Design-by-Contract (DbC)

Readings: OOSC2 Chapters 6, 7, 8, 11

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. Design by Contract (DbC): Motivation & Terminology
- **2.** Supporting *DbC* (Java vs. Eiffel): *Preconditions, Postconditions, Class Invariants*
- 3. Runtime Assertion Checking of Contracts

Part 1

Design by Contract (DbC): Motivation & Terminology

3 of 72

Motivation: Catching Defects - When?

- To minimize *development costs*, minimize *software defects*.
- Software Development Cycle:

Requirements → *Design* → *Implementation* → Release

Q. Design or Implementation Phase?

Catch defects as early as possible.

Design and architecture	Implementation	Integration testing	Customer beta test	Postproduct release
1X*	5X	10X	15X	30X

- : The cost of fixing defects *increases exponentially* as software progresses through the development lifecycle.
- Discovering *defects* after **release** costs up to <u>30 times more</u> than catching them in the **design** phase.
- Choice of *design language* for your project is therefore of paramount importance.

Source: IBM Report

What this Course Is About (1)

- Focus is design
 - o Architecture: (many) inter-related modules
 - Specification: precise (functional) interface of each module
- For this course, having a prototypical, working implementation for your design suffices.
- A later refinement into more efficient data structures and algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]

- : Having a suitable language for **design** matters the most.
- Q: Is Java also a "good" design language?
- A: Let's first understand what a "good" design is.

- LASSONDE
- A supplier implements/provides a service (e.g., microwave).
- A client uses a service provided by some supplier.

Terminology: Contract, Client, Supplier

- The client is required to follow certain instructions to obtain the service (e.g., supplier **assumes** that client powers on, closes door, and heats something that is not explosive).
- If instructions are followed, the client would expect that the service does what is guaranteed (e.g., a lunch box is heated).
- The client does not care how the supplier implements it.
- What then are the benefits and obligations os the two parties?

	benefits	obligations
CLIENT	obtain a service	follow instructions
SUPPLIER	assume instructions followed	provide a service

- There is a *contract* between two parties, violated if:
 - The instructions are not followed. [Client's fault]
- Instructions followed, but service not satisfactory. [Supplier's fault] 7 of 72

Client, Supplier, Contract in OOP (1)


```
class Microwave {
 private boolean on;
 private boolean locked;
 void power() {on = true;}
 void lock() {locked = true;}
 void heat(Object stuff) {
  /* Assume: on && locked */
  /* stuff not explosive. */
 } }
```

```
class MicrowaveUser {
 public static void main(...) {
   Microwave m = new Microwave();
   Object obj = | ??? |;
   m.power(); m.lock();]
   m.heat(obj);
```

Method call **m**.heat(obj) indicates a client-supplier relation.

- Client: resident class of the method call [MicrowaveUser]
- Supplier: type of context object (or call target) m [Microwave]

6 of 72

R of 72

Client, Supplier, Contract in OOP (2)

• The *contract* is *honoured* if:

Right **before** the method call

- State of m is as assumed: m.on==true and m.locked==ture
- The input argument obj is valid (i.e., not explosive).

Right after the method call : obj is properly heated.

- If any of these fails, there is a contract violation.
 - m.on or m.locked is false
 obj is an explosive
 A fault from the client is identified
 ⇒ MicrowaveUser's fault.
 ⇒ Method call will not start.
 - Method executed but obj not properly heated ⇒ Microwave's fault

9 of 72

What is a Good Design?

- A "good" design should explicitly and unambiguously describe
 the contract between clients (e.g., users of Java classes) and
 suppliers (e.g., developers of Java classes).
 We call such a contractual relation a specification.
- When you conduct *software design*, you should be guided by the "appropriate" contracts between users and developers.
 - Instructions to **clients** should *not be unreasonable*.
 - e.g., asking them to assemble internal parts of a microwave
 - Working conditions for suppliers should not be unconditional.
 e.g., expecting them to produce a microwave which can safely heat an explosive with its door open!
 - You as a designer should strike proper balance between obligations and benefits of clients and suppliers.
 - e.g., What is the obligation of a binary-search user (also benefit of a binary-search implementer)? [The input array is sorted.]
 - Upon contract violation, there should be the fault of **only one side**.
 - This design process is called Design by Contract (DbC).

Part 2.1

Supporting DbC in Java: Problem & 1st Attempt (No Contracts)

11 of 72

A Simple Problem: Bank Accounts

Provide an object-oriented solution to the following problem:

REQ1: Each account is associated with the *name* of its owner (e.g., "Jim") and an integer *balance* that is always positive.

REQ2: We may withdraw an integer amount from an account.

REQ3: Each bank stores a list of *accounts*.

REQ4: Given a bank, we may *add* a new account in it.

REQ5: Given a bank, we may *query* about the associated account of a owner (e.g., the account of "Jim").

REQ6: Given a bank, we may *withdraw* from a specific account, identified by its name, for an integer amount.

Let's first try to work on **REQ1** and **REQ2** in Java. This may not be as easy as you might think!

Playing the Various Versions in Java

• **Download** the Java project archive (a zip file) here:

nttps://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/
EECS3311/codes/DbCIntro.zip

 Follow this tutorial to learn how to import an project archive into your workspace in Eclipse:

https://voutu.be/h-radOZa2aY

• Follow this tutorial to learn how to **enable** assertions in Eclipse:

https://youtu.be/OEgRV4a5Dzg

13 of 72

V1: An Account Class

```
public class AccountV1 {
2
         private String owner;
3
         private int balance;
4
         public String getOwner() { return owner; }
5
         public int getBalance() { return balance; }
         public AccountV1(String owner, int balance)
                this.owner = owner; this.balance = balance;
8
         public void withdraw(int amount) {
10
               this.balance = this.balance - amount;
11
12
         public String toString() {
13
               return owner + "'s current balance is: " + balance;
14
15
```

- Is this a good design? Recall **REQ1**: Each account is associated with ... an integer balance that is *always positive*.
- This requirement is *not* reflected in the above Java code.

14 of 72

V1: Why Not a Good Design? (1)


```
public class BankAppV1 {
  public static void main(String[] args) {
    System.out.println("Create an account for Alan with balance -10:");
    AccountV1 alan = new AccountV1("Alan", -10);
    System.out.println(alan);
```

Console Output:

```
Create an account for Alan with balance -10: Alan's current balance is: -10
```

- Executing Account V1's constructor results in an account object whose state (i.e., values of attributes) is invalid (i.e.,
 Alan's balance is negative). ⇒ Violation of REQ1
- Unfortunately, both client and supplier are to be blamed:
 BankAppV1 passed an invalid balance, but the API of
 AccountV1 does not require that! ⇒ A lack of defined contract

15 of 72

V1: Why Not a Good Design? (2)


```
public class BankAppV1 {
  public static void main(String[] args) {
    System.out.println("Create an account for Mark with balance 100:");
    AccountV1 mark = new AccountV1("Mark", 100);
    System.out.println(mark);
    System.out.println("Withdraw -1000000 from Mark's account:");
    mark. withdraw(-1000000);
    System.out.println(mark);
```

```
Create an account for Mark with balance 100:
Mark's current balance is: 100
Withdraw -1000000 from Mark's account:
Mark's current balance is: 1000100
```

- Mark's account state is always valid (i.e., 100 and 1000100).
- Withdraw amount is never negative! ⇒ Violation of REQ2
- Again a lack of contract between BankAppV1 and AccountV1.

V1: Why Not a Good Design? (3)

```
public class BankAppV1 {
  public static void main(String[] args) {
    System.out.println("Create an account for Tom with balance 100:");
    AccountV1 tom = new AccountV1("Tom", 100);
    System.out.println(tom);
    System.out.println("Withdraw 150 from Tom's account:");
    tom. withdraw(150);
    System.out.println(tom);
```

```
Create an account for Tom with balance 100:
Tom's current balance is: 100
Withdraw 150 from Tom's account:
Tom's current balance is: -50
```

- Withdrawal was done via an "appropriate" reduction, but the resulting balance of Tom is invalid.
 ⇒ Violation of REQ1
- Again a lack of contract between BankAppV1 and AccountV1.

17 of 72

Part 2.2

Supporting DbC in Java: 2nd Attempt (Method Preconditions)

V1: How Should We Improve it? (1)

Preconditions of a method specify the precise circumstances under which that method can be executed.

19 of 72

V1: How Should We Improve it? (2)

- The best we can do in Java is to encode the logical negations of preconditions as exceptions:
 - divide(int x, int y)
 throws DivisionByZeroException when y == 0.
 binSearch(int x, int[] xs)
 throws ArrayNotSortedException when xs is not sorted.
 topoSort(Graph g)
 throws NotDAGException when g is not directed and acyclic.
- Design your method by specifying the preconditions (i.e., service conditions for valid inputs) it requires, not the exceptions (i.e., error conditions for invalid inputs) for it to fail.
- Create V2 by adding exceptional conditions (an approximation of preconditions) to the constructor and withdraw method of the Account class.

V2: Preconditions ≈ **Exceptions**

```
public class Account V2 {
     public Account V2 (String owner, int balance) throws
3
        BalanceNegativeException
4
5
       if( balance < 0 ) { /* negated precondition */</pre>
6
        throw new BalanceNegativeException(); }
       else { this.owner = owner; this.balance = balance; }
8
9
     public void withdraw(int amount) throws
10
        WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
11
       if( amount < 0 ) { /* negated precondition */</pre>
12
        throw new WithdrawAmountNegativeException(); }
       else if (balance < amount) { /* negated precondition */</pre>
13
        throw new WithdrawAmountTooLargeException(); }
14
15
       else { this.balance = this.balance - amount; }
16
```

21 of 72

V2: Why Better than V1? (1)


```
Create an account for Alan with balance -10:
Illegal negative account balance.
```

L6: When attempting to call the constructor AccountV2 with a negative balance -10, a BalanceNegativeException (i.e., precondition violation) occurs, preventing further operations upon this invalid object.

<mark>ን</mark>2 of 72

V2: Why Better than V1? (2.1)


```
public class BankAppV2 {
     public static void main(String[] args) {
      System.out.println("Create an account for Mark with balance 100: ");
      try {
5
        Account V2 mark = new Account V2 ("Mark", 100);
        System.out.println(mark);
        System.out.println("Withdraw -1000000 from Mark's account:");
8
        mark. withdraw(-1000000);
        System.out.println(mark);
9
10
      catch (BalanceNegativeException bne) {
12
        System.out.println("Illegal negative account balance.");
13
14
      catch (WithdrawAmountNegativeException wane) {
15
        System.out.println("Illegal negative withdraw amount.");
16
17
      catch (WithdrawAmountTooLargeException wane) {
18
        System.out.println("Illegal too large withdraw amount.");
19
```

23 of 72

V2: Why Better than V1? (2.2)

Console Output:

```
Create an account for Mark with balance 100:
Mark's current balance is: 100
Withdraw -1000000 from Mark's account:
Illegal negative withdraw amount.
```

- L8: When attempting to call method withdraw with a negative amount -1000000, a WithdrawAmountNegativeException (i.e., precondition violation) occurs, preventing the withdrawal from proceeding.
- We should observe that adding preconditions to the supplier BankV2's code forces the client BankAppV2's code to get complicated by the try-catch statements.
- Adding clear contract (preconditions in this case) to the design should not be at the cost of complicating the client's code!!

V2: Why Better than V1? (3.1)

```
public class BankAppV2 {
     public static void main(String[] args) {
       System.out.println("Create an account for Tom with balance 100:");
      try {
5
        AccountV2 tom = new AccountV2("Tom", 100);
        System.out.println(tom);
        System.out.println("Withdraw 150 from Tom's account:");
        tom. withdraw (150);
9
        System.out.println(tom);
10
11
       catch (BalanceNegativeException bne) {
12
        System.out.println("Illegal negative account balance.");
13
14
       catch (WithdrawAmountNegativeException wane) {
15
        System.out.println("Illegal negative withdraw amount.");
16
17
       catch (WithdrawAmountTooLargeException wane) {
        System.out.println("Illegal too large withdraw amount.");
18
19
```

25 of 72

V2: Why Better than V1? (3.2)

Console Output:

```
Create an account for Tom with balance 100:
Tom's current balance is: 100
Withdraw 150 from Tom's account:
Illegal too large withdraw amount.
```

- L8: When attempting to call method withdraw with a positive but too large amount 150, a
 - WithdrawAmountTooLargeException (i.e., precondition violation) occurs, preventing the withdrawal from proceeding.
- We should observe that due to the *added preconditions* to the supplier BankV2's code, the client BankAppV2's code is forced to repeat the long list of the try-catch statements.
- Indeed, adding clear contract (preconditions in this case)
 should not be at the cost of complicating the client's code!!

V2: Why Still Not a Good Design? (1)


```
public class AccountV2 {
     public Account V2 (String owner, int balance) throws
        BalanceNegativeException
4
5
       if( balance < 0 ) { /* negated precondition */</pre>
6
        throw new BalanceNegativeException(); }
7
       else { this.owner = owner; this.balance = balance; }
8
     public void withdraw(int amount) throws
10
        WithdrawAmountTooLargeException, WithdrawAmountTooLargeException {
11
       if( amount < 0 ) { /* negated precondition */</pre>
12
        throw new WithdrawAmountNegativeException(); }
13
       else if ( balance < amount ) { /* negated precondition */</pre>
14
        throw new WithdrawAmountTooLargeException(); }
15
       else { this.balance = this.balance - amount; }
```

- Are all the *exception* conditions (¬ *preconditions*) appropriate?
- What if amount == balance when calling withdraw?

27 of 72

V2: Why Still Not a Good Design? (2.1)


```
public class BankAppV2 {
     public static void main(String[] args) {
      System.out.println("Create an account for Jim with balance 100:");
      try {
        AccountV2 jim = new AccountV2("Jim", 100);
5
        System.out.println(jim);
        System.out.println("Withdraw 100 from Jim's account:");
        jim. withdraw(100);
9
        System.out.println(jim);
10
11
      catch (BalanceNegativeException bne) {
12
        System.out.println("Illegal negative account balance.");
13
14
      catch (WithdrawAmountNegativeException wane) {
15
        System.out.println("Illegal negative withdraw amount.");
16
17
      catch (WithdrawAmountTooLargeException wane) {
18
        System.out.println("Illegal too large withdraw amount.");
```


V2: Why Still Not a Good Design? (2.2)

```
Create an account for Jim with balance 100:
Jim's current balance is: 100
Withdraw 100 from Jim's account:
Jim's current balance is: 0
```

L9: When attempting to call method withdraw with an amount 100 (i.e., equal to Jim's current balance) that would result in a **zero** balance (clearly a violation of **REQ1**), there should have been a *precondition* violation.

Supplier Account V2's exception condition balance < amount has a missing case:

- Calling withdraw with amount == balance will also result in an invalid account state (i.e., the resulting account balance is zero).
- : L13 of Account V2 should be balance <= amount.

29 of 72

Part 2.3

30 of 72

Supporting DbC in Java: 3rd Attempt (Class Invariants)

- Even without fixing this insufficient *precondition*, we could have avoided the above scenario by *checking at the end of each method that the resulting account is valid*.
 - ⇒ We consider the condition this.balance > 0 as *invariant* throughout the lifetime of all instances of Account.
- Invariants of a class specify the precise conditions which all instances/objects of that class must satisfy.

- The best we can do in Java is encode invariants as assertions:
 - o CSMajorStudent: assert this.gpa >= 4.5
 - BinarySearchTree: assert this.inOrder() is sorted
 - Unlike exceptions, assertions are not in the class/method API.
- Create V3 by adding assertions to the end of constructor and withdraw method of the Account class.

R1 of 72

32 of 72

V3: Class Invariants ≈ Assertions


```
public class Account V3 {
     public Account V3 (String owner, int balance) throws
3
        BalanceNegativeException
4
5
       if(balance < 0) { /* negated precondition */</pre>
        throw new BalanceNegativeException(); }
7
       else { this.owner = owner; this.balance = balance; }
8
       assert this.getBalance() > 0 : "Invariant: positive balance";
9
10
     public void withdraw(int amount) throws
11
        WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
12
       if(amount < 0) { /* negated precondition */</pre>
13
        throw new WithdrawAmountNegativeException(); }
14
       else if (balance < amount) { /* negated precondition */</pre>
15
        throw new WithdrawAmountTooLargeException(); }
16
       else { this.balance = this.balance - amount; }
17
       assert this.getBalance() > 0 : "Invariant: positive balance";
18
```

.

V3: Why Better than V2?

Exception in thread "main"


```
public class BankAppV3 {
2
    public static void main(String[] args) {
      System.out.println("Create an account for Jim with balance 100:");
      try { AccountV3 jim = new AccountV3("Jim", 100);
            System.out.println(jim);
6
            System.out.println("Withdraw 100 from Jim's account:");
            jim. withdraw(100);
8
            System.out.println(jim); }
9
            /* catch statements same as this previous slide:
             * V2: Why Still Not a Good Design? (2.1) */
    Create an account for Jim with balance 100:
    Jim's current balance is: 100
    Withdraw 100 from Jim's account:
```

L8: Upon completion of jim.withdraw (100), Jim has a zero balance, an assertion failure (i.e., *invariant* violation) occurs, preventing further operations on this invalid account object.

java.lang.AssertionError: Invariant: positive balance

V3: Why Still Not a Good Design?

Let's recall what we have added to the method withdraw:

- From V2: exceptions encoding negated preconditions
- From V3: assertions encoding the class invariants

```
public class AccountV3 {
  public void withdraw(int amount) throws
    WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
    if( amount < 0 ) { /* negated precondition */
        throw new WithdrawAmountNegativeException(); }
    else if ( balance < amount ) { /* negated precondition */
        throw new WithdrawAmountTooLargeException(); }
    else { this.balance = this.balance - amount; }
    assert this.getBalance() > 0 : "Invariant: positive balance"; }
```

However, there is **no contract** in withdraw which specifies:

- Obligations of supplier (Account V3) if preconditions are met.
- Benefits of client (BankAppV3) after meeting preconditions.
 - ⇒ We illustrate how problematic this can be by creating V4, where deliberately mistakenly implement withdraw.

34 of 72

Part 2.4

Supporting DbC in Java: 4th Attempt (Faulty Implementation)

35 of 72

V4: withdraw implemented incorrectly? (1) LASSONDE


```
public class AccountV4 {
  public void withdraw(int amount) throws
  WithdrawAmountNegativeException, WithdrawAmountTooLargeException
  { if(amount < 0) { /* negated precondition */
      throw new WithdrawAmountNegativeException(); }
  else if (balance < amount) { /* negated precondition */
      throw new WithdrawAmountTooLargeException(); }
  else { /* WRONT IMPLEMENTATION */
      this.balance = this.balance + amount; }
  assert this.getBalance() > 0 :
      owner + "Invariant: positive balance"; }
```

- Apparently the implementation at L11 is wrong.
- Adding a positive amount to a valid (positive) account balance would not result in an invalid (negative) one.
 - ⇒ The class invariant will not catch this flaw.
- When something goes wrong, a good design (with an appropriate contract) should report it via a contract violation.

V4: withdraw implemented incorrectly? (2) LASSONDE

```
public class BankAppV4 {
public static void main(String[] args) {
    System.out.println("Create an account for Jeremy with balance 100:");

try { AccountV4 jeremy = new AccountV4("Jeremy", 100);
    System.out.println(jeremy);
    System.out.println("Withdraw 50 from Jeremy's account:");

jeremy. withdraw(50);
    System.out.println(jeremy); }

System.out.println(jeremy); }

/* catch statements same as this previous slide:
    * V2: Why Still Not a Good Design? (2.1) */
```

```
Create an account for Jeremy with balance 100:
Jeremy's current balance is: 100
Withdraw 50 from Jeremy's account:
Jeremy's current balance is: 150
```

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal was done via an *mistaken* increase. ⇒ Violation of **REQ2**

R7 of 72

Part 2.5

Supporting DbC in Java: 5th Attempt (Method Postconditions)

28 of 72

V4: How Should We Improve it?

• *Postconditions* of a method specify the precise conditions which it will satisfy upon its completion.

This relies on the assumption that right before the method starts, its preconditions are satisfied (i.e., inputs valid) and invariants are satisfied (i.e., object state valid).

- Postcondition of double divide(int x, int y)? [Result \times y == x]
 Postcondition of boolean binSearch(int x, int[] xs)? [$x \in xs \iff \text{Result}$]
- The best we can do in Java is, similar to the case of invariants, encode postconditions as assertions.

But again, unlike exceptions, these assertions will not be part of the class/method API.

• Create V5 by adding assertions to the end of withdraw method of the Account class.

89 of 72

V5: Postconditions ≈ Assertions


```
public class Account V5 {
     public void withdraw(int amount) throws
3
        WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
       int oldBalance = this.balance;
5
       if(amount < 0) { /* negated precondition */</pre>
6
        throw new WithdrawAmountNegativeException(); }
7
       else if (balance < amount) { /* negated precondition */</pre>
        throw new WithdrawAmountTooLargeException(); }
       else { this.balance = this.balance - amount; }
       assert this.getBalance() > 0 :"Invariant: positive balance";
11
       assert this.getBalance() == oldBalance - amount :
         "Postcondition: balance deducted"; }
```

A postcondition typically <u>relates</u> the <u>pre-execution value</u> and the <u>post-execution value</u> of each relevant attribute (e.g.,balance in the case of withdraw).

