of 51



wp Rule: Alternations (3) Exercise
Is this program correct?
{x > 0 ∧ y > 0}
if x > y then

bigger := x ; smaller := y

else

bigger := y ; smaller := x

end{bigger ≥ smaller}
���
{(x > 0 ∧ y > 0) ∧ (x > y)}

bigger := x ; smaller := y{bigger ≥ smaller}
���

∧
���
{(x > 0 ∧ y > 0) ∧ ¬(x > y)}

bigger := y ; smaller := x{bigger ≥ smaller}
���

20 of 51



wp Rule: Sequential Composition (1)

wp(S1 ; S2, R) = wp(S1, wp(S2, R))
The wp of a sequential composition is such that the first phase

establishes the wp for the second phase to establish the
postcondition R.

21 of 51



wp Rule: Sequential Composition (2)

Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove {Q} S1 ; S2 {R}?

{Q} S1 ; S2 {R} ⇐⇒ Q⇒ wp(S1, wp(S2, R))���������������������������������������������������������������������������������������������������������������������
wp(S1 ; S2,R)

22 of 51



wp Rule: Sequential Composition (3) Exercise
Is { True } tmp := x; x := y; y := tmp { x > y } correct?
If and only if True⇒ wp(tmp := x ; x := y ; y := tmp, x > y)

wp(tmp := x ; x := y ; y := tmp , x > y)= {wp rule for seq. comp.}
wp(tmp := x, wp(x := y ; y := tmp , x > y))= {wp rule for seq. comp.}
wp(tmp := x, wp(x := y, wp(y := tmp, x > y )))

= {wp rule for assignment}
wp(tmp := x, wp(x := y, x > tmp))= {wp rule for assignment}
wp(tmp := x, y > tmp )

= {wp rule for assignment}
y > x

∵ True⇒ y > x does not hold in general.∴ The above program is not correct.
23 of 51



Loops

● A loop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers

● Loops are needed and powerful
● But loops very hard to get right:
○ Infinite loops [ termination ]○ “off-by-one” error [ partial correctness ]○ Improper handling of borderline cases [ partial correctness ]○ Not establishing the desired condition [ partial correctness ]

24 of 51



Loops: Binary Search

4 implementations for
binary search: published,
but wrong!

See page 381 in Object Oriented
Software Construction

25 of 51



Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from

Sinit
until

B
loop

Sbody
end

{R}

{Q}
Sinit
while(¬ B) {

Sbody
}

{R}

● In case of C/Java, ¬B denotes the stay condition.
● In case of Eiffel, B denotes the exit condition.

There is native, syntactic support for checking/proving the
total correctness of loops.

26 of 51



Contracts for Loops: Syntax

from

Sinit
invariant

invariant_tag: I -- Boolean expression for partial correctness

until

B
loop

Sbody
variant

variant_tag: V -- Integer expression for termination

end

27 of 51



Contracts for Loops
● Use of loop invariants (LI) and loop variants (LV).
○ Invariants: Boolean expressions for partial correctness.
● Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
● Established before the very first iteration.● Maintained TRUE after each iteration.○ Variants: Integer expressions for termination

● Denotes the number of iterations remaining
● Decreased at the end of each subsequent iteration● Maintained non-negative at the end of each iteration.● As soon as value of LV reaches zero, meaning that no more iterations

remaining, the loop must exit.● Remember:
total correctness = partial correctness + termination

28 of 51



Contracts for Loops: Runtime Checks (1)

Loop 
Invariant 
Violation

Sinit
not I

I
B

not B

Sbody

V � 0� 0

Loop 
Variant 

Violation

V < 0< 0

29 of 51



Contracts for Loops: Runtime Checks (2)
1 test

2 local

3 i: INTEGER

4 do

5 from

6 i := 1

7 invariant

8 1 <= i and i <= 6

9 until

10 i > 5

11 loop

12 io.put_string ("iteration " + i.out + "%N")

13 i := i + 1

14 variant

15 6 - i

16 end

17 end

L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation.