 \Rightarrow Extra code (L4) to capture the pre-execution value of balance for the comparison at L11.

V5: Why Better than V4?


```
public class BankAppV5 {
2
     public static void main(String[] args) {
      System.out.println("Create an account for Jeremy with balance 10\phi:");
      try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
            System.out.println(jeremy);
6
            System.out.println("Withdraw 50 from Jeremy's account:");
            jeremy. withdraw(50);
8
            System.out.println(jeremy); }
9
            /* catch statements same as this previous slide:
10
             * V2: Why Still Not a Good Design? (2.1) */
     Create an account for Jeremy with balance 100:
    Jeremy's current balance is: 100
     Withdraw 50 from Jeremy's account:
     Exception in thread "main"
       java.lang.AssertionError: Postcondition: balance deducted
```

L8: Upon completion of <code>jeremy.withdraw(50)</code>, Jeremy has a wrong balance 150, an assertion failure (i.e., postcondition violation) occurs, preventing further operations on this invalid account object.

41 of 72

Part 2.6

Supporting DbC: Java vs. Eiffel

	Improvements Made	Design <i>Flaws</i>
V1	_	Complete lack of Contract
V2	Added exceptions as method preconditions	Preconditions not strong enough (i.e., with missing cases) may result in an invalid account state.
V3	Added assertions as class invariants	-
V4	Deliberately changed withdraw's implementation to be incorrect.	Incorrect implementations do not necessarily result in a state that violates the class invariants.
V5	Added assertions as method postconditions	-

- In Versions 2, 3, 4, 5, **preconditions** approximated as *exceptions*.
 - © These are *not preconditions*, but their *logical negation*.
 - © Client BankApp's code complicated by repeating the list of try-catch statements.
- In Versions 3, 4, 5, class invariants and postconditions approximated as assertions.
 Unlike exceptions, these assertions will not appear in the API of withdraw.
 Potential clients of this method cannot know: 1) what their benefits are; and 2) what their suppliers' obligations are.
- © For postconditions, extra code needed to capture pre-execution values of attributes.

43 of 7

V5: Contract between Client and Supplier

	benefits	obligations
BankAppV5.main	balance deduction	amount non-negative
(CLIENT)	positive balance	amount not too large
BankV5.withdraw	amount non-negative	balance deduction
(SUPPLIER)	amount not too large	positive balance

	benefits	obligations
CLIENT	postcondition & invariant	precondition
SUPPLIEF	precondition	postcondition & invariant

172

DbC in Java

DbC is possible in Java, but not appropriate for your learning:

• *Preconditions* of a method:

Supplier

- Encode their logical negations as exceptions.
- In the beginning of that method, a list of if-statements for throwing the appropriate exceptions.

Client

- A list of try-catch-statements for handling exceptions.
- *Postconditions* of a method:

Supplier

Encoded as a list of assertions, placed at the end of that method.

Client

- All such assertions do not appear in the API of that method.
- *Invariants* of a class:

Supplier

Encoded as a list of assertions, placed at the end of every method.

Client

All such assertions do not appear in the API of that class.

45 of 72

DbC in Eiffel: Supplier

DbC is supported natively in Eiffel for supplier:

```
create
     make
feature -- Attributes
     owner : STRING
     balance : INTEGER
feature -- Constructors
     make(nn: STRING; nb: INTEGER)
           require -- precondition
                 positive_balance: nb > 0
                 owner ·= nn
                 balance := nb
           end
feature -- Commands
     withdraw(amount: INTEGER)
           require -- precondition
                 non negative amount: amount > 0
                 affordable_amount: amount <= balance -- problematic, why?
                 balance := balance - amount
           ensure -- postcondition
                 balance_deducted: balance = old balance - amount
           end
invariant -- class invariant
     positive_balance: balance > 0
end
16 of 72
```


DbC in Eiffel: Contract View of Supplier

Any potential **client** who is interested in learning about the kind of services provided by a **supplier** can look through the *contract view* (without showing any implementation details):

```
class ACCOUNT
create
feature -- Attributes
     owner : STRING
     balance : INTEGER
feature -- Constructors
     make(nn: STRING; nb: INTEGER)
          require -- precondition
                 positive_balance: nb > 0
feature -- Commands
     withdraw(amount: INTEGER)
           require -- precondition
                 non_negative_amount: amount > 0
                 affordable_amount: amount <= balance -- problematic, why?
           ensure -- postcondition
                 balance_deducted: balance = old balance - amount
invariant -- class invariant
     positive_balance: balance > 0
```

47 of 72

DbC in Eiffel: Anatomy of a Class


```
class SOME_CLASS
create
   -- Explicitly list here commands used as constructors
feature -- Attributes
   -- Declare attribute here
feature -- Commands
   -- Declare commands (mutators) here
feature -- Queries
   -- Declare queries (accessors) here
invariant
   -- List of tagged boolean expressions for class invariants
end
```

- Use feature clauses to group attributes, commands, queries.
- Explicitly declare list of commands under create clause, so that they can be used as class constructors.

[See the groups panel in Eiffel Studio.]

- The *class invariant invariant* clause may be omitted:
 - o There's no class invariant: any resulting object state is acceptable.

The class invariant is equivalent to writing invariant true

DbC in Eiffel: Anatomy of a Command

```
some_command (x: SOME_TYPE_1; y: SOME_TYPE_2)

-- Description of the command.

require

-- List of tagged boolean expressions for preconditions

local

-- List of local variable declarations

do

-- List of instructions as implementation

ensure

-- List of tagged boolean expressions for postconditions
end
```

- The *precondition require* clause may be omitted:
 - There's no precondition: any starting state is acceptable.
 - The precondition is equivalent to writing | require true
- The *postcondition ensure* clause may be omitted:
 - o There's no postcondition: any resulting state is acceptable.
- The postcondition is equivalent to writing ensure true

DbC in Eiffel: Anatomy of a Query

```
some_query (x: SOME_TYPE_1; y: SOME_TYPE_2): SOME_RT
    -- Description of the query.
require
    -- List of tagged boolean expressions for preconditions
local
    -- List of local variable declarations
do
    -- List of instructions as implementation
    Result := ...
ensure
    -- List of tagged boolean expressions for postconditions
end
```

- Each query has a predefined variable Result.
- Implicitly, you may think of:
 - First line of the query declares Result: SOME_RT
 - Last line of the query return the value of Result.
 - ⇒ Manipulate Result so that its last value is the desired result.

50 of 72

Part 3

DbC in Eiffel: Runtime Checking

51 of 72

Runtime Monitoring of Contracts (1)

In the specific case of ACCOUNT class with creation procedure make and command withdraw:

Runtime Monitoring of Contracts (2)

In general, class $\[mathbb{C}$ with creation procedure $\[mathbb{cp}$ and any feature $\[mathbb{f}$:

Runtime Monitoring of Contracts (3)

- All *contracts* are specified as *Boolean expressions*.
- Right before a feature call (e.g., acc.withdraw(10)):
 - The current state of acc is called the pre-state.
 - Evaluate feature withdraw's pre-condition using current values of attributes and queries.
 - Cache values (implicitly) of all expressions involving the old keyword in the post-condition.
 - e.g., cache the value of *old* balance via old_balance := balance
- Right after the feature call:
 - The current state of acc is called the post-state.
 - Evaluate class ACCOUNT's invariant using current values of attributes and queries.
 - Evaluate feature withdraw's post-condition using both current and "cached" values of attributes and gueries.

54 of 72

Experimenting Contract Violations in Eiffel LASSONDE

• **Download** the Eiffel project archive (a zip file) here:

https://www.eecs.vorku.ca/~jackie/teaching/lectures/2020/F/ EECS3311/codes/DbCIntroEiffel.zip

- Unzip and compile the project in Eiffel Studio.
- Follow the in-code comments to re-produce the various
 contract violations and understand from the stack trace how
 they occur.

55 of 72

DbC in Eiffel: Precondition Violation (1.1)

The **client** need not handle all possible contract violations:

```
class BANK_APP
inherit
  ARGUMENTS
create
  make
feature -- Initialization
  make
    -- Run application.
local
    alan: ACCOUNT
do
    -- A precondition violation with tag "positive_balance"
    create {ACCOUNT} alan.make ("Alan", -10)
end
end
```

By executing the above code, the runtime monitor of Eiffel Studio will report a *contract violation* (precondition violation with tag "positive_balance").

DbC in Eiffel: Precondition Violation (1.2)

57 of 72

58 of 72

DbC in Eiffel: Precondition Violation (2.1)

The client need not handle all possible contract violations:

```
class BANK APP
inherit
ARGUMENTS
create
make
feature -- Initialization
   -- Run application.
 local
  mark: ACCOUNT
 do
  create {ACCOUNT} mark.make ("Mark", 100)
  -- A precondition violation with tag "non_negative_amount"
  mark.withdraw(-1000000)
 end
end
```

By executing the above code, the runtime monitor of Eiffel Studio will report a *contract violation* (precondition violation with tag "non_negative_amount").

59 of 72

DbC in Eiffel: Precondition Violation (3.1)

The **client** need not handle all possible contract violations:

```
class BANK_APP
inherit
 ARGUMENTS
create
 make
feature -- Initialization
   -- Run application.
 local
   tom: ACCOUNT
 do
  create {ACCOUNT} tom.make ("Tom", 100)
   -- A precondition violation with tag "affordable_amount"
  tom.withdraw(150)
 end
end
```

By executing the above code, the runtime monitor of Eiffel Studio will report a *contract violation* (precondition violation with tag "affordable_amount").

DbC in Eiffel: Precondition Violation (3.2)

61 of 72

DbC in Eiffel: Class Invariant Violation (4.1) LASSONDE

The client need not handle all possible contract violations:

```
class BANK_APP
inherit

ARGUMENTS
create

make
feature -- Initialization

make
   -- Run application.
local
   jim: ACCOUNT
do
   create {ACCOUNT} tom.make ("Jim", 100)
   jim.withdraw(100)
   -- A class invariant violation with tag "positive_balance"
end
end
```

By executing the above code, the runtime monitor of Eiffel Studio will report a *contract violation* (class invariant violation with tag "positive_balance").

DbC in Eiffel: Class Invariant Violation (4.2) LASSONDE

63 of 72

DbC in Eiffel: Postcondition Violation (5.1)

The **client** need not handle all possible contract violations:

```
class BANK_APP
inherit ARGUMENTS
create make
feature -- Initialization
  make
    -- Run application.
local
    jeremy: ACCOUNT
  do
    -- Faulty implementation of withdraw in ACCOUNT:
    -- balance := balance + amount
    create {ACCOUNT} jeremy.make ("Jeremy", 100)
    jeremy.withdraw(150)
    -- A postcondition violation with tag "balance_deducted"
end
end
```

By executing the above code, the runtime monitor of Eiffel Studio will report a *contract violation* (postcondition violation with tag "balance_deducted").

DbC in Eiffel: Postcondition Violation (5.2)

65 of 72

Beyond this lecture...

- 1. Review your Lab0 tutorial about how DbC is supported in Eiffel.
- 2. Explore in Eclipse how *contract* checks are *manually-coded*:

 https://www.eecs.yorku.ca/~jackie/teaching/lectures/

2020/F/EECS3311/codes/DbCIntro.zip

3. Recall the 4th requirement of the bank problem (see here):

REQ4: Given a bank, we may add a new account in it.

Design the <u>header</u> of this add method, <u>implement</u> it, and encode proper pre-condition and <u>post-condition</u> for it.

- **Q.** What postcondition can you think of? Does it require any skill from EECS1090? What attribute value(s) do you need to manually store in the *pre-state*?
- **4.** 3 short courses which will help your labs and project:
 - Eiffel Syntax: here.
 - Common Syntax/Type Errors in Eiffel: here.
 - o Drawing Design Diagrams: here.

66 of 72

Index (1)

Learning Objectives

Part 1

Motivation: Catching Defects – When?

What this Course Is About (1)

What this Course Is About (2)

Terminology: Contract, Client, Supplier

Client, Supplier, Contract in OOP (1)

Client, Supplier, Contract in OOP (2)

What is a Good Design?

Part 2.1

A Simple Problem: Bank Accounts

67 of 72

Index (2)

Playing with the Various Versions in Java

V1: An Account Class

V1: Why Not a Good Design? (1)

V1: Why Not a Good Design? (2)

V1: Why Not a Good Design? (3)

Part 2.2

V1: How Should We Improve it? (1)

V1: How Should We Improve it? (2)

V2: Preconditions ≈ Exceptions

V2: Why Better than V1? (1)

V2: Why Better than V1? (2.1)

Index (3)

V2: Why Better than V1? (2.2)

V2: Why Better than V1? (3.1)

V2: Why Better than V1? (3.2)

V2: Why Still Not a Good Design? (1)

V2: Why Still Not a Good Design? (2.1)

V2: Why Still Not a Good Design? (2.2)

Part 2.3

V2: How Should We Improve it?

V3: Class Invariants ≈ Assertions

V3: Why Better than V2?

V3: Why Still Not a Good Design?

69 of 72

LASSONDE

Index (4)

Part 2.4

V4: withdraw implemented incorrectly? (1)

V4: withdraw implemented incorrectly? (2)

Part 2.5

V4: How Should We Improve it?

V5: Postconditions ≈ Assertions

V5: Why Better than V4?

Part 2.6

Evolving from V1 to V5

V5: Contract between Client and Supplier

DbC in Java

70 of 72

Index (5)

DbC in Eiffel: Supplier

DbC in Eiffel: Contract View of Supplier

DbC in Eiffel: Anatomy of a Class

DbC in Eiffel: Anatomy of a Command

DbC in Eiffel: Anatomy of a Query

Part 3

Runtime Monitoring of Contracts (1)

Runtime Monitoring of Contracts (2)

Runtime Monitoring of Contracts (3)

Experimenting Contract Violations in Eiffel

DbC in Eiffel: Precondition Violation (1.1)

71 of 72

Index (6)

DbC in Eiffel: Precondition Violation (1.2)

DbC in Eiffel: Precondition Violation (2.1)

DbC in Eiffel: Precondition Violation (2.2)

DbC in Eiffel: Precondition Violation (3.1)

DbC in Eiffel: Precondition Violation (3.2)

DbC in Eiffel: Class Invariant Violation (4.1)

DbC in Eiffel: Class Invariant Violation (4.2)

DbC in Eiffel: Postcondition Violation (5.1)

DbC in Eiffel: Postcondition Violation (5.2)

Beyond this lecture...

Modularity Abstract Data Types (ADTs)

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- **1.** Criterion of *Modularity*, Modular Design
- 2. Abstract Data Types (ADTs)

Modularity (1): Childhood Activity

(ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.org and https://www.wish.com

8 of 16

Modularity (2): Daily Construction

(INTERFACE) SPECIFICATION

(ASSEMBLY) ARCHITECTURE

Source: https://usermanual.wiki/

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., *CPUs*).

(INTERFACE) SPECIFICATION

(ASSEMBLY) ARCHITECTURE

5 of 16

Sources: www.embeddedlinux.org.cn and https://en.wikipedia.org

Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are built from function blocks.

(INTERFACE) SPECIFICATION

(ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.

Design Principle: Modularity

- *Modularity* refers to a sound quality of your design:
 - 1. Divide a given complex problem into inter-related sub-problems via a logical/justifiable functional decomposition. e.g., In designing a game, solve sub-problems of: 1) rules of the game; 2) actor characterizations; and 3) presentation.
 - 2. Specify each *sub-solution* as a *module* with a clear **interface**: inputs, outputs, and input-output relations.
 - The UNIX principle: Each command does one thing and does it well.
 - In objected-oriented design (OOD), each class serves as a module.
 - 3. Conquer original problem by assembling sub-solutions.
 - In OOD, classes are assembled via client-supplier relations (aggregations or compositions) or inheritance relations.
- A *modular design* satisfies the criterion of modularity and is:
 - Maintainable: fix issues by changing the relevant modules only.
 - Extensible: introduce new functionalities by adding new modules.
 - o Reusable: a module may be used in different compositions
- Opposite of modularity: A superman module doing everything. 8 of 16

Abstract Data Types (ADTs)

- Given a problem, decompose its solution into modules.
- Each *module* implements an *abstract data type (ADT)*:
 - filters out *irrelevant* details
 - o contains a list of declared data and well-specified operations

- Supplier's Obligations:
 - Implement all operations
 - Choose the "right" data structure (DS)
- Client's Benefits:
 - Correct output
 - Efficient performance
- The internal details of an *implemented ADT* should be **hidden**.

9 of 16

Building ADTs for Reusability

- ADTs are reusable software components e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
- An ADT, once thoroughly tested, can be reused by:
 - Suppliers of other ADTs
 - Clients of Applications
- As a supplier, you are obliged to:
 - Implement given ADTs using other ADTs (e.g., arrays, linked lists, hash tables, etc.)
 - Design algorithms that make use of standard ADTs
- For each ADT that you build, you ought to be clear about:
 - The list of supported operations (i.e., interface)
 - The interface of an ADT should be more than method signatures and natural language descriptions:
 - How are clients supposed to use these methods?

[preconditions]

· What are the services provided by suppliers?

[postconditions]

Time (and sometimes space) complexity of each operation

10 of 16

Why Java Interfaces Unacceptable ADTs (1) LASSONDE

It is useful to have:

- A *generic collection class* where the *homogeneous type* of elements are parameterized as E.
- A reasonably intuitive overview of the ADT.

11 of 16

Why Java Interfaces Unacceptable ADTs (2) LASSONDE

Methods described in a *natural language* can be *ambiguous*:

E	<pre>set(int index, E element) Replaces the element at the specified position in this list with the specified element (optional operation).</pre>	
set		
E set(int index, E element)		
Replaces the element at the spe	ecified position in this list with the specified element (optional operation).	
Parameters:		
index - index of the elemen	nt to replace	
element - element to be sto	ored at the specified position	
Returns:		
the element previously at t	the specified position	
Throws:		
UnsupportedOperationExcepti	on - if the set operation is not supported by this list	
ClassCastException - if the	e class of the specified element prevents it from being added to this list	
NullPointerException - if the specified element is null and this list does not permit null elements		
IllegalArgumentException - if some property of the specified element prevents it from being added to this list		
IndexOutOfBoundsException -	if the index is out of range (index $< \theta \mid \mid \text{ index } >= \text{size}())$	

Why Eiffel Contract Views are ADTs (1)

```
class interface ARRAYED CONTAINER
feature -- Commands
 assign_at (i: INTEGER; s: STRING)
    -- Change the value at position 'i' to 's'.
    valid_index: 1 <= i and i <= count</pre>
   ensure
    size unchanged:
     imp.count = (old imp.twin).count
    item_assigned:
     imp [i] ~ s
    others unchanged:
     across
       1 |... | imp.count as j
       j.item /= i implies imp [j.item] ~ (old imp.twin) [j.item]
      end
 count: INTEGER
invariant
 consistency: imp.count = count
end -- class ARRAYED_CONTAINER
```

13 of 16

14 of 16

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to logic allow us to present a *precise behavioural* view.

Beyond this lecture...

- Q. Can you think of more real-life examples of leveraging the power of modularity?
- 2. Visit the Java API page:

https://docs.oracle.com/javase/8/docs/api

Visit collection classes which you used in EECS2030 (e.g., ArrayList, HashMap) and EECS2011.

- **Q.** Can you identify/justify <u>some</u> example methods which illustrate that these Java collection classes are <u>not</u> true *ADTs* (i.e., ones with well-specified interfaces)?
- **3.** Constrast with the corresponding library classes and features in EiffelStudio (e.g., ARRAYED_LIST, HASH_TABLE).
 - **Q.** Are these Eiffel features *better specified* w.r.t. obligations/benefits of clients/suppliers?

15 of 16

Index (1)

Learning Objectives

Modularity (1): Childhood Activity

Modularity (2): Daily Construction

Modularity (3): Computer Architecture

Modularity (4): System Development

Modularity (5): Software Design

Design Principle: Modularity

Abstract Data Types (ADTs)

Building ADTs for Reusability

Why Java Interfaces Unacceptable ADTs (1)

Why Java Interfaces Unacceptable ADTs (2)

Index (2)

Why Eiffel Contract Views are ADTs (1)

Why Eiffel Contract Views are ADTs (2)

Beyond this lecture...

17 of 16

Copying Objects Writing Complete Postconditions

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- **1.** 3 Levels of *Copying Objects*: Reference vs. Shallow vs. Deep
- 2. Use of the old keyword in Postconditions
- **3.** Writing *Complete Postconditions* using logical quantifications: Universal (\forall) vs. Existential (\exists)

2 of 41

Part 1

Copying Objects

Copying Objects

Say variables c1 and c2 are both declared of type C. [c1, c2: c]

- There is only one attribute a declared in class C.
- c1.a and c2.a are references to objects.

Copying Objects: Reference Copy

Reference Copy

- Copy the address stored in variable c2 and store it in c1.
 - ⇒ Both c1 and c2 point to the same object.
 - ⇒ Updates performed via c1 also visible to c2.

[aliasing]

c1 := c2

Copying Objects: Shallow Copy

Shallow Copy

c1 := c2.twin

- Create a temporary, behind-the-scene object c3 of type C.
- Initialize each attribute a of c3 via reference copy: c3.a := c2.a
- Make a reference copy of c3:

c1 := c3

- \Rightarrow c1 and c2 **are not** pointing to the same object.
- [c1 /= c2]
- \Rightarrow c1.a and c2.a are pointing to the same object.
- ⇒ *Aliasing* still occurs: at 1st level (i.e., attributes of c1 and c2)

5 of 41

Copying Objects: Deep Copy

Deep Copy

• Create a temporary, behind-the-scene object c3 of type C.

• Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). \Rightarrow c3.a := c2.a.

Recursive Case: a is referenced. \Rightarrow c3.a := c2.a.deep_twin

• Make a *reference copy* of c3:

c1 := c3

c1 := c2.deep_twin

- \Rightarrow c1 and c2 **are not** pointing to the same object.
- ⇒ c1.a and c2.a are not pointing to the same object.
- ⇒ No aliasing occurs at any levels.

Copying Objects

Example: Collection Objects (1)

 In any OOPL, when a variable is declared of a *type* that corresponds to a *known class* (e.g., STRING, ARRAY, LINKED_LIST, etc.):

At *runtime*, that variable stores the *address* of an object of that type (as opposed to storing the object in its entirety).

• Assume the following variables of the same type:

```
local
  imp : ARRAY[STRING]
  old_imp: ARRAY[STRING]
do
  create {ARRAY[STRING]} imp.make_empty
  imp.force("Alan", 1)
  imp.force("Mark", 2)
  imp.force("Tom", 3)
```

- Before we undergo a change on imp, we "copy" it to old_imp.
- After the change is completed, we compare imp vs. old_imp.
- Can a change always be visible between "old" and "new" imp?

9 of 41

Example: Collection Objects (2)

- Variables imp and old_imp store address(es) of some array(s).
- Each "slot" of these arrays stores a STRING object's address.

10 of 41

Reference Copy of Collection Object

Before Executing L3

LASSONDE

Shallow Copy of Collection Object (1)

Before Executing L3

After Executing L3

Shallow Copy of Collection Object (2)


```
1  old_imp := imp.twin
2  Result := old_imp = imp -- Result = false
3  imp[2].append ("***")
4  Result :=
5  across 1 |..| imp.count is j
6  all imp [j] ~ old_imp [j]
7  end -- Result = true
```

Before Executing L3

After Executing L3

13 of 41

Deep Copy of Collection Object (1)

Before Executing L3

After Executing L3

Deep Copy of Collection Object (2)


```
1 | old_imp := imp.deep_twin
2 | Result := old_imp = imp -- Result = false
3 | imp[2].append ("***")
4 | Result :=
5 | across 1 | . . | imp.count is j
6 | all imp [j] ~ old_imp [j] end -- Result = false
```

Before Executing L3

After Executing L3

Experiment: Copying Objects

• **Download** the Eiffel project archive (a zip file) here:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/
EECS3311/codes/copying objects.zip

- Unzip and compile the project in Eiffel Studio.
- Reproduce the illustrations explained in lectures.

16 of 41

LASSONDE

Writing Complete Postconditions

17 of 41

How are contracts checked at runtime?

- All contracts are specified as Boolean expressions.
- Right before a feature call (e.g., acc.withdraw(10)):
 - The current state of acc is called its *pre-state*.
 - Evaluate pre-condition using current values of attributes/queries.
 - Cache values, via := , of **old** expressions in the post-condition.

- Right after the feature call:
 - The current state of acc is called its post-state.
 - Evaluate post-condition using both current values and "cached" values of attributes and queries.

Evaluate invariant using current values of attributes and queries.

When are contracts complete?

- In *post-condition*, for *each attribute*, specify the relationship between its *pre-state* value and its *post-state* value.
 - Eiffel supports this purpose using the **old** keyword.
- This is tricky for attributes whose structures are composite rather than simple:
 - e.g., ARRAY, LINKED_LIST are composite-structured.
 - e.g., INTEGER, BOOLEAN are simple-structured.
- Rule of thumb: For an attribute whose structure is composite, we should specify that after the update:
 - 1. The intended change is present; and
 - 2. The rest of the structure is unchanged.
- The second contract is much harder to specify:
 - Reference aliasing [ref copy vs. shallow copy vs. deep copy]
 - Iterable structure

[USC across]

Account


```
class
    ACCOUNT

inherit
ANY
    redefine is_equal end

create
    make

feature -- Attributes
    owner: STRING
    balance: INTEGER

feature -- Commands
    make (n: STRING)
    do
        owner := n
        balance := 0
    end
```

```
deposit(a: INTEGER)
  do
    balance := balance + a
  ensure
    balance = old balance + a
  end

is_equal(other: ACCOUNT): BOOLEAN
  do
    Result :=
        owner ~ other.owner
    and balance = other.balance
  end
end
```

20 of 41

Bank


```
class BANK
create make
feature
 accounts: ARRAY [ACCOUNT]
 make do create accounts.make_empty end
 account_of (n: STRING): ACCOUNT
  require -- the input name exists
    existing: across accounts is acc some acc.owner ~ n end
     -- not (across accounts is acc all acc.owner /~ n end)
  do ... ensure Result.owner ~ n end
 add (n: STRING)
  require -- the input name does not exist
    non_existing: across accounts is acc all acc.owner /~ n end
     -- not (across accounts is acc some acc.owner ~ n end)
  local new account: ACCOUNT
    create new_account.make (n)
    accounts.force (new_account, accounts.upper + 1)
  end
end
```

21 of 41

Roadmap of Illustrations

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION	IMPLEMENTATION	CONTRACTS	SATISFACTORY?
1	Correct	Incomplete	No
2	Wrong	Incomplete	No
3	Wrong	Complete (reference copy)	No
4	Wrong	Complete (shallow copy)	No
5	Wrong	Complete (deep copy)	Yes

22 of 41

Object Structure for Illustration

We will test each version by starting with the same runtime object structure:

Version 1: Incomplete Contracts, Correct Implementation

```
class BANK
 deposit_on_v1 (n: STRING; a: INTEGER)
  require across accounts is acc some acc.owner ~ n end
  local i: INTEGER
    from i := accounts.lower
    until i > accounts.upper
     if accounts[i].owner ~ n then accounts[i].deposit(a) end
     i := i + 1
    end
  ensure
    num of accounts unchanged:
     accounts.count = old accounts.count
    balance_of_n_increased:
     Current.account_of(n).balance =
       old Current.account of(n).balance + a
  end
end
24 of 41
```

Test of Version 1


```
class TEST_BANK
 test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN
  local
    b: BANK
  do
    comment("t1: correct imp and incomplete contract")
    create b.make
    b.add ("Bill")
    b.add ("Steve")
    -- deposit 100 dollars to Steve's account
    b.deposit_on_v1 ("Steve", 100)
    Result :=
        b.account_of("Bill").balance = 0
     and b.account_of("Steve").balance = 100
    check Result end
 end
end
```

25 of 41

Test of Version 1: Result

APPLICATION

Note: * indicates a violation test case

	PASSED (1 out of 1)			
Case Type	Passed	Total		
Violation	0	0		
Boolean	1	1 1		
All Cases	1	1		
State	Contract Violation	Test Name		
Test1	TEST_BANK			
PASSED	NONE	t1: test deposit_on with correct imp and incomplete contract		

26 of 41

Version 2: LAS Incomplete Contracts, Wrong Implementation

Current postconditions lack a check that accounts other than n are unchanged.

Test of Version 2


```
class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN
local
  b: BANK
  comment("t2: wrong imp and incomplete contract")
  create b.make
  b.add ("Bill")
  b.add ("Steve")
  -- deposit 100 dollars to Steve's account
  b.deposit_on_v2 ("Steve", 100)
  Result :=
       b.account_of("Bill").balance = 0
    and b.account of ("Steve") .balance = 100
  check Result end
 end
end
```

28 of 41

Test of Version 2: Result

APPLICATION

Note: * indicates a violation test case

	FAILED (1 failed & 1 passed out of 2)			
Case Type	Passed Total			
Violation	0	0		
Boolean	1	2		
All Cases	1	2		
State	Contract Violation	Test Name		
Test1	TEST_BANK			
PASSED	NONE	t1: test deposit_on with correct imp and incomplete contract		
FAILED	Check assertion violated.	t2: test deposit_on with wrong imp but incomplete contract		

29 of 41

Version 3: Complete Contracts with Reference Copy

Test of Version 3

LASSONDE

```
class TEST BANK
 test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
  local
    b: BANK
    comment("t3: wrong imp and complete contract with ref copy")
    create b.make
    b.add ("Bill")
    b.add ("Steve")
    -- deposit 100 dollars to Steve's account
    b.deposit_on_v3 ("Steve", 100)
    Result :=
        b.account_of("Bill").balance = 0
     and b.account of ("Steve").balance = 100
    check Result end
  end
end
```

R1 of 41

Test of Version 3: Result

APPLICATION

Note: * indicates a violation test case

	FAILED (2 failed & 1 passed out of 3)			
Case Type	Passed	Total		
Violation	0	0		
Boolean	1 3			
All Cases	1	3		
State	Contract Violation	Test Name		
Test1	TEST_BANK			
PASSED	NONE t1: test deposit_on with correct imp and incomplete contract			
FAILED	Check assertion violated.	t2: test deposit_on with wrong imp but incomplete contract		
FAILED	Check assertion violated.	t3: test deposit_on with wrong imp, complete contract with reference copy		

Version 4: Complete Contracts with Shallow Object Copy

```
class BANK
 deposit_on_v4 (n: STRING; a: INTEGER)
  require across accounts is acc some acc.owner ~ n end
    -- imp. of version 1, followed by a deposit into 1st account
    accounts[accounts.lower].deposit(a)
    num_of_accounts_unchanged: accounts.count = old accounts.count
    balance_of_n_increased:
     Current.account_of(n).balance =
       old Current.account_of(n).balance + a
    others_unchanged:
     across old accounts.twin is acc
       acc.owner /~ n implies acc ~ Current.account_of(acc.owner)
     end
  end
end
33 of 41
```

Test of Version 4


```
class TEST_BANK
  test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN
  local
    b: BANK
  do
    comment("t4: wrong imp and complete contract with shallow copy")
    create b.make
    b.add ("Bill")
    b.add ("Steve")

-- deposit 100 dollars to Steve's account
    b.deposit_on_v4 ("Steve", 100)
    Result :=
        b.account_of("Bill").balance = 0
        and b.account_of("Steve").balance = 100
    check Result end
  end
end
```

34 of 41

Test of Version 4: Result

APPLICATION

Note: * indicates a violation test case

	FAILED (3 failed & 1 passed out of 4)			
Case Type	Passed	Total		
Violation	0	0		
Boolean	1	4		
All Cases	1	4		
State	Contract Violation Test Name			
Test1	TEST_BANK			
PASSED	NONE t1: test deposit_on with correct imp and incomplete contract			
FAILED	Check assertion violated. t2: test deposit_on with wrong imp but incomplete contract			
FAILED	Check assertion violated.	t3: test deposit_on with wrong imp, complete contract with reference copy		
FAILED	Check assertion violated. t4: test deposit_on with wrong imp, complete contract with shallow object copy			

Version 5: Complete Contracts with Deep Object Copy

```
class BANK
 deposit_on_v5 (n: STRING; a: INTEGER)
  require across accounts is acc some acc.owner ~ n end
    local i: INTEGER
  do ...
    -- imp. of version 1, followed by a deposit into 1st account
    accounts[accounts.lower].deposit(a)
  ensure
    num_of_accounts_unchanged: accounts.count = old accounts.count
    balance_of_n_increased:
     Current.account_of(n).balance =
       old Current.account_of(n).balance + a
    others_unchanged:
     across old accounts.deep_twin is acc
       acc.owner /~ n implies acc ~ Current.account_of(acc.owner)
     end
  end
end
36 of 41
```

Test of Version 5


```
class TEST_BANK
 test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
  local
    b: BANK
  do
    comment ("t5: wrong imp and complete contract with deep copy")
    create b.make
    b.add ("Bill")
    b.add ("Steve")
    -- deposit 100 dollars to Steve's account
    b.deposit_on_v5 ("Steve", 100)
    Result :=
        b.account_of("Bill").balance = 0
     and b.account_of("Steve").balance = 100
    check Result end
  end
end
```

37 of 41

Test of Version 5: Result

APPLICATION

Note: * indicates a violation test case

		FAILED (4 failed & 1 passed out of 5)	
Case Type	Passed	Total	
Violation	0 0		
Boolean	1 5		
All Cases	1 5		
State	Contract Violation	Test Name	
Test1		TEST_BANK	
PASSED	NONE	t1: test deposit_on with correct imp and incomplete contract	
FAILED	Check assertion violated.	t2: test deposit_on with wrong imp but incomplete contract	
FAILED	Check assertion violated. t3: test deposit_on with wrong imp, complete contract with reference copy		
FAILED	Check assertion violated.	t4: test deposit_on with wrong imp, complete contract with shallow object copy	
FAILED	Postcondition violated.	t5: test deposit_on with wrong imp, complete contract with deep object copy	

38 of 41

Experiment: Complete Postconditions

• **Download** the Eiffel project archive (a zip file) here:

https://www.eecs.vorku.ca/~jackie/teaching/lectures/2020/F/
EECS3311/codes/array math contract.zip

- Unzip and compile the project in Eiffel Studio.
- Reproduce the illustrations explained in lectures.

R9 of 41

Beyond this lecture

- Consider the query account_of (n: STRING) of BANK.
- How do we specify (part of) its postcondition to assert that the state of the bank remains unchanged:

0	accounts = ol	d accounts	[×]
0	accounts = ol	d accounts.twin	[×]
0	accounts = ol	d accounts.deep_twin	[×]
0	accounts ~ ol	accounts	[×]
0	accounts ~ ol	d accounts.twin	[×]
0	accounts ~ ol	d accounts.deep_twin	[\]

- Which equality of the above is appropriate for the postcondition?
- Why is each one of the other equalities not appropriate?

40 of 41

Index (1)

Learning Objectives

Part 1

Copying Objects

Copying Objects: Reference Copy

Copying Objects: Shallow Copy

Copying Objects: Deep Copy

Example: Copying Objects

Example: Collection Objects (1)

Example: Collection Objects (2)

Reference Copy of Collection Object

Shallow Copy of Collection Object (1)

41 of 41

Index (2)

Shallow Copy of Collection Object (2)

Deep Copy of Collection Object (1)

Deep Copy of Collection Object (2)

Experiment: Copying Objects

Part 2

How are contracts checked at runtime?

When are contracts complete?

Account

Bank

Roadmap of Illustrations

Object Structure for Illustration

12 of 41

Index (3)

Version 1:

Incomplete Contracts, Correct Implementation

Test of Version 1

Test of Version 1: Result

Version 2:

Incomplete Contracts, Wrong Implementation

Test of Version 2

Test of Version 2: Result

Version 3:

Complete Contracts with Reference Copy

Test of Version 3

Test of Version 3: Result

Index (4)

Version 4:

Complete Contracts with Shallow Object Copy

Test of Version 4

Test of Version 4: Result

Version 5:

Complete Contracts with Deep Object Copy

Test of Version 5

Test of Version 5: Result

Experiment: Complete Postconditions

Beyond this lecture

44 of 41

Use of Generics

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. How to write a generic class (as a supplier)
- 2. How to *use* a generic class (as a *client*)

2 of 9

Generic Collection Class: Motivation (1)


```
class STRING_STACK
feature {NONE} -- Implementation
  imp: ARRAY[ STRING ] ; i: INTEGER
feature -- Queries
  count: INTEGER do Result := i end
    -- Number of items on stack.
  top: STRING do Result := imp [i] end
    -- Return top of stack.
feature -- Commands
  push (v: STRING) do imp[i] := v; i := i + 1 end
    -- Add 'v' to top of stack.
  pop do i := i - 1 end
    -- Remove top of stack.
end
```

- Does how we implement string stack operations (e.g., top, push, pop) depends on features specific to element type STRING (e.g., at, append)?
- How would you implement another class ACCOUNT_STACK?

R of 9

Generic Collection Class: Motivation (2)

- Does how we implement account stack operations (e.g., top, push, pop) depends on features specific to element type
 ACCOUNT (e.g., deposit, withdraw)?
- A collection (e.g., table, tree, graph) is meant for the storage and retrieval of elements, not how those elements are manipulated.

Generic Collection Class: Supplier

- Your design "smells" if you have to create an almost identical new class (hence code duplicates) for every stack element type you need (e.g., INTEGER, CHARACTER, PERSON, etc.).
- Instead, as **supplier**, use **G** to **parameterize** element type:

```
class STACK [G]
feature {NONE} -- Implementation
  imp: ARRAY[G]; i: INTEGER
feature -- Queries
  count: INTEGER do Result := i end
    -- Number of items on stack.
  top: G do Result := imp [i] end
    -- Return top of stack.
feature -- Commands
  push (v: G) do imp[i] := v; i := i + 1 end
    -- Add 'v' to top of stack.
  pop do i := i - 1 end
    -- Remove top of stack.
end
```

Generic Collection Class: Client (1.1)

As client, declaring ss: STACK [STRING] instantiates every occurrence of G as STRING.

```
class STACK [ STRING]

feature {NONE} -- Implementation

imp: ARRAY[ STRING]; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: STRING do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: STRING) do imp[i] := v; i := i + 1 end

-- Add 'v' to top of stack.

pop do i := i - 1 end

-- Remove top of stack.

end
```

5 of 9

Generic Collection Class: Client (1.2)

As client, declaring ss: STACK [ACCOUNT] instantiates every occurrence of G as ACCOUNT.

```
class STACK [ ACCOUNT]

feature {NONE} -- Implementation

imp: ARRAY[ ACCOUNT]; i: INTEGER

feature -- Queries

count: INTEGER do Result := i end

-- Number of items on stack.

top: ACCOUNT do Result := imp [i] end

-- Return top of stack.

feature -- Commands

push (v: ACCOUNT) do imp[i] := v; i := i + 1 end

-- Add 'v' to top of stack.

pop do i := i - 1 end

-- Remove top of stack.
end
```


Generic Collection Class: Client (2)

As **client**, instantiate the type of G to be the one needed.

```
test stacks: BOOLEAN
2
     local
3
       ss: STACK[STRING] ; sa: STACK[ACCOUNT]
4
       s: STRING ; a: ACCOUNT
5
     do
6
       ss.push("A")
       ss.push(create {ACCOUNT}.make ("Mark", 200))
8
       s := ss.top
       a := ss.top
10
       sa.push(create {ACCOUNT}.make ("Alan", 100))
11
       sa.push("B")
12
       a := sa.top
13
      s := sa.top
     end
```

- L3 commits that ss stores STRING objects only.
 - L8 and L10 valid; L9 and L11 invalid.
- L4 commits that sa stores ACCOUNT objects only.
 - L12 and L14 valid; L13 and L15 invalid.

1101.5

Index (1)

Learning Objectives

Generic Collection Class: Motivation (1)

Generic Collection Class: Motivation (2)

Generic Collection Class: Supplier

Generic Collection Class: Client (1.1)

Generic Collection Class: Client (1.2)

Generic Collection Class: Client (2)

Abstractions via Mathematical Models

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. Creating a *mathematical abstraction* for alternative *implementations*
- 2. Two design principles: *Information Hiding* and *Single Choice*
- 3. Review of the basic discrete math (self-guided)

2019

Motivating Problem: Complete Contracts

- Recall what we learned in the *Complete Contracts* lecture:
 - In post-condition, for each attribute, specify the relationship between its pre-state value and its post-state value.
 - Use the **old** keyword to refer to **post-state** values of expressions.
 - For a *composite*-structured attribute (e.g., arrays, linked-lists, hash-tables, *etc.*), we should specify that after the update:
 - 1. The intended change is present; and
 - **2.** The rest of the structure is unchanged .
- Let's now revisit this technique by specifying a LIFO stack.

3 of 19

Motivating Problem: LIFO Stack (1)

• Let's consider three different implementation strategies:

Stack Feature	Array	Linked List	
Stack reature	Strategy 1	Strategy 2	Strategy 3
count	imp.count		
top	imp[imp.count]	imp.first	imp.last
push(g)	<pre>push(g) imp.force(g, imp.count + 1)</pre>		imp.extend(g)
non	imp.list.remove_tail (1)	list.start	imp.finish
рор		list.remove	imp.remove

 Given that all strategies are meant for implementing the same ADT, will they have identical contracts?

4 of 19

Motivating Problem: LIFO Stack (2.1)


```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
imp: ARRAY[G]
feature -- Initialization
 make do create imp.make_empty ensure imp.count = 0 end
feature -- Commands
 push (q: G)
  do imp.force(g, imp.count + 1)
    changed: imp[count] ~ q
    unchanged: across 1 | .. | count - 1 as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
 pop
  do imp.remove_tail(1)
    changed: count = old count - 1
    unchanged: across 1 | . . | count as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
```

5 of 19

Motivating Problem: LIFO Stack (2.2)


```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
 imp: LINKED_LIST[G]
feature -- Initialization
 make do create imp.make ensure imp.count = 0 end
feature -- Commands
 push (q: G)
  do imp.put_front(g)
  ensure
    changed: imp.first ~ q
    unchanged: across 2 | . . | count as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item - 1] end
  end
 pop
  do imp.start; imp.remove
    changed: count = old count - 1
    unchanged: across 1 | . . | count as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item + 1] end
```


Motivating Problem: LIFO Stack (2.3)

```
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]
feature -- Initialization
make do create imp.make ensure imp.count = 0 end
feature -- Commands
push(q: G)
  do imp.extend(g)
  ensure
   changed: imp.last ~ g
    unchanged: across 1 | . . | count - 1 as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
 pop
  do imp.finish; imp.remove
   changed: count = old count - 1
    unchanged: across 1 | . . | count as i all
                 imp[i.item] ~ (old imp.deep_twin)[i.item] end
  end
```

7 of 19

Design Principles: Information Hiding & Single Choice

- **Information Hiding** (IH):
 - Hide supplier's *design decisions* that are *likely to change*.
 - Violation of IH means that your design's public API is *unstable*.
 - Change of supplier's secrets should not affect clients relying upon the existing API.
- **Single Choice Principle** (SCP):
 - When a *change* is needed, there should be *a single place* (or *a minimal number of places*) where you need to make that change.
 - Violation of SCP means that your design contains redundancies.