L15: Change to 5 - i for a Loop Variant Violation.
30 of 51



Contracts for Loops: Visualization

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
31 of 51



Contracts for Loops: Example 1.1
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: -- ∀j � a.lower ≤ j ≤ i ● Result ≥ a[j]
across a.lower |..| i as j all Result >= a [j.item] end

until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i + 1

end

ensure

correct_result: -- ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

end

32 of 51



Contracts for Loops: Example 1.2
Consider the feature call find max( ��20, 10, 40, 30�� ) , given:
● Loop Invariant : ∀j � a.lower ≤ j ≤ i ● Result ≥ a[j]● Loop Variant : a.upper − i + 1

AFTER ITERATION i Result LI EXIT (i > a.upper )? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 × – –

Loop invariant violation at the end of the 2nd iteration:

∀j � a.lower ≤ j ≤ 3 ● 20 ≥ a[j]
evaluates to false ∵ 20 �≥ a[3] = 40

33 of 51



Contracts for Loops: Example 2.1
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: -- ∀j � a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i
end

ensure

correct_result: -- ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

end

34 of 51



Contracts for Loops: Example 2.2
Consider the feature call find max( ��20, 10, 40, 30�� ) , given:
● Loop Invariant : ∀j � a.lower ≤ j < i ● Result ≥ a[j]● Loop Variant : a.upper − i

AFTER ITERATION i Result LI EXIT (i > a.upper )? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 2

2nd 3 20 ✓ × 1

3rd 4 40 ✓ × 0

4th 5 40 ✓ ✓ -1

Loop variant violation at the end of the 4th iteration∵ a.upper − i = 4 − 5 evaluates to non-zero.
35 of 51



Contracts for Loops: Example 3.1
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: -- ∀j � a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i + 1

end

ensure

correct_result: -- ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

end

36 of 51



Contracts for Loops: Example 3.2
Consider the feature call find max( ��20, 10, 40, 30�� ) , given:
● Loop Invariant : ∀j � a.lower ≤ j < i ● Result ≥ a[j]● Loop Variant : a.upper − i + 1● Postcondition : ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

AFTER ITERATION i Result LI EXIT (i > a.upper )? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 ✓ × 2

3rd 4 40 ✓ × 1

4th 5 40 ✓ ✓ 0

37 of 51



Contracts for Loops: Exercise
class DICTIONARY[V, K]

feature {NONE} -- Implementations

values: ARRAY[K]

keys: ARRAY[K]

feature -- Abstraction Function

model: FUN[K, V]

feature -- Queries

get_keys(v: V): ITERABLE[K]

local i: INTEGER; ks: LINKED_LIST[K]

do

from i := keys.lower ; create ks.make_empty

invariant ??

until i > keys.upper

do if values[i] ∼ v then ks.extend(keys[i]) end

end

Result := ks.new_cursor

ensure

result valid: ∀k � k ∈ Result ● model.item(k) ∼ v
no missing keys: ∀k � k ∈ model.domain ● model.item(k) ∼ v ⇒ k ∈ Result

end

38 of 51



Proving Correctness of Loops (1)
{Q} from

Sinit
invariant

I
until

B
loop

Sbody
variant

V
end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.● At the end of Sbody , if not yet to exit, LI I is maintained.● If ready to exit and LI I maintained, postcondition R is established.○ A loop terminates if:● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.● Given LI I, and not yet to exit, Sbody decrements LV V .

39 of 51



Proving Correctness of Loops (2)

{Q} from Sinit invariant I until B loop Sbody variant V end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.

{Q} Sinit {I}
● At the end of Sbody , if not yet to exit, LI I is maintained.

{I ∧ ¬B} Sbody {I}
● If ready to exit and LI I maintained, postcondition R is established.

I ∧ B⇒ R

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.

{I ∧ ¬B} Sbody {V ≥ 0}
● Given LI I, and not yet to exit, Sbody decrements LV V .

{I ∧ ¬B} Sbody {V < V0}
40 of 51



Proving Correctness of Loops: Exercise (1.1)
Prove that the following program is correct:
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: ∀j � a.lower ≤ j < i ● Result ≥ a[j]
until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i + 1

end

ensure

correct_result: ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
end

end

41 of 51



Proving Correctness of Loops: Exercise (1.2)
Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:
{ True }
i := a.lower

Result := a[i]{ ∀j � a.lower ≤ j < i ● Result ≥ a[j] }
2. Maintenance of Loop Invariant:
{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }
if a [i] > Result then Result := a [i] end

i := i + 1{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) }
3. Establishment of Postcondition upon Termination:

(∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ i > a.upper⇒ ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
42 of 51



Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:
{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }
if a [i] > Result then Result := a [i] end

i := i + 1{ a.upper − i + 1 ≥ 0 }
5. Loop Variant Keeps Decrementing before Exit:
{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }
if a [i] > Result then Result := a [i] end

i := i + 1{ a.upper − i + 1 < (a.upper − i + 1)0 }
where (a.upper − i + 1)0 ≡ a.upper0 − i0 + 1

43 of 51



Proof Tips (1)

{Q} S {R}⇒ {Q ∧P} S {R}
In order to prove {Q ∧P} S {R}, it is sufficient to prove a version
with a weaker precondition: {Q} S {R}.