Motivating Problem: LIFO Stack (3)

- Postconditions of all 3 versions of stack are complete.
 i.e., Not only the new item is pushed/popped, but also the remaining part of the stack is unchanged.
- But they violate the principle of information hiding:
 Changing the secret, internal workings of data structures should not affect any existing clients.
- How so?

10 of 19

The private attribute imp is referenced in the *postconditions*, exposing the implementation strategy not relevant to clients:

- Top of stack may be imp[count], imp.first, or imp.last
- Remaining part of stack may be across 1 | . . | count 1 or across 2 | . . | count .
- ⇒ Changing the implementation strategy from one to another will also change the contracts for **all** features.
- $_\Rightarrow$ This also violates the Single Choice Principle.

Math Models: Command vs Query

- Use MATHMODELS library to create math objects (SET, REL, SEQ).
- State-changing commands: Implement an Abstraction Function

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
  imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]
  do create Result.make_empty
        across imp as cursor loop Result.append(cursor.item) end
end
```

o Side-effect-free queries: Write Complete Contracts

```
class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT
model: SEQ[G]
feature -- Commands
  push (g: G)
  ensure model ~ (old model.deep_twin).appended(g) end
```

8.0F19

Implementing an Abstraction Function (1)

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
 imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
 model: SEQ[G]
  do create Result.make_from_array (imp)
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[i.item]
  end
feature -- Commands
 make do create imp.make_empty ensure model.count = 0 end
 push (g: G) do imp.force(g, imp.count + 1)
  ensure pushed: model ~ (old model.deep_twin).appended(g)
 pop do imp.remove_tail(1)
  ensure popped: model ~ (old model.deep_twin).front end
end
```

11 of 19

Abstracting ADTs as Math Models (1)

- Strategy 1 Abstraction function: Convert the implementation array to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same:

 model ~ (old model.deep_twin).appended(g)

12 of 19

Implementing an Abstraction Function (2)


```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
 imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEQ[G]
  do create Result.make_empty
     across imp as cursor loop Result.prepend(cursor.item) end
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[count - i.item + 1]
  end
feature -- Commands
 make do create imp.make ensure model.count = 0 end
 push (g: G) do imp.put_front(g)
  ensure pushed: model ~ (old model.deep_twin).appended(q) end
 pop do imp.start ; imp.remove
  ensure popped: model ~ (old model.deep_twin).front end
end
```

13 of 19

Abstracting ADTs as Math Models (2)

- **Strategy 2** Abstraction function: Convert the implementation list (first item is top) to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same:

```
model ~ (old model.deep_twin).appended(g)
```


Implementing an Abstraction Function (3)

```
class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
 imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEQ[G]
  do create Result.make_empty
    across imp as cursor loop Result.append(cursor.item) end
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[i.item]
feature -- Commands
 make do create imp.make ensure model.count = 0 end
 push (g: G) do imp.extend(g)
  ensure pushed: model ~ (old model.deep_twin).appended(q)
 pop do imp.finish ; imp.remove
  ensure popped: model ~ (old model.deep_twin).front end
end
```

15 of 19

Abstracting ADTs as Math Models (3)

- **Strategy 3** Abstraction function: Convert the implementation list (last item is top) to its corresponding model sequence.
- Contract for the put (g: G) feature remains the same:

```
model ~ (old model.deep_twin).appended(g)
```

16 of 19

Solution: Abstracting ADTs as Math Models LASSONDE

- Writing contracts in terms of *implementation attributes* (arrays, LL's, hash tables, *etc.*) violates *information hiding* principle.
- Instead:
 - For each ADT, create an *abstraction* via a *mathematical model*. e.g., Abstract a LIFO_STACK as a mathematical sequence.
 - For each ADT, define an abstraction function (i.e., a query) whose return type is a kind of mathematical model.
 e.g., Convert implementation array to mathematical sequence
 - Write contracts in terms of the abstract math model.
 e.g., When pushing an item g onto the stack, specify it as appending g into its model sequence.
 - Upon changing the implementation:
 - No change on what the abstraction is, hence no change on contracts.
 - Only change how the abstraction is constructed, hence changes on the body of the abstraction function.
 e.g., Convert implementation linked-list to mathematical sequence
 ⇒ The Single Choice Principle is obeyed.

17 of 19

Beyond this lecture ...

• Familiarize yourself with the features of class SEQ.

Index (1)

Learning Objectives

Motivating Problem: Complete Contracts

Motivating Problem: LIFO Stack (1)

Motivating Problem: LIFO Stack (2.1)

Motivating Problem: LIFO Stack (2.2)

Motivating Problem: LIFO Stack (2.3)

Design Principles:

Information Hiding & Single Choice

Motivating Problem: LIFO Stack (3)

Math Models: Command vs Query

Implementing an Abstraction Function (1)

19 of 19

Index (2)

Abstracting ADTs as Math Models (1)

Implementing an Abstraction Function (2)

Abstracting ADTs as Math Models (2)

Implementing an Abstraction Function (3)

Abstracting ADTs as Math Models (3)

Solution: Abstracting ADTs as Math Models

Beyond this lecture ...

Drawing a Design Diagram using the Business Object Notation (BON)

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

- Purpose of a **Design Diagram**: an **Abstraction** of Your Design
- Architectural Relation: Client-Supplier vs. Inheritance
- Presenting a class: Compact vs. Detailed
- Denoting a Class or Feature: Deferred vs. Effective

of 19 _______ 2 of

Why a Design Diagram?

- **Source Code** is **not** an appropriate form for communication.
- Use a **DESIGN DIAGRAM** showing *selective* sets of important:
 - clusters

(i.e., packages)

classes

[deferred vs. effective] [generic vs. non-generic]

architectural relations

[client-supplier vs. inheritance]

routines (queries and commands)

[deferred vs. effective vs. redefined]

contracts

[precondition vs. postcondition vs. class invariant]

- Your design diagram is called an *abstraction* of your system:
 - Being selective on what to show, filtering out irrelevant details
 - Presenting contractual specification in a mathematical form (e.g., ∀ instead of across ... all ... end).

R of 26

Classes: **Detailed View vs. Compact View (1)**

- Detailed view shows a selection of:
 - features (queries and/or commands)
 - contracts (class invariant and feature pre-post-conditions)
 - Use the detailed view if readers of your design diagram should know such details of a class.
 - e.g., Classes critical to your design or implementation
- Compact view shows only the class name.
 - Use the compact view if readers should not be bothered with such details of a class.
 - e.g., Minor "helper" classes of your design or implementation

e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH_TABLE)

4 of 26

Classes: **Detailed View vs. Compact View (2)**

5 of 26

Contracts: Mathematical vs. Programming

- When presenting the detailed view of a class, you should include contracts of features which you judge as important.
- Consider an array-based linear container:

- A tag should be included for each contract.
- Use mathematical symbols (e.g., ∀, ∃, ≤) instead of programming symbols (e.g., across ... all ..., across ... some ..., <=).

Classes: Generic vs. Non-Generic

- A class is *generic* if it declares **at least one** type parameters.
 - Collection classes are generic: ARRAY[G], HASH_TABLE[G, H], etc.
 - Type parameter(s) of a class may or may not be instantiated:

MY_TABLE_1[STRING, INTEGER]

MY_TABLE_2[PERSON, INTEGER]

• If necessary, present a generic class in the detailed form:

DATABASE[G]+

-- some public features here
feature -- { NONE }
-- imp: ARRAY[G]
invariant
-- some class invariant here

MY_DB_1[STRING]+

-- some public features here feature -- { NONE } -- imp: ARRAY[STRING] invariant -- some class invariant here MY_DB_2[PERSON]+

feature
-- some public features here
feature -- { NONE }
-- imp: ARRAY[PERSON]
invariant
-- some class invariant here

A class is non-generic if it declares no type parameters.

7 of 26

Deferred vs. Effective

Deferred means *unimplemented* (≈ abstract in Java)

Effective means implemented

Classes: Deferred vs. Effective

- A **deferred** class has at least one feature unimplemented.
 - A deferred class may only be used as a static type (for declaration), but cannot be used as a dynamic type.
 - e.g., By declaring list: LIST[INTEGER] (where LIST is a deferred class), it is invalid to write:
 - create list.make
 - create {LIST[INTEGER]} list.make
- An effective class has all features implemented.
 - An effective class may be used as both static and dynamic types.
 - e.g., By declaring list: LIST[INTEGER], it is valid to write:
 - create { LINKED_LIST[INTEGER] } list.make
 - create { ARRAYED_LIST[INTEGER] } list.make

where LINKED_LIST and ARRAYED_LIST are both *effective* descendants of LIST.

9 of 26

10 of 26

Features: Deferred, Effective, Redefined (1) LASSONDE

A *deferred feature* is declared with its *header* only

(i.e., name, parameters, return type).

- The word "deferred" means a descendant class would later implement this feature.
- The resident class of the **deferred** feature must also be **deferred**.

8.of 26

Features: Deferred, Effective, Redefined (2) LASSONDE

• An *effective feature implements* some inherited deferred feature.

```
class
 DATABASE_V1[G]
inherit
 DATABASE [G]
feature -- Queries
 search (g: G): BOOLEAN
    -- Perform a linear search on the database.
   do end
end
```

A descendant class may still later re-implement this feature.

11 of 26

Features: Deferred, Effective, Redefined (3) LASSONDE

• A **redefined** feature **re-implements** some inherited effective feature.

```
class
 DATABASE_V2[G]
inherit
 DATABASE V1[G]
     redefine search end
feature -- Queries
 search (q: G): BOOLEAN
    -- Perform a binary search on the database.
  do end
end
```

A descendant class may still later re-implement this feature.

12 of 26

Classes: Deferred vs. Effective (2.1)

Append a star * to the name of a **deferred** class or feature. Append a plus + to the name of an *effective* class or feature. Append two pluses ++ to the name of a *redefined* feature.

• Deferred or effective classes may be in the compact form:

Classes: Deferred vs. Effective (2.2)

Append a star * to the name of a *deferred* class or feature. Append a plus + to the name of an effective class or feature. Append two pluses ++ to the name of a *redefined* feature.

• Deferred or effective classes may be in the detailed form:

Class Relations: Inheritance (1)

- An inheritance hierarchy is formed using red arrows.
 - Arrow's origin indicates the child/descendant class.
 - Arrow's destination indicates the parent/ancestor class.
- You may choose to present each class in an inheritance hierarchy in either the detailed form or the compact form:

15 of 26

Class Relations: Inheritance (2)

More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy | Features being (Re-)Implemented

Class Relations: Client-Supplier (1)

- A client-supplier (CS) relation exists between two classes: one (the *client*) uses the service of another (the *supplier*).
- Programmatically, there is CS relation if in class CLIENT there is a variable declaration s1: SUPPLIER.
 - o A variable may be an attribute, a parameter, or a local variable.
- A green arrow is drawn between the two classes.
 - Arrow's origin indicates the client class.
 - Arrow's destination indicates the supplier class.
 - Above the arrow there should be a <u>label</u> indicating the supplier name (i.e., variable name).
 - In the case where supplier is a <u>routine</u>, indicate after the label name if it is deferred (*), effective (+), or redefined (++).

17 of 26

Class Relations: Client-Supplier (2.1)


```
class DATABASE
feature {NONE}
 data: ARRAY[STRING]
feature -- Commands
 add name (nn: STRING)
    -- Add name 'nn' to database.
                                          class UTILITIES
  require ... do ... ensure ... end
                                          feature -- Queries
                                           search (a: ARRAY[STRING]; n: STRING): BOOLEAN
 name_exists (n: STRING): BOOLEAN
                                               -- Does name 'n' exist in array 'a'?
                                             require ... do ... ensure ... end
   require ...
                                          end
  local
   u: UTILITIES
  do ... ensure ... end
invariant
end
```

- Query data: ARRAY[STRING] indicates two suppliers: STRING and ARRAY.
- Parameters nn and n may have an arrow with label nn, n, pointing to the STRING class.
- Local variable u may have an arrow with label u, pointing to the UTILITIES class.

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is data: ARRAY[...], where ... denotes the supplier class STRING being pointed to.

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is data.

The supplier's name should be complete: ARRAY [STRING]

20 of 26

Class Relations: Client-Supplier (3.1)

<u>Known</u>: The *deferred* class LIST has two *effective* descendants ARRAY_LIST and LINKED_LIST).

• DESIGN ONE:

```
class DATABASE_V1
feature {NONE} -- implementation
  imp: ARRAYED_LIST[PERSON]
... -- more features and contracts
end
```

• DESIGN TWO:

```
class DATABASE_V2
feature {NONE} -- implementation
  imp: LIST[PERSON]
... -- more features and contracts
end
```

Question: Which design is better? [DESIGN TWO] **Rationale**: Program to the *interface*, not the *implementation*.

21 of 26

Class Relations: Client-Supplier (3.2.1)

We may focus on the PERSON supplier class, which may not help judge which design is better.

Class Relations: Client-Supplier (3.2.2)

Alternatively, we may focus on the ${\tt LIST}$ supplier class, which in this case helps us judge which design is better.

Clusters: Grouping Classes

Use *clusters* to group classes into logical units.

Beyond this lecture

- Your Lab0 introductory tutorial series contains the following classes:
 - BIRTHDAY
 - BIRTHDAY_BOOK
 - TEST_BIRTHDAY
 - TEST_BIRTHDAY_BOOK
 - TEST_LIBRARY
 - BAD_BIRTHDAY_VIOLATING_DAY_SET
 - BIRTHDAY_BOOK_VIOLATING_NAME_ADDED_TO_END

Draw a *design diagram* showing the *architectural relations* among the above classes.

25 of 26

Index (1)

Learning Objectives

Why a Design Diagram?

Classes:

Detailed View vs. Compact View (1)

Classes:

Detailed View vs. Compact View (2)

Contracts: Mathematical vs. Programming

Classes: Generic vs. Non-Generic

Deferred vs. Effective

Classes: Deferred vs. Effective

Features: Deferred, Effective, Redefined (1)

Index (2)

Features: Deferred, Effective, Redefined (2)

Features: Deferred, Effective, Redefined (3)

Classes: Deferred vs. Effective (2.1)

Classes: Deferred vs. Effective (2.2)

Class Relations: Inheritance (1)

Class Relations: Inheritance (2)

Class Relations: Client-Supplier (1)

Class Relations: Client-Supplier (2.1)

Class Relations: Client-Supplier (2.2.1)

Class Relations: Client-Supplier (2.2.2)

Class Relations: Client-Supplier (3.1)

27 of 26

Index (3)

Class Relations: Client-Supplier (3.2.1)
Class Relations: Client-Supplier (3.2.2)

Clusters: Grouping Classes

Beyond this lecture

Case Study: Abstraction of a Birthday Book

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- **1.** Asserting Set Equality in Postconditions (Exercise)
- 2. The basics of discrete math (Self-Guided Study) FUN is a REL, but not vice versa.
- 3. Creating a *mathematical abstraction* for a birthday book
- **4.** Using commands and queries from two mathmodels classes: REL and FUN

26

sh**ip**onde

Math Review: Set Definitions and Membersh

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - o Order in which elements are arranged does not matter.
 - An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set.
 e.g., {1,3,5,7,9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.
 - e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$
- An empty set (denoted as {} or ∅) has no members.
- We may check if an element is a *member* of a set: e.g., $5 \in \{1,3,5,7,9\}$ [true] e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$ [true]
- The number of elements in a set is called its *cardinality*. e.g., $|\varnothing| = 0$, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Math Review: Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S_1 \Rightarrow x \in S_2)$$

• S_1 and S_2 are *equal* iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

Math Review: Set Operations

Given two sets S_1 and S_2 :

• *Union* of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• Intersection of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• Difference of S_1 and S_2 is a set whose members are in S_1 but not S_2 .

$$S_1 \setminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

5 of 24

Math Review: Power Sets

The *power set* of a set *S* is a *set* of all *S' subsets*.

$$\mathbb{P}(S) = \{ s \mid s \subseteq S \}$$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality 0, 1, 2, or 3:

$$\left(\begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array} \right)$$

LASSONDE

Math Review: Set of Tuples

Given n sets S_1, S_2, \ldots, S_n , a *cross product* of theses sets is a set of n-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains n elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g., $\{a,b\} \times \{2,4\} \times \{\$,\&\}$ is a set of triples:

7 of 24

Math Models: Relations (1)

- A <u>relation</u> is a collection of mappings, each being an <u>ordered</u> pair that maps a member of set S to a member of set T.
 e.g., Say S = {1,2,3} and T = {a,b}
 - ∘ Ø is an empty relation.
 - $S \times T$ is a relation (say r_1) that maps from each member of S to each member in T: $\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - $\{(x,y): S \times T \mid x \neq 1\}$ is a relation (say r_2) that maps only some members in S to every member in $T: \{(2,a),(2,b),(3,a),(3,b)\}$.
- Given a relation *r*:
 - *Domain* of *r* is the set of *S* members that *r* maps from.

$$dom(r) = \{s : S \mid (\exists t \bullet (s, t) \in r)\}$$

e.g., $dom(r_1) = \{1, 2, 3\}, dom(r_2) = \{2, 3\}$

• Range of r is the set of T members that r maps to.

$$\operatorname{ran}(r) = \{t : T \mid (\exists s \bullet (s, t) \in r)\}$$

e.g.,
$$ran(r_1) = \{a, b\} = ran(r_2)$$

R of 24

Math Models: Relations (2)

• We use the power set operator to express the set of *all possible* relations on S and T:

$$\mathbb{P}(S \times T)$$

• To declare a relation variable *r*, we use the colon (:) symbol to mean *set membership*:

$$r: \mathbb{P}(S \times T)$$

Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

9 of 24

Math Models: Relations (3.1)

Say
$$r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$$

- r.domain: set of first-elements from r
 - \circ r.domain = $\{d \mid (d,r) \in r\}$
 - e.g., r.**domain** = $\{a, b, c, d, e, f\}$
- r.range: set of second-elements from r
 - $\circ r.\mathsf{range} = \{ r \mid (d, r) \in r \}$
 - \circ e.g., r.**range** = $\{1, 2, 3, 4, 5, 6\}$
- r.inverse: a relation like r except elements are in reverse order
 - ∘ r.inverse = $\{ (r, d) | (d, r) \in r \}$
 - $\circ \ \ \textbf{e.g., r.inverse} = \{(1,a),(2,b),(3,c),(4,a),(5,b),(6,c),(1,d),(2,e),(3,f)\}$

Math Models: Relations (3.2)

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- r.domain_restricted(ds): sub-relation of r with domain ds.
 - ∘ r.domain_restricted(ds) = { $(d,r) | (d,r) \in r \land d \in ds$ }
 - e.g., r.domain_restricted($\{a, b\}$) = $\{(a, 1), (b, 2), (a, 4), (b, 5)\}$
- r.domain_subtracted(ds): sub-relation of r with domain not ds.
 - ∘ r.domain_subtracted(ds) = { $(d,r) | (d,r) \in r \land d \notin ds$ }
 - e.g., r.domain_subtracted($\{a, b\}$) = $\{(c,3), (c,6), (d,1), (e,2), (f,3)\}$
- r.**range_restricted**(rs): sub-relation of r with range rs.
 - \circ r.range_restricted(rs) = { (d,r) | (d,r) ∈ r ∧ r ∈ rs }
 - e.g., r.range_restricted($\{1, 2\}$) = $\{(a, 1), (b, 2), (d, 1), (e, 2)\}$
- r.*range_subtracted*(ds): sub-relation of *r* with range not *ds*.
 - ∘ r.range_subtracted(rs) = { $(d,r) | (d,r) \in r \land r \notin rs$ }
 - e.g., r.range_subtracted($\{1, 2\}$) = $\{\{(c, 3), (a, 4), (b, 5), (c, 6), (f, 3)\}\}$

11 of 24

Math Models: Relations (3.3)

Say $r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$

- r.*overridden*(t): a relation which agrees on *r* outside domain of *t.domain*, and agrees on *t* within domain of *t.domain*
 - ∘ r.overridden(t) = $t \cup r$.domain_subtracted(t.domain)

$$r.\mathbf{overridden}(\underbrace{\{(a,3),(c,4)\}})_{t} \cup \underbrace{\{(b,2),(b,5),(d,1),(e,2),(f,3)\}}_{r.\mathbf{domain_subtracted}(\underbrace{t.\mathbf{domain}}_{\{a,c\}})}_{\{a,c\}}$$

$$= \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\}$$

 $= \{(a,3),(c,4),(b,2),(b,5),(a,1),(e,2),(f,3)\}$

12 of 24

Math Review: Functions (1)

A *function f* on sets *S* and *T* is a *specialized form* of relation: it is forbidden for a member of *S* to map to more than one members of *T*.

$$\forall s: S; t_1: T; t_2: T \bullet (s, t_1) \in f \land (s, t_2) \in f \Rightarrow t_1 = t_2$$

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$, which of the following relations are also functions?

$$\begin{array}{ll} \circ & S \times T & [\text{No}] \\ \circ & (S \times T) - \{(x,y) \mid (x,y) \in S \times T \wedge x = 1\} \\ \circ & \{(1,a),(2,b),(3,a)\} & [\text{Yes}] \\ \circ & \{(1,a),(2,b)\} & [\text{Yes}] \end{array}$$

13 of 24

Math Review: Functions (2)

 We use set comprehension to express the set of all possible functions on S and T as those relations that satisfy the functional property:

$$\{r: S \leftrightarrow T \mid (\forall s: S; t_1: T; t_2: T \bullet (s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2) \}$$

- This set (of possible functions) is a subset of the set (of possible relations): P(S × T) and S ↔ T.
- We abbreviate this set of possible functions as S → T and use it to declare a function variable f:

$$f: S \to T$$

Math Review: Functions (3.1)

Given a function $f: S \rightarrow T$:

• *f* is *injective* (or an injection) if *f* does not map two members of *S* to the same member of *T*.

$$f$$
 is injective \iff $(\forall s_1: S; s_2: S; t: T \bullet (s_1, t) \in r \land (s_2, t) \in r \Rightarrow s_1 = s_2)$

e.g., Considering an array as a function from integers to objects, being injective means that the array does not contain any duplicates.