Proof:○ Assume: {Q} S {R}
It’s equivalent to assuming: Q ⇒ wp(S, R) (A1)○ To prove: {Q ∧P} S {R}
● It’s equivalent to proving: Q ∧ P ⇒ wp(S, R)
● Assume: Q ∧ P, which implies Q● According to (A1), we have wp(S, R). �

44 of 51



Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

wp(S, a.lower ≤ i ≤ a.upper ∧ a[i] > 0)

e.g., Before calculating wp(x := a[i], R), augment it as

wp(x := a[i], a.lower ≤ i ≤ a.upper ∧R)

45 of 51



Beyond this lecture

Exercise on proving the total correctness of a program:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf

46 of 51

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf


Index (1)

Learning Objectives

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Denoting New and Old Values
47 of 51



Index (2)
wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Assignments (5) Revisit

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise
48 of 51



Index (3)
Loops

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1
49 of 51



Index (4)
Contracts for Loops: Example 2.2

Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)
50 of 51



Index (5)
Beyond this lecture

51 of 51


	01-DbC
	Learning Objectives
	Part 1
	Motivation: Catching Defects – When?
	What this Course Is About (1)
	What this Course Is About (2)
	Terminology: Contract, Client, Supplier
	Client, Supplier, Contract in OOP (1)
	Client, Supplier, Contract in OOP (2)
	What is a Good Design?
	Part 2.1
	A Simple Problem: Bank Accounts
	Playing with the Various Versions in Java
	V1: An Account Class
	V1: Why Not a Good Design? (1)
	V1: Why Not a Good Design? (2)
	V1: Why Not a Good Design? (3)
	Part 2.2
	V1: How Should We Improve it? (1)
	V1: How Should We Improve it? (2)
	V2: Preconditions  Exceptions
	V2: Why Better than V1? (1)
	V2: Why Better than V1? (2.1)
	V2: Why Better than V1? (2.2)
	V2: Why Better than V1? (3.1)
	V2: Why Better than V1? (3.2)
	V2: Why Still Not a Good Design? (1)
	V2: Why Still Not a Good Design? (2.1)
	V2: Why Still Not a Good Design? (2.2)
	Part 2.3
	V2: How Should We Improve it?
	V3: Class Invariants  Assertions
	V3: Why Better than V2?
	V3: Why Still Not a Good Design?
	Part 2.4
	V4: withdraw implemented incorrectly? (1)
	V4: withdraw implemented incorrectly? (2)
	Part 2.5
	V4: How Should We Improve it?
	V5: Postconditions  Assertions
	V5: Why Better than V4?
	Part 2.6
	Evolving from V1 to V5
	V5: Contract between Client and Supplier
	DbC in Java
	DbC in Eiffel: Supplier
	DbC in Eiffel: Contract View of Supplier
	DbC in Eiffel: Anatomy of a Class
	DbC in Eiffel: Anatomy of a Command
	DbC in Eiffel: Anatomy of a Query
	Part 3
	Runtime Monitoring of Contracts (1)
	Runtime Monitoring of Contracts (2)
	Runtime Monitoring of Contracts (3)
	Experimenting Contract Violations in Eiffel
	DbC in Eiffel: Precondition Violation (1.1)
	DbC in Eiffel: Precondition Violation (1.2)
	DbC in Eiffel: Precondition Violation (2.1)
	DbC in Eiffel: Precondition Violation (2.2)
	DbC in Eiffel: Precondition Violation (3.1)
	DbC in Eiffel: Precondition Violation (3.2)
	DbC in Eiffel: Class Invariant Violation (4.1)
	DbC in Eiffel: Class Invariant Violation (4.2)
	DbC in Eiffel: Postcondition Violation (5.1)
	DbC in Eiffel: Postcondition Violation (5.2)
	Beyond this lecture...

	02a-Modularity-ADTs
	Learning Objectives
	Modularity (1): Childhood Activity
	Modularity (2): Daily Construction
	Modularity (3): Computer Architecture
	Modularity (4): System Development
	Modularity (5): Software Design
	Design Principle: Modularity
	Abstract Data Types (ADTs)
	Building ADTs for Reusability
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Beyond this lecture...

	02b-Complete-Postconditions
	Learning Objectives
	Part 1
	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Example: Copying Objects
	Example: Collection Objects (1)
	Example: Collection Objects (2)
	Reference Copy of Collection Object
	Shallow Copy of Collection Object (1)
	Shallow Copy of Collection Object (2)
	Deep Copy of Collection Object (1)
	Deep Copy of Collection Object (2)
	Experiment: Copying Objects
	Part 2
	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Experiment: Complete Postconditions
	Beyond this lecture

	03a-Use-of-Generics
	Learning Objectives
	Generic Collection Class: Motivation (1)
	Generic Collection Class: Motivation (2)
	Generic Collection Class: Supplier
	Generic Collection Class: Client (1.1)
	Generic Collection Class: Client (1.2)
	Generic Collection Class: Client (2)

	03b-Abstraction-Math-Models
	Learning Objectives
	Motivating Problem: Complete Contracts
	Motivating Problem: LIFO Stack (1)
	Motivating Problem: LIFO Stack (2.1)
	Motivating Problem: LIFO Stack (2.2)
	Motivating Problem: LIFO Stack (2.3)
	Design Principles: Information Hiding & Single Choice
	Motivating Problem: LIFO Stack (3)
	Math Models: Command vs Query
	Implementing an Abstraction Function (1)
	Abstracting ADTs as Math Models (1)
	Implementing an Abstraction Function (2)
	Abstracting ADTs as Math Models (2)
	Implementing an Abstraction Function (3)
	Abstracting ADTs as Math Models (3)
	Solution: Abstracting ADTs as Math Models
	Beyond this lecture …

	04a-Design-Diagrams
	Learning Objectives
	Why a Design Diagram?
	Classes: Detailed View vs. Compact View (1)
	Classes: Detailed View vs. Compact View (2)
	Contracts: Mathematical vs. Programming
	Classes: Generic vs. Non-Generic
	Deferred vs. Effective
	Classes: Deferred vs. Effective
	Features: Deferred, Effective, Redefined (1)
	Features: Deferred, Effective, Redefined (2)
	Features: Deferred, Effective, Redefined (3)
	Classes: Deferred vs. Effective (2.1)
	Classes: Deferred vs. Effective (2.2)
	Class Relations: Inheritance (1)
	Class Relations: Inheritance (2)
	Class Relations: Client-Supplier (1)
	Class Relations: Client-Supplier (2.1)
	Class Relations: Client-Supplier (2.2.1)
	Class Relations: Client-Supplier (2.2.2)
	Class Relations: Client-Supplier (3.1)
	Class Relations: Client-Supplier (3.2.1)
	Class Relations: Client-Supplier (3.2.2)
	Clusters: Grouping Classes
	Beyond this lecture

	04b-Abstraction-Birthday-Book
	Learning Objectives
	Math Review: Set Definitions and Membership
	Math Review: Set Relations
	Math Review: Set Operations
	Math Review: Power Sets
	Math Review: Set of Tuples
	Math Models: Relations (1)
	Math Models: Relations (2)
	Math Models: Relations (3.1)
	Math Models: Relations (3.2)
	Math Models: Relations (3.3)
	Math Review: Functions (1)
	Math Review: Functions (2)
	Math Review: Functions (3.1)
	Math Review: Functions (3.2)
	Math Models: Command-Query Separation
	Math Models: Example Test
	Case Study: A Birthday Book
	Birthday Book: Decisions
	Birthday Book: Design
	Birthday Book: Implementation
	Beyond this lecture …

	04c-Iterator-Pattern
	Learning Objectives
	What are design patterns?
	Iterator Pattern: Motivation (1)
	Iterator Pattern: Motivation (2)
	Iterator Pattern: Architecture
	Iterator Pattern: Supplier's Side
	Iterator Pattern: Supplier's Implementation (1)
	Iterator Pattern: Supplier's Imp. (2.1)
	Iterator Pattern: Supplier's Imp. (2.2)
	Iterator Pattern: Supplier's Imp. (2.3)
	Exercises
	Resources
	Iterator Pattern: Client's Side
	Iterator Pattern: Clients using across for Contracts (1)
	Iterator Pattern: Clients using across for Contracts (2)
	Iterator Pattern: Clients using across for Contracts (3)
	Iterator Pattern: Clients using Iterable in Imp. (1)
	Iterator Pattern: Clients using Iterable in Imp. (2)
	Iterator Pattern: Clients using Iterable in Imp. (3)
	Beyond this lecture …