• *f* is *surjective* (or a surjection) if *f* maps to all members of *T*.

$$f$$
 is surjective \iff ran $(f) = T$

• *f* is *bijective* (or a bijection) if *f* is both injective and surjective.

Math Review: Functions (3.2)

Math Models: Command-Query Separation LASSONDE

Command	Query
domain_restrict	domain_restrict ed
domain_restrict_by	domain_restrict ed _by
domain_subtract	domain_subtract ed
domain_subtract_by	domain_subtract ed _by
range_restrict	range_restrict ed
range_restrict_by	range_restrict ed _by
range_subtract	range_subtract ed
range_subtract_by	range_subtract ed _by
override	overrid den
override_by	overrid den _by

```
Say r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}
```

• Commands modify the context relation objects.

```
r. domain_restrict ({a}) changes r to \{(a,1),(a,4)\}
```

• Queries return new relations without modifying context objects.

```
r.domain.restricted({a}) returns \{(a,1),(a,4)\} with r untouched
```

17 of 24

Math Models: Example Test


```
test_rel: BOOLEAN
 local
  r, t: REL[STRING, INTEGER]
  ds: SET[STRING]
  create r.make_from_tuple_array (
    <<["a", 1], ["b", 2], ["c", 3],
      ["a", 4], ["b", 5], ["c", 6],
       ["d", 1], ["e", 2], ["f", 3]>>)
  create ds.make_from_array (<<"a">>>)
   -- r is not changed by the query 'domain_subtracted'
  t := r.domain_subtracted (ds)
  Result :=
    t /~ r and not t.domain.has ("a") and r.domain.has ("a")
  check Result end
   -- r is changed by the command 'domain_subtract'
  r.domain_subtract (ds)
    t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
 end
```

LASSONDE

Case Study: A Birthday Book

- A birthday book stores a collection of entries, where each entry is a pair of a person's name and their birthday.
- No two entries stored in the book are allowed to have the same name.
- Each birthday is characterized by a month and a day.
- A birthday book is first created to contain an empty collection of entires.
- Given a birthday book, we may:
 - o Inquire about the number of entries currently stored in the book
 - Add a new entry by supplying its name and the associated birthday
 - Remove the entry associated with a particular person
 - Find the birthday of a particular person
 - Get a reminder list of names of people who share a given birthday

19 of 24

Birthday Book: Decisions

- **Design** Decision
 - Classes
 - o Client Supplier vs. Inheritance
 - Mathematical Model?

[e.g., REL or FUN]

- Contracts
- Implementation Decision
 - Two linear structures (e.g., arrays, lists)

[O(n)]

A balanced search tree (e.g., AVL tree)

 $[O(log \cdot n)]$

A hash table

[O(1)]

• Implement an *abstraction function* that maps implementation to the math model.

Birthday Book: Design

21 of 24

22 of 24

Birthday Book: Implementation

Beyond this lecture ...

• Familiarize yourself with the features of class REL, FUN, and SET.

Exercise:

- Consider an alternative implementation using two linear structures (e.g., here in Java).
- o Implement the design of birthday book covered in lectures.
- Create another LINEAR_BIRTHDAY_BOOK class and modify the implementation of abstraction function accordingly.
 Do all contracts still pass? What should change? What remain unchanged?

23 of 24

Index (1)

Learning Objectives

Math Review: Set Definitions and Membership

Math Review: Set Relations

Math Review: Set Operations

Math Review: Power Sets

Math Review: Set of Tuples

Math Models: Relations (1)

Math Models: Relations (2)

Math Models: Relations (3.1)

Math Models: Relations (3.2)

Math Models: Relations (3.3)

24 of 24

Index (2)

Math Review: Functions (1)

Math Review: Functions (2)

Math Review: Functions (3.1)

Math Review: Functions (3.2)

Math Models: Command-Query Separation

Math Models: Example Test

Case Study: A Birthday Book

Birthday Book: Decisions

Birthday Book: Design

Birthday Book: Implementation

Beyond this lecture ...

25 of 24

Design Pattern: Iterator

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. Motivating Problem of the Iterator Design Pattern
- 2. Supplier: Implementing the Iterator Design Pattern
- 3. Client: Using the Iterator Design Pattern
- 4. A Challenging Exercise (architecture & generics)

2 of 22

What are design patterns?

- Solutions to *recurring problems* that arise when software is being developed within a particular *context*.
 - Heuristics for structuring your code so that it can be systematically maintained and extended.
 - · Caveat: A pattern is only suitable for a particular problem.
 - Therefore, always understand *problems* before *solutions*!

Iterator Pattern: Motivation (1)

Client:

Supplier:

```
class
    CART
feature
    orders: ARRAY[ORDER]
end

class
    ORDER
feature
    price: INTEGER
    quantity: INTEGER
```

class SHOP feature cart: CART checkout: INTEGER do from i := cart.orders.lower until i > cart.orders.upper do Result := Result + cart.orders[i].price cart.orders[i].quantity i := i + 1end end

Problems?

4 of 22

4 of 22

Iterator Pattern: Motivation (2)

end

Supplier:

```
class
    CART
feature
    orders: LINKED_LIST[ORDER]
end

class
    ORDER
feature
    price: INTEGER
    quantity: INTEGER
end
```

Client's code must be modified to adapt to the supplier's change on implementation.

Client:

```
class
    SHOP
feature
    cart: CART
    checkout: INTEGER
    do
        from
            cart.orders.start
    until
        cart.orders.after
    do
        Result := Result +
            cart.orders.item.price
        *
        cart.orders.item.quantity
    end
    end
end
```

3 of 22

Iterator Pattern: Architecture

6 of 22

Iterator Pattern: Supplier's Side

- Information Hiding Principle:
 - Hide design decisions that are likely to change (i.e., stable API).
 - Change of secrets does not affect clients using the existing API.
 - e.g., changing from ARRAY to LINKED_LIST in the CART class
- Steps:
 - 1. Let the supplier class inherit from the deferred class *ITERABLE[G]*.
 - 2. This forces the supplier class to implement the inherited feature: new_cursor: ITERATION_CURSOR [G], where the type parameter G may be instantiated (e.g., ITERATION_CURSOR[ORDER]).
 - 2.1 If the internal, library data structure is already iterable e.g., imp: ARRAY[ORDER], then simply return imp.new_cursor.
 - **2.2** Otherwise, say *imp:* MY_TREE[ORDER], then create a new class MY_TREE_ITERATION_CURSOR that inherits from ITERATION_CURSOR[ORDER], then implement the 3 inherited features *after*, *item*, and *forth* accordingly.

Iterator Pattern: Supplier's Implementation (Sonde


```
class
    CART
inherit
    ITERABLE[ORDER]
...

feature {NONE} -- Information Hiding
    orders: ARRAY[ORDER]

feature -- Iteration
    new_cursor: ITERATION_CURSOR[ORDER]
    do
        Result := orders.new_cursor
    end
```

When the secrete implementation is already *iterable*, reuse it!

R of 22

Iterator Pattern: Supplier's Imp. (2.1)

No Eiffel library support for iterable arrays ⇒ Implement it yourself!

Iterator Pattern: Supplier's Imp. (2.2)


```
class
MY_ITERATION_CURSOR[G]
inherit
ITERATION_CURSOR[ TUPLE[STRING, G] ]
feature -- Constructor
make (ns: ARRAY[STRING]; rs: ARRAY[G])
  do ... end
feature {NONE} -- Information Hiding
 cursor_position: INTEGER
 names: ARRAY[STRING]
records: ARRAY[G]
feature -- Cursor Operations
item: TUPLE[STRING, G]
  do ... end
 after: Boolean
  do ... end
 forth
  do ... end
```

You need to implement the three inherited features: *item*, *after*, and *forth*.

10 of 22

Iterator Pattern: Supplier's Imp. (2.3)

Visualizing iterator pattern at runtime:

Exercises

- **1.** Draw the BON diagram showing how the iterator pattern is applied to the *CART* (supplier) and *SHOP* (client) classes.
- **2.** Draw the BON diagram showing how the iterator pattern is applied to the supplier classes:
 - GENERIC_BOOK (a descendant of ITERABLE) and
 - MY_ITERATION_CURSOR (a descendant of ITERATION_CURSOR).

12 of 22

Resources

- Tutorial Videos on Generic Parameters and the Iterator Pattern
- Tutorial Videos on Information Hiding and the Iterator Pattern
- Tutorial on Making a Birthday Book (implemented using HASH_TABLE) ITERABLE

Iterator Pattern: Client's Side

Information hiding: the clients do <u>not at all</u> depend on *how* the supplier implements the collection of data; they are only interested in iterating through the collection in a linear manner. Steps:

- **1.** Obey the *code to interface, not to implementation* principle.
- 2. Let the client declare an attribute of *interface* type *ITERABLE[G]* (rather than *implementation* type *ARRAY*, *LINKED_LIST*, or *MY_TREE*).

```
e.g., cart: CART, where CART inherits ITERATBLE[ORDER]
```

3. Eiffel supports, in <u>both</u> implementation and *contracts*, the **across** syntax for iterating through anything that's *iterable*.

14 of 22

Iterator Pattern: Clients using across for Contracts (1)

- Using **all** corresponds to a universal quantification (i.e., ∀).
- Using **some** corresponds to an existential quantification (i.e., ∃).

Iterator Pattern: Clients using across for Contracts (2)

```
class BANK
...
    accounts: LIST [ACCOUNT]
    binary_search (acc_id: INTEGER): ACCOUNT
        -- Search on accounts sorted in non-descending order.
    require
        across
        1 | . . | (accounts.count - 1) is i
        all
            accounts [i].id <= accounts [i + 1].id
        end
        do
            ...
    ensure
    Result.id = acc_id
    end</pre>
```

This precondition corresponds to:

```
\forall i: INTEGER \mid 1 \le i < accounts.count \bullet accounts[i].id \le accounts[i+1].id
```

Iterator Pattern: Clients using across for Contracts (3)


```
class BANK
...

accounts: LIST [ACCOUNT]

contains_duplicate: BOOLEAN

-- Does the account list contain duplicate?

do

...

ensure

\forall i,j: INTEGER \mid

1 \le i \le accounts.count \land 1 \le j \le accounts.count \bullet

accounts[i] \sim accounts[j] \Rightarrow i = j
end
```

- Exercise: Convert this mathematical predicate for postcondition into Eiffel.
- Hint: Each across construct can only introduce one dummy variable, but you may nest as many across constructs as necessary.

Iterator Pattern: Clients using Iterable in Imp. (1)

Iterator Pattern: Clients using Iterable in Imp. (2)


```
class SHOP
cart: CART
checkout: INTEGER
-- Total price calculated based on orders in the cart.

require ??
do
across
cart is order
loop
Result := Result + order.price * order.quantity
end
ensure ??
end
```

- Class CART should inherit from ITERABLE[ORDER].
- L10 implicitly declares cursor: ITERATION_CURSOR[ORDER] and does cursor := cart.new_cursor

Iterator Pattern: Clients using Iterable in Imp. (3)

```
class BANK
 accounts: LIST[ACCOUNT] -- Q: Can ITERABLE[ACCOUNT] work?
 max_balance: ACCOUNT
    -- Account with the maximum balance value.
  require ??
  local
    max: ACCOUNT
    max := accounts [1]
     accounts is acc
    loop
     if acc.balance > max.balance then
       max := acc
     end
    end
  ensure ??
  end
20 of 22
```

Beyond this lecture ...

- Tutorial Videos on Iterator Pattern
- Exercise: Architecture & Generics

21 of 22

19.01.22

Index (1)

Learning Objectives

What are design patterns?

Iterator Pattern: Motivation (1)

Iterator Pattern: Motivation (2)

Iterator Pattern: Architecture

Iterator Pattern: Supplier's Side

Iterator Pattern: Supplier's Implementation (1)

Iterator Pattern: Supplier's Imp. (2.1)

Iterator Pattern: Supplier's Imp. (2.2)

Iterator Pattern: Supplier's Imp. (2.3)

Exercises

22 of 22

Index (2)

Resources

Iterator Pattern: Client's Side

Iterator Pattern:

Clients using across for Contracts (1)

Iterator Pattern:

Clients using across for Contracts (2)

Iterator Pattern:

Clients using across for Contracts (3)

Iterator Pattern:

Clients using Iterable in Imp. (1)

Iterator Pattern:

Clients using Iterable in Imp. (2)

23 of 22

Index (3)

Iterator Pattern:

Clients using Iterable in Imp. (3)

Beyond this lecture ...

24 of 22

Singleton Design Pattern

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. Modeling Concept of Expanded Types (Compositions)
- 2. Once Routines in Eiffel vs. Static Methods in Java
- 3. Export Status
- 4. Sharing via *Inheritance* (w.r.t. *SCP* and *Cohesion*)
- **5. Singleton** Design Pattern

2 of 23

Expanded Class: Modelling

- We may want to have objects which are:
 - Integral parts of some other objects
 - Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.

All workstations share the same network.

8 of 28

Expanded Class: Programming (2)


```
class KEYBOARD ... end class CPU ... end
class MONITOR ... end class NETWORK ... end
class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK
end
```

Alternatively:

```
expanded class KEYBOARD ... end
expanded class CPU ... end
expanded class MONITOR ... end
class NETWORK ... end
class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK
end
```

Expanded Class: Programming (3)


```
test_expanded
                          2
                              local
                          3
                                eb1, eb2: B
expanded class
                          4
                          5
                                check eb1.i = 0 and eb2.i = 0 end
feature
                          6
                                check \ eb1 = eb2 \ end
 change_i (ni: INTEGER)
                                eb2.change_i (15)
  do
                          8
                                check eb1.i = 0 and eb2.i = 15 end
    i := ni
                         9
                                check eb1 /= eb2 end
   end
                         10
                                eb1 := eb2
feature
                         11
                                check eb1.i = 15 and eb2.i = 15 end
 i: INTEGER
                         12
                                eb1.change_i (10)
                         13
                                check eb1.i = 10 and eb2.i = 15 end
                         14
                                check eb1 /= eb2 end
                              end
```

- L5: object of expanded type is automatically initialized.
- L10,L12,L13: no sharing among objects of expanded type.
- L6,L9,L14: = compares contents between expanded objects.

Reference vs. Expanded (1)

- Every entity must be declared to be of a certain type (based on a class).
- Every type is either *referenced* or *expanded*.
- In *reference* types:
 - y denotes *a reference* to some object
 - x := y attaches x to same object as does y
 - o x = y compares references
- In expanded types:
 - y denotes some object (of expanded type)
 - x := y copies contents of y into x
 - o x = y compares contents

[x ~ v]

6 of 23

Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may publish more than one books. Should the author field of a book *reference*-typed or *expanded*-typed?

Singleton Pattern: Motivation

Consider two problems:

- Bank accounts share a set of data.
 e.g., interest and exchange rates, minimum and maximum balance, etc.
- **2.** *Processes* are regulated to access some shared, limited resources.
 - e.g., printers

R of 23

Shared Data via Inheritance

Descendant:

```
class DEPOSIT inherit SHARED_DATA
-- 'maximum_balance' relevant
end

class WITHDRAW inherit SHARED_DATA
-- 'minimum_balance' relevant
end

class INT_TRANSFER inherit SHARED_DATA
-- 'exchange_rate' relevant
end

class ACCOUNT inherit SHARED_DATA
feature
-- 'interest_rate' relevant
deposits: DEPOSIT_LIST
withdraws: WITHDRAW_LIST
end
```

Ancestor:

```
class
SHARED_DATA
feature
interest_rate: REAL
exchange_rate: REAL
minimum_balance: INTEGER
maximum_balance: INTEGER
...
end
```

Problems?

ure 🛔

Sharing Data via Inheritance: Architecture

- Irreverent features are inherited.
 - ⇒ Descendants' *cohesion* is broken.
- Same set of data is duplicated as instances are created.
 - ⇒ Updates on these data may result in *inconsistency*.

10 of 23

Sharing Data via Inheritance: Limitation

- Each descendant instance at runtime owns a <u>separate</u> copy of the shared data.
- This makes inheritance *not* an appropriate solution for both problems:
 - What if the interest rate changes? Apply the change to all instantiated account objects?
 - An update to the global lock must be observable by all regulated processes.

Solution:

- Separate notions of data and its shared access in two separate classes.
- Encapsulate the shared access itself in a separate class.

LASSONDE

Introducing the Once Routine in Eiffel (1.1) LASSONDE

```
class A
2
   create make
3
   feature -- Constructor
     make do end
   feature -- Query
     new_once_array (s: STRING): ARRAY[STRING]
        -- A once query that returns an array.
9
        create {ARRAY[STRING]} Result.make_empty
10
        Result.force (s, Result.count + 1)
11
12
     new_array (s: STRING): ARRAY[STRING]
13
        -- An ordinary query that returns an array.
14
15
        create {ARRAY[STRING]} Result.make_empty
16
        Result.force (s, Result.count + 1)
17
18
   end
```

L9 & L10 executed only once for initialization.

L15 & L16 executed whenever the feature is called.

12 of 23

Introducing the Once Routine in Eiffel (1.2)


```
test_query: BOOLEAN
     local
3
       arr1, arr2: ARRAY[STRING]
       create a.make
8
       arr1 := a.new_array ("Alan")
9
       Result := arr1.count = 1 and arr1[1] ~ "Alan"
10
       check Result end
11
12
       arr2 := a.new_array ("Mark")
13
       Result := arr2.count = 1 and arr2[1] ~ "Mark"
14
       check Result end
15
      Result := not (arr1 = arr2)
16
17
       check Result end
     end
```

11 of 23

Introducing the Once Routine in Eiffel (1.3)

```
test_once_query: BOOLEAN
2
     local
3
       arr1, arr2: ARRAY [STRING]
5
6
       create a.make
8
       arr1 := a.new_once_array ("Alan")
9
       Result := arr1.count = 1 and arr1[1] ~ "Alan"
10
       check Result end
11
12
       arr2 := a.new_once_array ("Mark")
13
       Result := arr2.count = 1 and arr2[1] ~ "Alan"
14
       check Result end
15
16
       Result := arr1 = arr2
17
       check Result end
18
    end
```

14 of 23

15 of 23

Introducing the Once Routine in Eiffel (2)


```
r (...): T

once

-- Some computations on Result
...
end
```

- The ordinary do ... end is replaced by once ... end.
- The first time the **once** routine *r* is called by some client, it executes the body of computations and returns the computed result.
- From then on, the computed result is "cached".
- In every subsequent call to *r*, possibly by different clients, the body of *r* is not executed at all; instead, it just returns the "cached" result, which was computed in the very first call.
- How does this help us?

 Cache the reference to the same shared object!

Approximating Once Routine in Java (1)

We may encode Eiffel once routines in Java:

```
class BankData {
  BankData() { }
  double interestRate;
  void setIR(double r);
  ...
}
```

```
class Account {
  BankData data;
  Account() {
   data = BankDataAccess.getData();
  }
}
```

```
class BankDataAccess {
  static boolean initOnce;
  static BankData data;
  static BankData getData() {
   if(!initOnce) {
     data = new BankData();
     initOnce = true;
   }
  return data;
  }
}
```

Problem?

Multiple *BankData* objects may be created in Account, breaking the singleton!

```
Account() {
  data = new BankData();
}
```

Approximating Once Routine in Java (2)

We may encode Eiffel once routines in Java:

```
class BankData {
  private BankData() { }
  double interestRate;
  void setIR(double r);
  static boolean initOnce;
  static BankData data;
  static BankData getData() {
   if(!initOnce) {
     data = new BankData();
     initOnce = true;
  }
  return data;
}
```

Problem?

Loss of Cohesion: **Data** and **Access to Data** are two separate concerns, so should be decoupled into two different classes!