	05-Singleton-Pattern
	Learning Objectives
	Expanded Class: Modelling
	Expanded Class: Programming (2)
	Expanded Class: Programming (3)
	Reference vs. Expanded (1)
	Reference vs. Expanded (2)
	Singleton Pattern: Motivation
	Shared Data via Inheritance
	Sharing Data via Inheritance: Architecture
	Sharing Data via Inheritance: Limitation
	Introducing the Once Routine in Eiffel (1.1)
	Introducing the Once Routine in Eiffel (1.2)
	Introducing the Once Routine in Eiffel (1.3)
	Introducing the Once Routine in Eiffel (2)
	Approximating Once Routines in Java (1)
	Approximating Once Routines in Java (2)
	Singleton Pattern in Eiffel (1)
	Singleton Pattern in Eiffel (2)
	Testing Singleton Pattern in Eiffel
	Singleton Pattern: Architecture
	Beyond this lecture

	06-Eiffel-Testing-Framework
	Learning Objectives
	Required Tutorial
	Take-Home Message
	Bank ATM: Concrete User Interfaces
	UI, Model, TDD
	Prototyping System with Abstract UI
	Bank ATM: Abstract UI
	Bank ATM: Abstract States
	Bank ATM: Inputs of Acceptance Tests
	Bank ATM: Outputs of Acceptance Tests (1)
	Bank ATM: Outputs of Acceptance Tests (2)
	Bank ATM: Acceptance Tests vs. Unit Tests
	ETF in a Nutshell
	Workflow: Develop-Connect-Test
	ETF: Abstract UI and Acceptance Test
	ETF: Generating a New Project
	ETF: Architecture
	ETF: Implementing an Abstract Command
	Beyond this lecture

	07-Inheritance-expanded
	Learning Objectives
	Aspects of Inheritance
	Why Inheritance: A Motivating Example
	The COURSE Class
	No Inheritance: RESIDENT_STUDENT Class
	No Inheritance: NON_RESIDENT_STUDENT Class
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Inheritance Architecture
	Inheritance: The STUDENT Parent Class
	Inheritance: The RESIDENT_STUDENT Child Class
	Inheritance: The NON_RESIDENT_STUDENT Child Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Testing the Two Student Sub-Classes
	Static Type vs. Dynamic Type
	Inheritance Architecture Revisited
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture (1)
	Multi-Level Inheritance Architecture (2)
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Static Type
	Reference Variable: Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Reference Type Casting: Motivation
	Reference Type Casting: Syntax
	Notes on Type Cast (1)
	Notes on Type Cast (2)
	Notes on Type Cast (3)
	Polymorphism: Routine Call Parameters
	Polymorphism: Routine Call Arguments
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students
	Polymorphism: Return Values (1)
	Polymorphism: Return Values (2)
	Design Principle: Polymorphism 
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Beyond this lecture …

	08a-Generics
	Learning Objectives
	Motivating Example: A Book of Any Objects
	Motivating Example: Observations (1)
	Motivating Example: Observations (2)
	Motivating Example: Observations (2.1)
	Motivating Example: Observations (2.2)
	Motivating Example: Observations (3)
	Parameters
	Generics: Design of a Generic Book
	Generics: Observations
	Bad Example of using Generics
	Instantiating Generic Parameters
	Generics vs. Inheritance (1)
	Generics vs. Inheritance (2)
	Beyond this lecture …

	08b-State-Pattern
	Learning Objectives
	Motivating Problem
	State Transition Diagram
	Design Challenges
	A First Attempt
	A First Attempt: Good Design?
	A Top-Down, Hierarchical Solution
	Hierarchical Solution: Good Design?
	Hierarchical Solution: Top-Down Functional Decomposition
	Hierarchical Solution: System Control
	Hierarchical Solution: State Handling (1)
	Hierarchical Solution: State Handling (2)
	Hierarchical Solution: State Handling (3)
	Hierarchical Solution: Visible Architecture
	Hierarchical Solution: Pervasive States
	Law of Inversion
	Grouping by Data Abstractions
	Architecture of the State Pattern
	The STATE ADT
	The Template Design Pattern
	APPLICATION Class: Array of STATE
	APPLICATION Class (1)
	APPLICATION Class (2)
	Example Test: Non-Interactive Session
	APPLICATION Class (3): Interactive Session
	Building an Application
	Top-Down, Hierarchical vs. OO Solutions