17 of 23

Supplier:

```
class DATA
create {DATA ACCESS} make
feature {DATA ACCESS}
  make do v := 10 end
feature -- Data Attributes
  v: INTEGER
  change_v (nv: INTEGER)
  do v := nv end
end
```

```
expanded class

DATA ACCESS
feature

data: DATA

-- The one and only access
once create Result.make end
invariant data = data
```

18 of 23

Client:

```
test: BOOLEAN
local
  access: DATA ACCESS
  d1, d2: DATA
do
  d1 := access.data
  d2 := access.data
  Result := d1 = d2
  and d1.v = 10 and d2.v = 10
  check Result end
  d1.change_v (15)
  Result := d1 = d2
  and d1.v = 15 and d2.v = 15
  end
end
```

Writing **create** d1.make in test feature does not compile. Why?

Singleton Pattern in Eiffel (2)

Supplier:

```
class BANK DATA
create {BANK DATA ACCESS} make
feature {BANK DATA ACCESS}
make do ... end
feature -- Data Attributes
interest_rate: REAL
set_interest_rate (r: REAL)
...
end
```

```
expanded class

BANK DATA ACCESS

feature

data: BANK DATA

-- The one and only access

once create Result.make end
invariant data = data
```

Client:

Writing **create** data.make in client's make feature does not compile. Why?

19 of 23

Testing Singleton Pattern in Eiffel


```
test_bank_shared_data: BOOLEAN
   -- Test that a single data object is manipulated
 local acc1, acc2: ACCOUNT
  comment("t1: test that a single data object is shared")
  create acc1.make ("Bill")
  create acc2.make ("Steve")
  Result := acc1.data = acc2.data
  check Result end
  Result := acc1.data ~ acc2.data
  check Result end
  acc1.data.set_interest_rate (3.11)
  Result :=
        acc1.data.interest_rate = acc2.data.interest_rate
    and acc1.data.interest_rate = 3.11
  check Result end
  acc2.data.set_interest_rate (2.98)
        acc1.data.interest rate = acc2.data.interest rate
    and acc1.data.interest_rate = 2.98
 end
20 of 23
```

Singleton Pattern: Architecture

Important Exercises: Instantiate this architecture to the problem of shared bank data.

Draw it in draw.io.

Beyond this lecture

The *singleton* pattern is instantiated in the ETF framework:

• ETF_MODEL

(shared data)

• ETF_MODEL_ACCESS

(exclusive once access)

• ETF_COMMAND and its effective descendants:

```
deferred class
  ETF_COMMAND
feature -- Attributes
  model: ETF_MODEL
feature {NONE}
  make(...)
  local
    ma: ETF_MODEL_ACCESS
  do
    ...
  model := ma.m
  end
end
```

```
class
   ETF_MOVE
inherit
   ETF_MOVE_INTERFACE
   -- which inherits ETF_COMMAND
feature -- command
   move(...)
   do
    ...
   model.some_routine (...)
   ...
   end
end
```

22 of 23

Index (1)

Learning Objectives

Expanded Class: Modelling

Expanded Class: Programming (2)

Expanded Class: Programming (3)

Reference vs. Expanded (1)

Reference vs. Expanded (2)

Singleton Pattern: Motivation

Shared Data via Inheritance

Sharing Data via Inheritance: Architecture

Sharing Data via Inheritance: Limitation

Introducing the Once Routine in Eiffel (1.1)

23 of 23

Index (2)

Introducing the Once Routine in Eiffel (1.2)

Introducing the Once Routine in Eiffel (1.3)

Introducing the Once Routine in Eiffel (2)

Approximating Once Routines in Java (1)

Approximating Once Routines in Java (2)

Singleton Pattern in Eiffel (1)

Singleton Pattern in Eiffel (2)

Testing Singleton Pattern in Eiffel

Singleton Pattern: Architecture

Beyond this lecture

24 of 23

Eiffel Testing Framework (ETF): Automated Regression & Acceptance Testing

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. User Interface: Concrete vs. Abstract
- 2. Use Case: Interleaving Model, Events & (Abstract) States
- 3. Acceptance Tests vs. Unit Tests
- 4. Regression Tests

2 of 21

Required Tutorial

All technical details of ETF are discussed in this tutorial series:

https://www.voutube.com/playlist?list=PL5dxAmCmjv

5unIqLB9XiLwBey105y3kI

Take-Home Message

- Your remaining assignments are related to ETF: Lab3 & Project.
- You are no longer just given partially implemented classes:
 - o Design decisions have already been made for you.
 - You are just to fill in the blanks (to-do's).
- ETF is in Eiffel, but try to see beyond what it allows you do:
 - 1. Design your own classes and routines.
 - **2.** Practice *design principles*: e.g., DbC, modularity, information hiding, single-choice, cohesion.
 - **3.** Practice *design patterns*: e.g., iterator, singleton.
 - 4. Practice acceptance testing and regression testing.

4 of 21

Bank ATM: Concrete User Interfaces

An ATM app has many **concrete** (implemented, functioning) Uls.

PHYSICAL INTERFACE

UI, Model, TDD

- Separation of Concerns
 - The (Concrete) User Interface
 Users typically interact with your application via some GUI.
 e.g., web app, mobile app, or desktop app
 - The *Model* (Business Logic)
 Develop an application via classes and features.
 e.g., a bank storing, processing, retrieving accounts & transactions
- Test Driven Development (TDD) In practice:
 - The model should be *independent* of the UI or View.
 - Do <u>not</u> wait to test the <u>model</u> when the concrete UI is built.
 - ⇒ Test your software as if it was a real app way before dedicating to the design of an actual GUI.
 - ⇒ Use an *abstract* UI (e.g., a cmd-line UI) for this purpose.

6 of 21

Prototyping System with Abstract UI

- For you to quickly *prototype* a working system, you do not need to spend time on developing a elaborate, full-fledged GUI.
- The *Eiffel Testing Framework* (*ETF*) allows you to:
 - Generate a starter project from the specification of an abstract UI.
 - Focus on developing the business *model*.
 - Test your business model as if it were a real app.
- Q. What is an abstract UI?

Events *abstracting* observable interactions with the concrete GUI (e.g., button clicks, text entering).

• Q. Events vs. Features (attributes & routines)?

Events	Features
interactions	computations
external	internal
observable	hidden
acceptance tests	unit tests
users, customers	programmers, developers

Bank ATM: Abstract UI

Abstract UI is the list of events abstracting observable interactions with the concrete GUI (e.g., button clicks, text entering).

```
system bank

new(id: STRING)
   -- create a new bank account for "id"
deposit(id: STRING; amount: INTEGER)
   -- deposit "amount" into the account of "id"
withdraw(id: STRING; amount: INTEGER)
   -- withdraw "amount" from the account of "id"
transfer(id1: STRING; id2: STRING; amount: INTEGER)
   -- transfer "amount" from "id1" to "id2"
```

R of 21

Bank ATM: Abstract States

Abstract State is a representation of the system:

- *Including* relevant details of functionalities under *testing*
- Excluding other irrelevant details
 - e.g., An abstract state may show each account's owner:

```
{alan, mark, tom}
```

e.g., An abstract state may also show each account's balance:

```
{alan: 200, mark: 300, tom: 700}
```

e.g., An abstract state may show account's transactions:

```
Account Owner: alan
List of transactions:
    + deposit (Oct 15): $100
    - withdraw (Oct 18): $50
Account Owner: mark
List of transactions:
```

7 of 21

Bank ATM: Inputs of Acceptance Tests

An *acceptance test* is a *use case* of the system under test, characterized by sequential occurrences of *abstract events*.

For example:

```
new("alan")
new("mark")
deposit("alan", 200)
deposit("mark", 100)
transfer("alan", "mark", 50)
```

10 of 21

LASSONDE

Bank ATM: Outputs of Acceptance Tests (1) LASSONDE

Output from running an *acceptance test* is a sequence interleaving *abstract states* and *abstract events*:

$$S_0 -> e_1 -> S_1 -> e_2 -> S_2 -> \dots$$

where:

- S₀ is the *initial state*.
- S_i is the *pre-state* of event e_{i+1} [$i \ge 0$] e.g., S_0 is the pre-state of e_1 , S_1 is the pre-state of e_2
- S_i is the **post-state** of event e_i [$i \ge 1$] e.g., S_1 is the post-state of e_1 , S_2 is the post-state of e_2

11 of 21

Bank ATM: Outputs of Acceptance Tests (2) LASSONDE

Consider an example acceptance test output:

```
{}
->new("alan")
   {alan: 0}
->new("mark")
   {alan: 0, mark: 0}
->deposit("alan", 200)
   {alan: 200, mark: 0}
->deposit("mark", 100)
   {alan: 200, mark: 100}
->transfer("alan", "mark", 50)
   {alan: 150, mark: 150}
```

- Initial State? {}
- What role does the state {alan: 200, mark: 0} play?
 - Post-State of deposit ("alan", 200)
 - *Pre-State* of deposit ("mark", 100)

12 of 21

Bank ATM: Acceptance Tests vs. Unit Tests LASSONDE

Q. Difference between an acceptance test and a unit test?

```
test: BOOLEAN

local acc: ACCOUNT
    do create acc.make("alan")
    acc.add(200)
    Result := acc.balance = 200
end
test: BOOLEAN

local acc: ACCOUNT
    do create acc.make("alan")
    acc.add(200)
    Result := acc.balance = 200
end
```

A.

- Writing a unit test requires knowledge about the programming language and details of implementation.
- ⇒ Written and run by developers
- Writing an acceptance test only requires familiarity with the abstract UI and abstract state.
 - ⇒ Written and run by customers

[for communication]

⇒ Written and run by developers

[for testing]

ETF in a Nutshell

- Eiffel Testing Framework (ETF) facilitates engineers to write and execute *input-output-based acceptance tests*.
 - o Inputs are specified as traces of events (or sequences).
 - The abstract UI of the system under development (SUD) is defined by declaring the list of input events that might occur.
 - Outputs are interleaved states and events logged to the terminal, and their formats may be customized.
- An executable ETF project tailored for the SUD can already be generated, using these event declarations (specified in a plain text file), with a default business model.
 - Once the business model is implemented, there is a small number of steps to follow for developers to connect it to the generated ETF.
 - Once connected, developers may re-run all acceptance tests and observe if the expected state effects occur.

14 of 21

Workflow: Develop-Connect-Test

15 of 21

ETF: Abstract UI and Acceptance Test

ETF: Generating a New Project

ETF: Architecture

- Classes in the model cluster are hidden from the users.
- All commands reference to the same model (bank) instance.
- When a user's request is made:
 - A command object of the corresponding type is created, which invokes relevant feature(s) in the model cluster.
 - Updates to the model are published to the output handler.

18 of 21

ETF: Implementing an Abstract Command

```
class
  ETF_DEPOSIT
inherit
  ETF DEPOSIT INTERFACE
     redefine deposit end
create
  make
feature -- command
  deposit(id: STRING; amount: REAL_64)
       if not model.has_user (id) then
          -- Set some error message
       elseif not amount <= model.get_balance (id) then</pre>
          -- Set some other error message
       else
          -- perform some update on the model state
          model.deposit (id, amount)
       end
       -- Publish model update
       etf_cmd_container.on_change.notify ([Current])
end
```

19 of 21

Beyond this lecture

The *singleton* pattern is instantiated in the ETF framework:

• ETF_MODEL

(shared data)

• ETF_MODEL_ACCESS

(exclusive once access)

• ETF_COMMAND and its effective descendants:

```
deferred class
  ETF_COMMAND
feature -- Attributes
  model: ETF_MODEL
feature {NONE}
  make(...)
  local
    ma: ETF_MODEL_ACCESS
  do
    ...
  model := ma.m
  end
end
```

```
class
  ETF_DEPOSIT
inherit
  ETF_DEPOSIT_INTERFACE
  -- which inherits ETF_COMMAND
feature -- command
  deposit(...)
  do
    ...
    model.some_routine (...)
    ...
  end
end
```

20 of 21

Index (1)

Learning Objectives

Required Tutorial

Take-Home Message

Bank ATM: Concrete User Interfaces

UI, Model, TDD

Prototyping System with Abstract UI

Bank ATM: Abstract UI

Bank ATM: Abstract States

Bank ATM: Inputs of Acceptance Tests

Bank ATM: Outputs of Acceptance Tests (1)

Bank ATM: Outputs of Acceptance Tests (2)

Index (2)

Bank ATM: Acceptance Tests vs. Unit Tests

ETF in a Nutshell

Workflow: Develop-Connect-Test

ETF: Abstract UI and Acceptance Test

ETF: Generating a New Project

ETF: Architecture

ETF: Implementing an Abstract Command

Beyond this lecture

22 of 21

Inheritance

Readings: OOSCS2 Chapters 14 - 16

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. Design Attempts without Inheritance (w.r.t. Cohesion, SCP)
- 2. Using Inheritance for Code Reuse
- 3. Static Type & Polymorphism
- 4. Dynamic Type & Dynamic Binding
- 5. Type Casting
- **6.** Polymorphism & Dynamic Binding: Routine Arguments, Routine Return Values, Collections

2 of 60

Aspects of Inheritance

- Code Reuse
- Substitutability
 - Polymorphism and Dynamic Binding

[compile-time type checks]

Sub-contracting

[runtime behaviour checks]

Why Inheritance: A Motivating Example

Problem: A student management system stores data about students. There are two kinds of university students: resident students and non-resident students. Both kinds of students have a name and a list of registered courses. Both kinds of students are restricted to register for no more than 30 courses. When calculating the tuition for a student, a base amount is first determined from the list of courses they are currently registered (each course has an associated fee). For a non-resident student, there is a discount rate applied to the base amount to waive the fee for on-campus accommodation. For a resident student, there is a premium rate applied to the base amount to account for the fee for on-campus accommodation and meals.

Tasks: Design classes that satisfy the above problem statement. At runtime, each type of student must be able to register a course and calculate their tuition fee.

4 of 60

The COURSE Class

7 of 60

5 of 60

No Inheritance: RESIDENT_STUDENT Class


```
class RESIDENT_STUDENT
create make
feature -- Attributes
 name: STRING
 courses: LINKED_LIST[COURSE]
 premium_rate: REAL
feature -- Constructor
 make (n: STRING)
  do name := n ; create courses.make end
feature -- Commands
 set_pr (r: REAL) do premium_rate := r end
 register (c: COURSE) do courses.extend (c) end
feature -- Oueries
 tuition: REAL
  local base: REAL
  do base := 0.0
     across courses as c loop base := base + c.item.fee end
     Result := base * premium_rate
  end
end
5.01.6U
```

No Inheritance: NON_RESIDENT_STUDENT Classon

```
class NON_RESIDENT_STUDENT
create make
feature -- Attributes
 name: STRING
 courses: LINKED_LIST[COURSE]
 discount_rate: REAL
feature -- Constructor
 make (n: STRING)
  do name := n ; create courses.make end
feature -- Commands
 set_dr (r: REAL) do discount_rate := r end
 register (c: COURSE) do courses.extend (c) end
feature -- Queries
 tuition: REAL
  local base: REAL
  do base := 0.0
     across courses as c loop base := base + c.item.fee end
     Result := base * discount_rate
  end
end
```


No Inheritance: Testing Student Classes

```
test_students: BOOLEAN
local
  c1, c2: COURSE
  jim: RESIDENT_STUDENT
  jeremy: NON_RESIDENT_STUDENT
  create c1.make ("EECS2030", 500.0)
  create c2.make ("EECS3311", 500.0)
  create jim.make ("J. Davis")
  jim.set_pr (1.25)
  jim.register (c1)
  iim.register (c2)
  Result := jim.tuition = 1250
  check Result end
  create jeremy.make ("J. Gibbons")
  jeremy.set dr (0.75)
  jeremy.register (c1)
  jeremy.register (c2)
  Result := jeremy.tuition = 750
```

R of 60

No Inheritance: Issues with the Student Classes

- Implementations for the two student classes seem to work. But can you see any potential problems with it?
- The code of the two student classes share a lot in common.
- Duplicates of code make it hard to maintain your software!
- This means that when there is a change of policy on the common part, we need modify *more than one places*.
 - ⇒ This violates the Single Choice Principle:

when a *change* is needed, there should be *a single place* (or *a minimal number of places*) where you need to make that change.

No Inheritance: Maintainability of Code (1)

What if a *new* way for course registration is to be implemented?

e.g.,

```
register(Course c)
do
  if courses.count >= MAX_CAPACITY then
   -- Error: maximum capacity reached.
  else
    courses.extend (c)
  end
end
```

We need to change the register commands in **both** student classes!

⇒ *Violation* of the *Single Choice Principle*

10 of 60

No Inheritance: Maintainability of Code (2)

What if a *new* way for base tuition calculation is to be implemented?

e.g.,

```
tuition: REAL
  local base: REAL
  do base := 0.0
    across courses as c loop base := base + c.item.fee end
    Result := base * inflation_rate * ...
end
```

We need to change the tuition query in **both** student classes.

⇒ *Violation* of the *Single Choice Principle*

9 of 60

No Inheritance:

A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that contains a list of *resident* and *non-resident* students?

```
class STUDENT_MANAGEMENT_SYSETM

rs: LINKED_LIST[RESIDENT_STUDENT]

nrs: LINKED_LIST[NON_RESIDENT_STUDENT]

add_rs (rs: RESIDENT_STUDENT) do ... end

add_nrs (nrs: NON_RESIDENT_STUDENT) do ... end

register_all (Course c) -- Register a common course 'c'.

do

across rs as c loop c.item.register (c) end

across nrs as c loop c.item.register (c) end

end

end
```

But what if we later on introduce *more kinds of students*? *Inconvenient* to handle each list of students, in pretty much the *same* manner, *separately*!

12 of 60

Inheritance Architecture

Inheritance: The STUDENT Parent Class


```
class STUDENT
    create make
    feature -- Attributes
     name: STRING
     courses: LINKED_LIST[COURSE]
    feature -- Commands that can be used as constructors.
     make (n: STRING) do name := n ; create courses.make end
    feature -- Commands
     register (c: COURSE) do courses.extend (c) end
10
   feature -- Oueries
11
     tuition: REAL
12
      local base: REAL
13
       do base := 0.0
14
          across courses as c loop base := base + c.item.fee end
15
          Result := base
16
17
    end
```

14 of 60

Inheritance:

The RESIDENT_STUDENT Child Class

```
class
2
     RESIDENT_STUDENT
3
   inherit
     STUDENT
      redefine tuition end
    create make
    feature -- Attributes
8
     premium_rate : REAL
    feature -- Commands
     set_pr (r: REAL) do premium_rate := r end
11
    feature -- Oueries
12
     tuition: REAL
13
      local base: REAL
      do base := Precursor ; Result := base * premium_rate end
  end
```

- L3: RESIDENT_STUDENT inherits all features from STUDENT.
- There is no need to repeat the register command

• L14: Precursor returns the value from query tuition in STUDENT.

Inheritance:

The NON_RESIDENT_STUDENT Child Class

```
class
2
    NON_RESIDENT_STUDENT
   inherit
     STUDENT
5
      redefine tuition end
   create make
   feature -- Attributes
8
     discount_rate : REAL
   feature -- Commands
10
    set_dr (r: REAL) do discount_rate := r end
11
   feature -- Oueries
12
     tuition: REAL
13
      local base: REAL
14
      do base := Precursor ; Result := base * discount_rate end
15
   end
```

- L3: NON_RESIDENT_STUDENT inherits all features from STUDENT.
- There is no need to repeat the register command
- L14: *Precursor* returns the value from query tuition in STUDENT.

16 of 60

Inheritance Architecture Revisited

- The class that defines the common features (attributes, commands, queries) is called the parent, super, or ancestor class.
- Each "specialized" class is called a *child*, *sub*, or *descendent* class.

17 of 60

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:

 Factor out common features (attributes, commands, queries) in a separate class.

e.g., the STUDENT class

- Define an "specialized" version of the class which:
 - inherits definitions of all attributes, commands, and queries
 - e.g., attributes name, courses
 - e.g., command register
 - e.g., query on base amount in tuition

This means code reuse and elimination of code duplicates!

- defines new features if necessary
 - e.g., set_pr for RESIDENT_STUDENT
- e.g., set_dr for NON_RESIDENT_STUDENT
- redefines features if necessary
 - e.g., compounded tuition for RESIDENT_STUDENT
 - e.g., discounted tuition for NON_RESIDENT_STUDENT

18 of 60

Testing the Two Student Sub-Classes


```
test_students: BOOLEAN
local
  c1, c2: COURSE
  jim: RESIDENT_STUDENT; jeremy: NON_RESIDENT_STUDENT
do
  create c1.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
  create jim.make ("J. Davis")
  jim.set_pr (1.25); jim.register (c1); jim.register (c2)
  Result := jim.tuition = 1250
  check Result end
  create jeremy.make ("J. Gibbons")
  jeremy.set_dr (0.75); jeremy.register (c1); jeremy.register (c2)
  Result := jeremy.tuition = 750
end
```

- The software can be used in exactly the same way as before (because we did not modify feature signatures).
- But now the internal structure of code has been made maintainable using inheritance.