	09-Observer-Pattern-Event-Driven-Design
	Learning Objectives
	Motivating Problem
	First Design: Weather Station
	Implementing the First Design (1)
	Implementing the First Design (2.1)
	Implementing the First Design (2.2)
	Implementing the First Design (2.3)
	Implementing the First Design (3)
	First Design: Good Design?
	Observer Pattern: Architecture
	Observer Pattern: Weather Station
	Implementing the Observer Pattern (1.1)
	Implementing the Observer Pattern (1.2)
	Implementing the Observer Pattern (2.1)
	Implementing the Observer Pattern (2.2)
	Implementing the Observer Pattern (2.3)
	Implementing the Observer Pattern (2.4)
	Implementing the Observer Pattern (3)
	Observer Pattern: Limitation? (1)
	Observer Pattern: Limitation? (2)
	Event-Driven Design (1)
	Event-Driven Design (2)
	Event-Driven Design: Implementation
	Event-Driven Design in Java (1)
	Event-Driven Design in Java (2)
	Event-Driven Design in Java (3)
	Event-Driven Design in Java (4)
	Event-Driven Design in Eiffel (1)
	Event-Driven Design in Eiffel (2)
	Event-Driven Design in Eiffel (3)
	Event-Driven Design in Eiffel (4)
	Event-Driven Design: Eiffel vs. Java
	Beyond this lecture…

	10a-Subcontracting
	Aspects of Inheritance
	Learning Objectives
	Background of Logic (1)
	Background of Logic (2)
	Inheritance and Contracts (1)
	Inheritance and Contracts (2.1)
	Inheritance and Contracts (2.2)
	Inheritance and Contracts (2.3)
	Inheritance and Contracts (2.4)
	Inheritance and Contracts (2.5)
	Contract Redeclaration Rule (1)
	Contract Redeclaration Rule (2.1)
	Contract Redeclaration Rule (2.2)
	Invariant Accumulation
	Inheritance and Contracts (3)

	10b-Composite-Pattern
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Attempt 1: Architecture
	Design Attempt 1: Flaw?
	Design Attempt 2: Architecture
	Design Attempt 2: Flaw?
	Multiple Inheritance: Combining Abstractions (1)
	MI: Combining Abstractions (2.1)
	MI: Combining Abstractions (2.2)
	MI: Name Clashes
	MI: Resolving Name Clashes
	The Composite Pattern: Architecture
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Testing the Composite Pattern
	Summary: The Composite Pattern

	11-Visitor-Pattern
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Problems of Extended Composite Pattern
	Open/Closed Principle
	Visitor Pattern
	Visitor Pattern: Architecture
	Visitor Pattern Implementation: Structures
	Visitor Pattern Implementation: Operations
	Testing the Visitor Pattern
	To Use or Not to Use the Visitor Pattern
	Beyond this Lecture…

	12-Program-Correctness
	Learning Objectives
	Assertions: Weak vs. Strong
	Assertions: Preconditions
	Assertions: Postconditions
	Motivating Examples (1)
	Motivating Examples (2)
	Software Correctness
	Hoare Logic
	Hoare Logic and Software Correctness
	Proof of Hoare Triple using wp
	Denoting New and Old Values
	wp Rule: Assignments (1)
	wp Rule: Assignments (2)
	wp Rule: Assignments (3) Exercise
	wp Rule: Assignments (4) Exercise
	wp Rule: Assignments (5) Revisit
	wp Rule: Alternations (1)
	wp Rule: Alternations (2)
	wp Rule: Alternations (3) Exercise
	wp Rule: Sequential Composition (1)
	wp Rule: Sequential Composition (2)
	wp Rule: Sequential Composition (3) Exercise
	Loops
	Loops: Binary Search
	Correctness of Loops
	Contracts for Loops: Syntax
	Contracts for Loops
	Contracts for Loops: Runtime Checks (1)
	Contracts for Loops: Runtime Checks (2)
	Contracts for Loops: Visualization
	Contracts for Loops: Example 1.1
	Contracts for Loops: Example 1.2
	Contracts for Loops: Example 2.1
	Contracts for Loops: Example 2.2
	Contracts for Loops: Example 3.1
	Contracts for Loops: Example 3.2
	Contracts for Loops: Exercise
	Proving Correctness of Loops (1)
	Proving Correctness of Loops (2)
	Proving Correctness of Loops: Exercise (1.1)
	Proving Correctness of Loops: Exercise (1.2)
	Proving Correctness of Loops: Exercise (1.3)
	Proof Tips (1)
	Proof Tips (2)
	Beyond this lecture