Static Type vs. Dynamic Type

- In *object orientation*, an entity has two kinds of types:
 - static type is declared at compile time [unchangeable] An entity's **ST** determines what features may be called upon it.
 - dynamic type is changeable at runtime
- In Java:

```
Student s = new Student("Alan");
Student rs = new ResidentStudent("Mark");
```

In Eiffel:

```
local s: STUDENT
      rs: STUDENT
do create {STUDENT} s.make ("Alan")
   create {RESIDENT_STUDENT} rs.make ("Mark")
```

 In Eiffel, the dynamic type can be omitted if it is meant to be the same as the static type:

```
local s: STUDENT
do create s.make ("Alan")
```

20 of 60

Inheritance Architecture Revisited

register (c: COURSE)+

tuition: REAL+


```
/* new features */
                                                                /* new features */
                                                                discount rate: REAL
    premium rate: REAL
    set_pr (r: REAL)+
                                                                set dr (r: REAL)+
                                           NON_RESIDENT_STUDENT
                     RESIDENT STUDENT
    /* redefined features */
                                                                /* redefined features */
                                                                tuition: REAL++
    tuition: REAL++
s1,s2,s3: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_RESIDENT_STUDENT
create {STUDENT} s1.make ("S1")
create {RESIDENT_STUDENT} s2.make ("S2")
create {NON_RESIDENT_STUDENT} s3.make ("S3")
create {RESIDENT_STUDENT} rs.make ("RS")
create {NON_RESIDENT_STUDENT} nrs.make ("NRS")
```

STUDENT

courses: LINKED LIST[COURSE]

	name	courses	reg	tuition	pr	set_pr	dr	set_dr
s1.	✓			×				
s2.	✓			×				
s3.	✓			×				
rs.	✓				\checkmark		×	
nrs.	✓				×		√	

21 of 60

Polymorphism: Intuition (1)


```
local
2
    s: STUDENT
3
    rs: RESIDENT_STUDENT
4
5
    create s.make ("Stella")
    create rs.make ("Rachael")
    rs.set pr (1.25)
    s := rs /* Is this valid? */
    rs := s /* Is this valid? */
```

• Which one of **L8** and **L9** is valid? Which one is invalid?

 L8: What kind of address can s store? [STUDENT]

... The context object s is expected to be used as:

• s.register (eecs3311) and s.tuition

• L9: What kind of address can rs store? [RESIDENT_STUDENT]

... The context object *rs* is *expected* to be used as:

• rs.register (eecs3311) and rs.tuition

[increase premium rate] • **rs**.set_pr (1.50)

22 of 60

Polymorphism: Intuition (2)


```
1 local s: STUDENT; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3
     create {RESIDENT_STUDENT} rs.make ("Rachael")
4
      rs.set pr (1.25)
      s := rs /* Is this valid? */
      rs := s /* Is this valid? */
```

• **rs** := **s** (**L6**) should be **invalid**:

CRASH

rs declared of type RESIDENT_STUDENT

 \therefore calling **rs**. set_pr (1.50) can be expected.

- rs is now pointing to a STUDENT object.
- Then, what would happen to **rs**. set_pr (1.50)?

23 of 60

∵ **rs.**premium_rate is undefined!!

Polymorphism: Intuition (3)

```
1 local s: STUDENT; rs: RESIDENT_STUDENT
2 do create {STUDENT} s.make ("Stella")
3     create {RESIDENT_STUDENT} rs.make ("Rachael")
4     rs.set_pr (1.25)
5     s := rs /* Is this valid? */
6     rs := s /* Is this valid? */
```

• **s** := **rs** (**L5**) should be *valid*:

- Since s is declared of type STUDENT, a subsequent call s.set_pr(1.50) is never expected.
- s is now pointing to a RESIDENT_STUDENT object.
- Then, what would happen to s.tuition?

OK 24 of 60

25 of 60

∴ **s**.premium_rate is just never used!!

Dynamic Binding: Intuition (1)

After s := rs (L7), s points to a RESIDENT_STUDENT object.

⇒ Calling s.tuition applies the premium_rate.

Dynamic Binding: Intuition (2)

After s:=nrs (L8), s points to a NON_RESIDENT_STUDENT object.

⇒ Calling s.tuition applies the discount_rate.

Multi-Level Inheritance Architecture (1)

27 of 60

Multi-Level Inheritance Architecture (2)

28 of 60

Inheritance Forms a Type Hierarchy

- A (data) type denotes a set of related runtime values.
 - Every *class* can be used as a type: the set of runtime *objects*.
- Use of *inheritance* creates a *hierarchy* of classes:
 - (Implicit) Root of the hierarchy is ANY.
 - Each inherit declaration corresponds to an upward arrow.
 - The inherit relationship is *transitive*: when A inherits B and B inherits C, we say A *indirectly* inherits C.
 - e.g., Every class implicitly inherits the ANY class.
- Ancestor vs. Descendant classes:
 - The <u>ancestor classes</u> of a class A are: A itself and all classes that A directly, or indirectly, inherits.
 - A inherits all features from its ancestor classes.
 - \therefore A's instances have a *wider range of expected usages* (i.e., attributes, queries, commands) than instances of its *ancestor* classes.
 - The *descendant classes* of a class A are: A itself and all classes that directly, or indirectly, inherits A.
 - Code defined in A is inherited to all its descendant classes.

29 of 60

Inheritance Accumulates Code for Reuse

- The *lower* a class is in the type hierarchy, the *more code* it accumulates from its *ancestor classes*:
 - A descendant class inherits all code from its ancestor classes.
 - A descendant class may also:
 - · Declare new attributes.
 - Define new queries or commands.
 - Redefine inherited queries or commands.
- Consequently:
 - When being used as context objects, instances of a class' descendant classes have a wider range of expected usages (i.e., attributes, commands, queries).
 - When expecting an object of a particular class, we may *substitute* it with an object of any of its *descendant classes*.
 - e.g., When expecting a STUDENT object, substitute it with either a RESIDENT_STUDENT or a NON_RESIDENT_STUDENT object.
- Justification: A descendant class contains at least as many features as defined in its ancestor classes (but not vice versa!).

Substitutions via Assignments

- By declaring v1:C1, reference variable v1 will store the address of an object of class C1 at runtime.
- By declaring v2:C2, reference variable v2 will store the address of an object of class C2 at runtime.
- Assignment v1:=v2 copies the address stored in v2 into v1.
 - v1 will instead point to wherever v2 is pointing to.
 object alias

- In such assignment v1:=v2, we say that we substitute an object of type C1 with an object of type C2.
- Substitutions are subject to rules!

R1 of 60

LASSONDE

Rules of Substitution

Given an inheritance hierarchy:

- **1.** When expecting an object of class A, it is *safe* to *substitute* it with an object of any *descendant class* of A (including A).
 - o e.g., When expecting an IOS phone, you can substitute it with either an IPHONE_XS_MAX or IPHONE_11_PRO.
 - : Each descendant class of A is guaranteed to contain all code of (non-private) attributes, commands, and gueries defined in A.
 - : All features defined in A are *quaranteed to be available* in the new substitute.
- **2.** When expecting an object of class A, it is *unsafe* to *substitute* it with an object of any ancestor class of A's parent.
 - e.g., When expecting an IOS phone, you cannot substitute it with just a SMART_PHONE, because the facetime feature is not supported in an ANDROID phone.
 - : Class A may have defined new features that do not exist in any of its parent's ancestor classes

32 of 60

Reference Variable: Static Type

- A reference variable's **static type** is what we declare it to be.
 - e.g., jim: STUDENT declares jim's static type as STUDENT.
 - e.g., my_phone:SMART_PHONE declares a variable my_phone of static type SmartPhone.
 - The **static type** of a reference variable **never changes**.
- For a reference variable v, its **static type** C defines the expected usages of v as a context object.
- A feature call $\vee .m (...)$ is *compilable* if *m* is defined in |C|
 - e.g., After declaring jim: STUDENT, we
 - may call register and tuition on jim
 - may not call set_pr (specific to a resident student) or set_dr (specific to a non-resident student) on jim
 - e.g., After declaring my_phone: SMART_PHONE, we
 - may call dial and surf_web on my_phone
 - may not call facetime (specific to an IOS phone) or skype (specific to an Android phone) on my_phone

33 of 60

Reference Variable: Dynamic Type

A reference variable's **dynamic type** is the type of object that it is currently pointing to at runtime.

- The *dynamic type* of a reference variable *may change* whenever we *re-assign* that variable to a different object.
- There are two ways to re-assigning a reference variable.

34 of 60

Re-assigning a reference variable to a newly-created object:

- Substitution Principle: the new object's class must be a descendant class of the reference variable's static type.
- e.g., Given the declaration | jim: STUDENT |
 - create { RESIDENT_STUDENT } jim.make("Jim") changes the dynamic type of jim to RESIDENT_STUDENT.
 - create { NON_RESIDENT_STUDENT } jim.make("Jim") changes the dynamic type of jim to NON_RESIDENT_STUDENT.
- e.g., Given an alternative declaration | jim: RESIDENT_STUDENT
 - e.g., create { STUDENT } jim.make("Jim") | is illegal because STUDENT is not a descendant class of the static type of jim (i.e., RESIDENT_STUDENT).

Reference Variable: Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is referenced by another variable other (i.e., v := other):

- Substitution Principle: the static type of other must be a descendant class of v's static type.
- ∘ e.g.,

```
jim: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_RESIDENT_STUDENT
create {STUDENT} jim.make (...)
create {RESIDENT_STUDENT} rs.make (...)
create {NON_RESIDENT_STUDENT} nrs.make (...)
```

```
• rs := jim
• nrs := jim
• jim := rs
  changes the dynamic type of jim to the dynamic type of rs
• jim := nrs
  changes the dynamic type of jim to the dynamic type of nrs
```

36 of 60

Polymorphism and Dynamic Binding (1)

- Polymorphism: An object variable may have "multiple possible shapes" (i.e., allowable dynamic types).
 - Consequently, there are multiple possible versions of each feature that may be called.
 - e.g., 3 possibilities of tuition on a STUDENT reference variable: In **STUDENT**: base amount In **RESIDENT_STUDENT**: base amount with premium_rate In NON_RESIDENT_STUDENT: base amount with discount_rate
- Dynamic binding: When a feature m is called on an object variable, the version of m corresponding to its "current shape" (i.e., one defined in the **dynamic type** of m) will be called.

```
jim: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_STUDENT
  create {RESIDENT_STUDENT} rs.make (...)
  create {NON_RESIDENT_STUDENT} nrs.nrs (...)
  jim := rs
  jim.tuitoion; /* version in RESIDENT_STUDENT */
  jim := nrs
  iim.tuition: /* version in NON_RESIDENT_STUDENT */
37 of 60
```

Polymorphism and Dynamic Binding (2.1)


```
test_polymorphism_students
     local
3
       jim: STUDENT
       rs: RESIDENT_STUDENT
       nrs: NON RESIDENT STUDENT
6
7
       create {STUDENT} jim.make ("J. Davis")
8
       create {RESIDENT_STUDENT} rs.make ("J. Davis")
9
       create {NON_RESIDENT_STUDENT} nrs.make ("J. Davis")
10
11
       rs := jim ×
12
       jim := nrs ✓
13
       rs := jim ×
```

In (L3, L7), (L4, L8), (L5, L9), ST = DT, so we may abbreviate:

```
L7: create jim.make ("J. Davis")
  L8: create rs.make ("J. Davis")
  L9: create nrs.make ("J. Davis")
38 of 60
```

Polymorphism and Dynamic Binding (2.2)


```
test_dynamic_binding_students: BOOLEAN
local
  jim: STUDENT
  rs: RESIDENT STUDENT
  nrs: NON_RESIDENT_STUDENT
  c: COURSE
  create c.make ("EECS3311", 500.0)
  create {STUDENT} jim.make ("J. Davis")
  create {RESIDENT_STUDENT} rs.make ("J. Davis")
  rs.register (c)
  rs.set_pr (1.5)
   jim := rs
  Result := jim.tuition = 750.0
  check Result end
  create {NON_RESIDENT_STUDENT} nrs.make ("J. Davis")
  nrs.register (c)
  nrs.set_dr (0.5)
   jim := nrs
  Result := jim.tuition = 250.0
```


Reference Type Casting: Motivation

```
1 local jim: STUDENT; rs: RESIDENT_STUDENT
2 do create {RESIDENT_STUDENT} jim.make ("J. Davis")
3     rs := jim
4     rs.setPremiumRate(1.5)
```

- Line 2 is *legal*: RESIDENT_STUDENT is a *descendant class* of the static type of jim (i.e., STUDENT).
- Line 3 is illegal: jim's static type (i.e., STUDENT) is not a
 descendant class of rs's static type (i.e., RESIDENT_STUDENT).
- Eiffel compiler is *unable to infer* that jim's *dynamic type* in

Line 4 is **RESIDENT_STUDENT**.

[Undecidable]

Force the Eiffel compiler to believe so, by replacing L3, L4 by a
 type cast (which temporarily changes the ST of jim):

```
check attached {RESIDENT_STUDENT} jim as rs_jim then
  rs := rs_jim
  rs.set_pr (1.5)
end
```

40 of 60

2

LASSONDE

Reference Type Casting: Syntax

check attached {RESIDENT_STUDENT} jim as rs_jim then

end

 $rs := rs_jim$

rs.set_pr (1.5)

- **L1** is an assertion:

 attached *RESIDENT_STUDENT* jim is a Boolean expression that is to be evaluated at *runtime*.
 - If it evaluates to *true*, then the as rs_jim expression has the effect
 of assigning "the cast version" of jim to a new variable rs_jim.
 - If it evaluates to *false*, then a runtime assertion violation occurs.
- Dynamic Binding: Line 4 executes the correct version of set_pr.
- It is approximately the same as following Java code:

```
if(jim instanceof ResidentStudent) {
   ResidentStudent rs = (ResidentStudent) jim;
   rs.set_pr(1.5);
}
else { throw new Exception("Cast Not Done."); }
```

Notes on Type Cast (1)

- check attached {C} y then ... end always compiles
- What if C is not an ancestor of y's DT?
 - ⇒ A *runtime* assertion violation occurs!
 - y's **DT** cannot fulfill the expectation of C.

42 of 60

Notes on Type Cast (2)

- Given **v** of static type *ST*, it is *violation-free* to cast **v** to *C*, as long as *C* is a descendant or ancestor class of *ST*.
- Why Cast?
 - Without cast, we can only call features defined in ST on v.
 - By casting v to C, we create an alias of the object pointed by v, with the new static type C.
 - \Rightarrow All features that are defined in C can be called.

```
my_phone: IOS

create {IPHONE.11_PRO} my_phone.make

-- can only call features defined in IOS on myPhone

-- dial, surf_web, facetime ✓ quick_take, skype, side_sync, zoomage ×

check attached {SMART_PHONE} my_phone as sp then

-- can now call features defined in SMART_PHONE on sp

-- dial, surf_web ✓ facetime, quick_take, skype, side_sync, zoomage ×

end

check attached {IPHONE.11_PRO} my_phone as ipl1_pro then

-- can now call features defined in IPHONE_11_PRO on ipl1_pro

-- dial, surf_web, facetime, quick_take ✓ skype, side_sync, zoomage ×

end
```


A cast check attached $\{C\}$ v as ... triggers an assertion violation if C is **not** along the ancestor path of v's DT.

```
test_smart_phone_type_cast_violation
local mine: ANDROID
do create {HUAWEI} mine.make
-- ST of mine is ANDROID; DT of mine is HUAWEI
check attached {SMART.PHONE} mine as sp then ... end
-- ST of sp is SMART_PHONE; DT of sp is HUAWEI
check attached {HUAWEI} mine as huawei then ... end
-- ST of huawei is HUAWEI; DT of huawei is HUAWEI
check attached {SAMSUNG} mine as samsung then ... end
-- Assertion violation
-- ** SAMSUNG is not ancestor of mine's DT (HUAWEI)
check attached {HUAWEI.P30.PRO} mine as p30_pro then ... end
-- Assertion violation
-- ** HUAWEI.P30.PRO is not ancestor of mine's DT (HUAWEI)
end
```

44 of 60

Polymorphism: Routine Call Parameters


```
1 class STUDENT_MANAGEMENT_SYSTEM {
2 ss: ARRAY[STUDENT] -- ss[i] has static type Student
3 add_s (s: STUDENT) do ss[0] := s end
4 add_rs (rs: RESIDENT_STUDENT) do ss[0] := rs end
5 add_nrs (nrs: NON_RESIDENT_STUDENT) do ss[0] := nrs end
```

- L4: ss[0]:=rs is valid. : RHS's ST RESIDENT_STUDENT is a descendant class of LHS's ST STUDENT.
- Say we have a STUDENT_MANAGEMENT_SYSETM object sms:
 - o ∵ call by value , sms.add_rs(o) attempts the following
 assignment (i.e., replace parameter rs by a copy of argument o):
 rs := o
 - \circ Whether this argument passing is valid depends on \circ 's *static type*. **Rule**: In the signature of a feature m, if the type of a parameter is class $\mathbb C$, then we may call feature m by passing objects whose *static types* are $\mathbb C$'s *descendants*.

45 of 60

Polymorphism: Routine Call Arguments


```
test_polymorphism_feature_arguments
local
   s1, s2, s3: STUDENT
  rs: RESIDENT_STUDENT : nrs: NON_RESIDENT_STUDENT
  sms: STUDENT_MANAGEMENT_SYSTEM
  create sms.make
  create {STUDENT} s1.make ("s1")
  create {RESIDENT_STUDENT} s2.make ("s2")
  create {NON RESIDENT STUDENT} s3.make ("s3")
  create {RESIDENT_STUDENT} rs.make ("rs")
  create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
  sms.add\_s (s1) \sqrt{sms.add\_s} (s2) \sqrt{sms.add\_s} (s3) \sqrt{sms.add\_s}
   sms.add s (rs) √ sms.add s (nrs) √
   sms.add_rs (s1) \times sms.add_rs (s2) \times sms.add_rs (s3) \times
   sms.add_rs (rs) √ sms.add_rs (nrs) ×
  sms.add_nrs (s1) \times sms.add_nrs (s2) \times sms.add_nrs (s3) \times
   sms.add nrs (rs) × sms.add nrs (nrs) √
```

46 of 60

Why Inheritance: A Polymorphic Collection of Students

How do you define a class STUDENT_MANAGEMENT_SYSETM that contains a list of *resident* and *non-resident* students?

```
class STUDENT_MANAGEMENT_SYSETM
  students: LINKED_LIST[STUDENT]
  add_student(s: STUDENT)
  do
     students.extend (s)
  end
  registerAll (c: COURSE)
  do
     across
     students as s
  loop
     s.item.register (c)
  end
  end
end
```


Polymorphism and Dynamic Binding: A Polymorphic Collection of Students

```
test_sms_polymorphism: BOOLEAN
local
  rs: RESIDENT STUDENT
  nrs: NON_RESIDENT_STUDENT
  c: COURSE
  sms: STUDENT_MANAGEMENT_SYSTEM
  create rs.make ("Jim")
  rs.set\_pr (1.5)
  create nrs.make ("Jeremy")
  nrs.set dr (0.5)
  create sms.make
  sms.add_s (rs)
  sms.add_s (nrs)
  create c.make ("EECS3311", 500)
  sms.register_all (c)
  Result := sms.ss[1].tuition = 750 and sms.ss[2].tuition = 250
 end
```

48 of 60

Polymorphism: Return Values (1)


```
class STUDENT_MANAGEMENT_SYSTEM {
1
     ss: LINKED_LIST[STUDENT]
3
     add_s (s: STUDENT)
5
       ss.extend (s)
6
     get_student(i: INTEGER): STUDENT
8
      require 1 <= i and i <= ss.count
9
10
        Result := ss[i]
11
      end
12
   end
```

- L2: ST of each stored item (ss[i]) in the list: [STUDENT] • L3: ST of input parameter s: [STUDENT]
- L7: ST of return value (Result) of get_student: [STUDENT]
- L11: ss[i]'s ST is descendant of Result' ST.

Question: What can be the dynamic type of s after Line 11? **Answer:** All descendant classes of Student.

49 of 60

Polymorphism: Return Values (2)


```
test_sms_polymorphism: BOOLEAN
2
3
     rs: RESIDENT_STUDENT ; nrs: NON_RESIDENT_STUDENT
4
     c: COURSE ; sms: STUDENT_MANAGEMENT_SYSTEM
5
     create rs.make ("Jim") ; rs.set_pr (1.5)
     create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
     create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
     create c.make ("EECS3311", 500); sms.register_all (c)
10
    Result :=
11
          sms.get\_student(1).tuition = 750
12
      and sms.get_student(2).tuition = 250
13
   end
```

• L11: get_student (1) 's dynamic type?

RESIDENT_STUDENT

• L11: Version of tuition?

RESIDENT_STUDENT

• L12: get_student(2)'s dynamic type? [NON_RESIDENT_STUDENT]

• L12: Version of tuition?

NON_RESIDENT_STUDENT

50 of 60

Design Principle: Polymorphism

- When declaring an attribute a: T
 - ⇒ Choose *static type* T which "accumulates" all features that you predict you will want to call on a.
 - e.g., Choose s: STUDENT if you do not intend to be specific about which kind of student s might be.
 - ⇒ Let **dynamic binding** determine at runtime which version of tuition will be called.
- What if after declaring s: STUDENT you find yourself often needing to cast s to RESIDENT_STUDENT in order to access premium_rate?

```
check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(...) end
```

- ⇒ Your design decision should have been: s: RESIDENT_STUDENT
- Same design principle applies to:
 - Type of feature parameters:

Type of gueries:

f(a: T) $q(\ldots): T$

Static Type vs. Dynamic Type: When to consider which?

- Whether or not an OOP code compiles depends only on the static types of relevant variables.
 - : Inferring the *dynamic type* statically is an *undecidable* problem that is inherently impossible to solve.
- The behaviour of Eiffel code being executed at runtime

e.g., which version of the routine is called e.g., if a check attached {...} as ... then ... end assertion error will occur

depends on the *dynamic types* of relevant variables.

⇒ Best practice is to visualize how objects are created (by drawing boxes) and variables are re-assigned (by drawing arrows).

52 of 60

Summary: Type Checking Rules

CODE	CONDITION TO BE TYPE CORRECT
x := y	y's ST a descendant of x's ST
x.f(y)	Feature f defined in x's ST
X • 1 (y)	y's ST a descendant of f's parameter's ST
	Feature f defined in x's ST
z := x.f(y)	y's ST a descendant of f's parameter's ST
	ST of m's return value a descendant of z's ST
check attached {C} y	Always compiles
check attached {C} y as temp	C a descendant of x's ST
then x := temp end	
check attached {C} y as temp	Feature f defined in x's ST
then x.f(temp) end	C a descendant of f's parameter's ST

Even if check attached $\{C\}$ y then ... end always compiles,

a runtime assertion error occurs if C is not an ancestor of y's DT!

53 of 60

Beyond this lecture ...

Written Notes: Static Types, Dynamic Types, Type Casts

https://www.eecs.vorku.ca/~jackie/teaching/lectures/2020/F/ EECS3311/notes/EECS3311 F20 Notes Static Types Cast.pdf

Recommended Exercise 1:

Expand the student inheritance design (here) to reproduce the various fragments of polymorphism and dynamic binding.

• Recommended Exercise 2:

Create a new project (using eiffel-new) to reproduce the various fragments related to the running example of smart phones.

54 of 60

Index (1)

Learning Objectives

Aspects of Inheritance

Why Inheritance: A Motivating Example

The COURSE Class

No Inheritance: RESIDENT STUDENT Class

No Inheritance: NON RESIDENT STUDENT Class

No Inheritance: Testing Student Classes

No Inheritance:

Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

Index (2)

No Inheritance:

A Collection of Various Kinds of Students

Inheritance Architecture

Inheritance: The STUDENT Parent Class

Inheritance:

The RESIDENT STUDENT Child Class

Inheritance:

The NON RESIDENT STUDENT Child Class

Inheritance Architecture Revisited

Using Inheritance for Code Reuse

Testing the Two Student Sub-Classes

Static Type vs. Dynamic Type

56 of 60

Index (3)

Inheritance Architecture Revisited

Polymorphism: Intuition (1)

Polymorphism: Intuition (2)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2)

Multi-Level Inheritance Architecture (1)

Multi-Level Inheritance Architecture (2)

Inheritance Forms a Type Hierarchy

Inheritance Accumulates Code for Reuse

Substitutions via Assignments

57 of 60

Index (4)

Rules of Substitution

Reference Variable: Static Type

Reference Variable: Dynamic Type

Reference Variable:

Changing Dynamic Type (1)

Reference Variable:

Changing Dynamic Type (2)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.1)

Polymorphism and Dynamic Binding (2.2)

Reference Type Casting: Motivation

Reference Type Casting: Syntax

58 of 60

Index (5)

Notes on Type Cast (1)

Notes on Type Cast (2)

Notes on Type Cast (3)

Polymorphism: Routine Call Parameters

Polymorphism: Routine Call Arguments

Why Inheritance:

A Polymorphic Collection of Students

Polymorphism and Dynamic Binding:

A Polymorphic Collection of Students

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)

Design Principle: Polymorphism

Index (6)

Static Type vs. Dynamic Type:

When to consider which?

Summary: Type Checking Rules

Beyond this lecture ...

60 of 60

Generics

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. A general collection ARRAY [ANY]: storage vs. retrieval
- 2. A generic collection ARRAY [G]: storage vs. retrieval
- 3. Generics vs. Inheritance

2 of 18

Motivating Example: A Book of Any Objects LASSONDE


```
class BOOK
names: ARRAY[STRING]
records: ARRAY[ANY]
-- Create an empty book
make do ... end
-- Add a name-record pair to the book
add (name: STRING; record: ANY) do ... end
-- Return the record associated with a given name
get (name: STRING): ANY do ... end
end
```

Question: Which line has a type error?

```
birthday: DATE; phone_number: STRING
b: BOOK; is_wednesday: BOOLEAN
create {BOOK} b.make
phone_number := "416-677-1010"
b.add ("SuYeon", phone_number)
create {DATE} birthday.make(1975, 4, 10)
b.add ("Yuna", birthday)
is_wednesday := b.get("Yuna").get_day_of_week = 4
```

18 to 1

Motivating Example: Observations (1)

- In the BOOK class:
 - In the attribute declaration

records: ARRAY[ANY]

- ANY is the most general type of records.
- Each book instance may store any object whose static type is a
 descendant class of ANY.
- Accordingly, from the return type of the get feature, we only know
 that the returned record has the static type ANY, but not certain
 about its dynamic type (e.g., DATE, STRING, etc.).
 - \therefore a record retrieved from the book, e.g., b.get ("Yuna"), may only be called upon features defined in its *static type* (i.e., *ANY*).
- In the tester code of the BOOK class:
 - In Line 1, the static types of variables birthday (i.e., DATE) and phone_number (i.e., STRING) are descendant classes of ANY.
 ∴ Line 5 and Line 7 compile.

4 of 18

5 of 18

Motivating Example: Observations (2)

Due to *polymorphism*, in a collection, the *dynamic types* of stored objects (e.g., phone_number and birthday) need not be the same.

- Features specific to the dynamic types (e.g., get_day_of_week
 of class Date) may be new features that are not inherited from
 ANY.
- This is why Line 8 would fail to compile, and may be fixed using an explicit <u>cast</u>:

check attached {DATE} b.get("Yuna") as yuna_bday then
is_wednesday := yuna_bday.get_day_of_week = 4
end

• But what if the dynamic type of the returned object is not a DATE?

check attached {DATE} b.get("SuYeon") as suyeon_bday then
is_wednesday := suyeon_bday.get_day_of_week = 4
end

⇒ An assertion violation at runtime!

Motivating Example: Observations (2.1)

- It seems that a combination of attached check (similar to an instance of check in Java) and type cast can work.
- Can you see any potential problem(s)?
- Hints:
 - Extensibility and Maintainability
 - What happens when you have a large number of records of distinct dynamic types stored in the book

```
(e.g., DATE, STRING, PERSON, ACCOUNT, ARRAY_CONTAINER, DICTIONARY, etc.)? [ all classes are descendants of ANY ]
```

6 of 18

Motivating Example: Observations (2.2)

Say a client stores 100 distinct record objects into the book.

```
rec1: C1
... -- declarations of rec2 to rec99
rec100: C100
create {C1} rec1.make(...) ; b.add(..., rec1)
... -- additions of rec2 to rec99
create {C100} rec100.make(...) ; b.add(..., rec100)
```

where *static types* C1 to C100 are *descendant classes* of ANY.

• *Every time* you retrieve a record from the book, you need to check "exhaustively" on its *dynamic type* before calling some feature(s).

```
-- assumption: 'f1' specific to C1, 'f2' specific to C2, etc.

if attached {C1} b.get("Jim") as c1 then

c1.f1
... -- cases for C2 to C99

elseif attached {C100} b.get("Jim") as c100 then

c100.f100
end
```

• Writing out this list multiple times is tedious and error-prone!

Motivating Example: Observations (3)

We need a solution that:

- Eliminates runtime assertion violations due to wrong casts
- Saves us from explicit attached checks and type casts

As a sketch, this is how the solution looks like:

- When the user declares a BOOK object b, they must commit to the kind of record that b stores at runtime.
 e.g., b stores either DATE objects (and its descendants) only or String objects (and its descendants) only, but not a mix.
- When attempting to store a new record object rec into b, if rec's static type is not a descendant class of the type of book that the user previously commits to, then:
 - It is considered as a *compilation error*
 - Rather than triggering a runtime assertion violation
- When attempting to retrieve a record object from b, there is no longer a need to check and cast.

: Static types of all records in b are guaranteed to be the same.

Parameters

- In mathematics:
 - The same *function* is applied with different *argument values*. e.g., 2 + 3, 1 + 1, 10 + 101, *etc*.
 - We *generalize* these instance applications into a definition. e.g., $+: (\mathbb{Z} \times \mathbb{Z}) \to \mathbb{Z}$ is a function that takes two integer *parameters* and returns an integer.
- In object-oriented programming:
 - We want to call a feature, with different argument values, to achieve a similar goal.
 - e.g., acc.deposit(100), acc.deposit(23), etc.
 - We *generalize* these possible feature calls into a definition.

 e.g., In class ACCOUNT, a feature deposit (amount: REAL) takes a real-valued *parameter*.
- When you design a mathematical function or a class feature, always consider the list of parameters, each of which representing a set of possible argument values.

Generics: Design of a Generic Book


```
class BOOK[ G ]
  names: ARRAY[STRING]
  records: ARRAY[ G ]
  -- Create an empty book
  make do ... end
  /* Add a name-record pair to the book */
  add (name: STRING; record: G ) do ... end
  /* Return the record associated with a given name */
  get (name: STRING): G do ... end
end
```

Question: Which line has a type error?

```
birthday: DATE; phone_number: STRING
b: BOOK[DATE]; is_wednesday: BOOLEAN

create BOOK[DATE] b.make

phone_number = "416-67-1010"
b.add ("SuYeon", phone_number)
create {DATE} birthday.make (1975, 4, 10)
b.add ("Yuna", birthday)

is_wednesday := b.get("Yuna").get_day_of_week == 4
```

Generics: Observations

- In class BOOK:
 - At the class level, we parameterize the type of records:

```
class BOOK[G]
```

- Every occurrence of ANY is replaced by E.
- \bullet As far as a client of BOOK is concerned, they must instantiate ${\tt G.}$
 - ⇒ This particular instance of book must consistently store items of that instantiating type.
- As soon as E instantiated to some known type (e.g., DATE, STRING), every occurrence of E will be replaced by that type.
- For example, in the tester code of BOOK:
 - In Line 2, we commit that the book b will store DATE objects only.
 - Line 5 fails to compile. [:: STRING not descendant of DATE]
 - Line 7 still compiles.
 「∴ DATE is descendant of itself]
 - Line 8 does not need any attached check and type cast, and does not cause any runtime assertion violation.
 - : All attempts to store non-DATE objects are caught at *compile time*.

Bad Example of using Generics

Has the following client made an appropriate choice?

book: BOOK[ANY]

NO

- It allows **all** kinds of objects to be stored.
 - : All classes are descendants of ANY.
- We can expect **very little** from an object retrieved from this book.
 - .. The static type of book's items are ANY, root of the class hierarchy, has the *minimum* amount of features available for use.
 - : Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

12 of 18

Instantiating Generic Parameters

• Say the supplier provides a generic DICTIONARY class:

```
class DICTIONARY[V, K] -- V type of values; K type of keys
 add entry (v: V; k: K) do ... end
 remove_entry (k: K) do ... end
end
```

• Clients use DICTIONARY with different degrees of instantiations:

```
class DATABASE TABLE[K, V]
 imp: DICTIONARY[V, K]
e.g., Declaring DATABSE_TABLE[INTEGER, STRING] instantiates
DICTIONARY[STRING, INTEGER]
class STUDENT_BOOK[V]
 imp: DICTIONARY[V, STRING]
                                            instantiates
```

e.g., Declaring | STUDENT_BOOK[ARRAY[COURSE]]

DICTIONARY[ARRAY[COURSE], STRING] 13 of 18

Generics vs. Inheritance (1)

Generics vs. Inheritance (2)

Beyond this lecture ...

• Study the "Generic Parameters and the Iterator Pattern" Tutorial Videos.

6 of 18

Index (1)

Learning Objectives

Motivating Example: A Book of Any Objects

Motivating Example: Observations (1)

Motivating Example: Observations (2)

Motivating Example: Observations (2.1)

Motivating Example: Observations (2.2)

Motivating Example: Observations (3)

Parameters

Generics: Design of a Generic Book

Generics: Observations

Bad Example of using Generics

17 of 18

Index (2)

Instantiating Generic Parameters

Generics vs. Inheritance (1)

Generics vs. Inheritance (2)

Beyond this lecture ...

18 of 18

The State Design Pattern

Readings: OOSC2 Chapter 20

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. Motivating Problem: Interactive Systems

2. First Design Attempt: Assembly Style

3. Second Design Attempt: Hierarchical, Procedural Sylte

4. Template & State Design Patterns: OO, Polymorphic

2 of 31

Motivating Problem

Consider the reservation panel of an online booking system:

Enquiry on	Flights	-
	1_	
Flight sought from: Toronto	To:	Zurich
Departure on or after: 23 June	C	n or before: 24 June
Preferred airline (s):		
Special requirements:		
AVAILABLE FLIGHTS: 1		
Flt#AA 42 Dep 8:25 A	rr 7:45	Thru: Chicago
Choose next action:		
0 – Exit		
1 – Help		
2 – Further enquiry		
3 – Reserve a seat		

State Transition Diagram

Characterize *interactive system* as: 1) A set of *states*; and 2) For each state, its list of *applicable transitions* (i.e., actions). e.g., Above reservation system as a *finite state machine*:

Design Challenges

- 1. The state-transition graph may *large* and *sophisticated*.
 - A large number N of states has $O(N^2)$ transitions
- **2.** The graph structure is subject to *extensions/modifications*.
 - e.g., To merge "(2) Flight Enquiry" and "(3) Seat Enquiry":

Delete the state "(3) Seat Enquiry".

Delete its 4 incoming/outgoing transitions.

- e.g., Add a new state "Dietary Requirements"
- **3.** A *general solution* is needed for such *interactive systems*. e.g., taobao, eBay, amazon, etc.

A First Attempt


```
1.Initial_panel:
-- Actions for Label 1.
2.Flight_Enquiry_panel:
-- Actions for Label 2.
3_Seat_Enquiry_panel:
-- Actions for Label 3.
4_Reservation_panel:
-- Actions for Label 4.
5_Confirmation_panel:
-- Actions for Label 5.
6_Final_panel:
-- Actions for Label 6.
```

```
from
Display Seat Enquiry Panel
until
not (wrong answer or wrong choice)
do
Read user's answer for current panel
Read user's choice C for next step
if wrong answer or wrong choice then
Output error messages
end
end
Process user's answer
case C in
2: goto 2.Flight_Enquiry_panel
3: goto 4.Reservation_panel
end
```

6 of 31

A First Attempt: Good Design?

- Runtime execution ≈ a "bowl of spaghetti".
 - ⇒ The system's behaviour is hard to predict, trace, and debug.
- Transitions hardwired as system's central control structure.
 - ⇒ The system is vulnerable to changes/additions of states/transitions.
- All labelled blocks are largely similar in their code structures.
 - ⇒ This design "smells" due to duplicates/repetitions!
- The branching structure of the design exactly corresponds to that of the specific *transition graph*.
 - ⇒ The design is *application-specific* and *not reusable* for other interactive systems.

A Top-Down, Hierarchical Solution

• Separation of Concern Declare the transition table as a feature the system, rather than its central control structure:

```
transition (src: INTEGER; choice: INTEGER): INTEGER
    -- Return state by taking transition 'choice' from 'src' state
require valid_source_state: 1 ≤ src ≤ 6
    valid_choice: 1 ≤ choice ≤ 3
ensure valid_target_state: 1 ≤ Result ≤ 6
```

• We may implement transition via a 2-D array.

SRC STATE	1	2	3
1 (Initial)	6	5	2
2 (Flight Enquiry)	-	1	3
3 (Seat Enquiry)	-	2	4
4 (Reservation)	-	3	5
5 (Confirmation)	-	4	1
6 (Final)	-	_	_

R of 31

9 of 31

Hierarchical Solution: Good Design?

- This is a more general solution.
 - :: State transitions are separated from the system's central control structure.
 - ⇒ Reusable for another interactive system by making changes only to the transition feature.
- How does the *central control structure* look like in this design?

Hierarchical Solution: Top-Down Functional Decomposition

Hierarchical Solution: System Control

All interactive sessions **share** the following *control pattern*:

- Start with some initial state.
- Repeatedly make *state transitions* (based on *choices* read from the user) until the state is *final* (i.e., the user wants to exit).

```
execute_session
    -- Execute a full interactive session.
local
    current_state, choice: INTEGER

do
    from
        current_state := initial
    until
        is_final (current_state)
    do
        choice := execute_state (current_state)
        current_state := transition (current_state, choice)
    end
end
```

11 of 31

Hierarchical Solution: State Handling (1)

The following *control pattern* handles **all** states:

```
execute_state ( current_state : INTEGER) : INTEGER
   -- Handle interaction at the current state.
   -- Return user's exit choice.
   answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER
  from
   until
    valid answer
    display( current_state )
    answer := read_answer( current_state
    choice := read_choice( current_state )
    valid_answer := correct( current_state , answer)
    if not valid_answer then message( current_state , answer)
  process( current_state , answer)
  Result := choice
 end
12 of 31
```

Hierarchical Solution: State Handling (2)

FEATURE CALL	Functionality
display(s)	Display screen outputs associated with state s
read_answer(s)	Read user's input for answers associated with state s
read_choice(s)	Read user's input for exit choice associated with state s
correct(s, answer)	Is the user's answer valid w.r.t. state s?
process(s, answer)	Given that user's <i>answer</i> is valid w.r.t. state s,
	process it accordingly.
message(s, answer)	Given that user's answer is not valid w.r.t. state s,
	display an error message accordingly.

Q: How similar are the code structures of the above state-dependant commands or queries?

Hierarchical Solution: State Handling (3)

A: Actions of all such state-dependant features must **explicitly discriminate** on the input state argument.

- Such design smells!
 - : Same list of conditional repeats for all state-dependant features.
- Such design violates the Single Choice Principle.

e.g., To add/delete a state \Rightarrow Add/delete a branch in all such features.

Hierarchical Solution: Visible Architecture

15 of 31

Hierarchical Solution: Pervasive States

Too much data transmission: current_state is passed

- From execute_session (Level 3) to execute_state (Level 2)
- From execute_state (Level 2) to all features at Level 1

16 of 31

Law of Inversion

If your routines exchange too many data, then put your routines in your data.
e.g.,

execute_state (Level 2) and all features at Level 1:

- Pass around (as inputs) the notion of current_state
- Build upon (via discriminations) the notion of current_state

```
execute_state (s: INTEGER)
display (s: INTEGER)
read_answer (s: INTEGER)
read_choice (s: INTEGER)
correct (s: INTEGER; answer: ANSWER)
process (s: INTEGER; answer: ANSWER)
message (s: INTEGER; answer: ANSWER)
```

- → Modularize the notion of state as class STATE.
- ⇒ Encapsulate state-related information via a STATE interface.
- ⇒ Notion of *current_state* becomes *implicit*: the Current class.

Grouping by Data Abstractions

Architecture of the State Pattern

The STATE ADT


```
deferred class STATE
 read
   -- Read user's inputs
  -- Set 'answer' and 'choice'
  deferred end
 answer: ANSWER
   -- Answer for current state
 choice: INTEGER
  -- Choice for next step
 display
   -- Display current state
  deferred end
 correct: BOOLEAN
  deferred end
 process
  require correct
  deferred end
  require not correct
  deferred end
```

```
execute
  local
    good: BOOLEAN
  do
    from
    until
      good
    loop
      display
      -- set answer and choice
      read
      good := correct
      if not good then
       message
      end
    end
    process
 end
end
```

20 of 31

The Template Design Pattern

Consider the following fragment of Eiffel code:

```
1 s: STATE
2 create {SEAT_ENQUIRY} s.make
3 s.execute
4 create {CONFIRMATION} s.make
5 s.execute
```

L2 and **L4**: the same version of <u>effective</u> feature execute (from the <u>deferred</u> class *STATE*) is called. [template

L2: specific version of effective features display, process, etc., (from the effective descendant class SEAT_ENQUIRY) is called.

[template instantiated for SEAT_ENQUIRY]

L4: specific version of effective features display, process, etc., (from the effective descendant class CONFIRMATION) is called.

[template instantiated for CONFIRMATION]

APPLICATION Class: Array of STATE

22 of 31

APPLICATION Class (1)


```
class APPLICATION create make
feature {TEST_APPLICATION} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
  -- State transitions: transition[state, choice]
 states: ARRAY[STATE]
  -- State for each index, constrained by size of 'transition'
feature
initial: INTEGER
 number of states: INTEGER
 number_of_choices: INTEGER
 make(n, m: INTEGER)
  do number_of_states := n
     number of choices := m
     create transition.make_filled(0, n, m)
     create states.make empty
  end
 transition.height = number_of_states
 transition.width = number_of_choices
end
```

23 of 31

APPLICATION Class (2)


```
class APPLICATION
feature {TEST_APPLICATION} -- Implementation of Transition Graph
 transition: ARRAY2[INTEGER]
 states: ARRAY [STATE]
feature
 put_state(s: STATE; index: INTEGER)
  require 1 \le index \le number of states
  do states.force(s, index) end
 choose initial(index: INTEGER)
  require 1 ≤ index ≤ number_of_states
   do initial := index end
 put_transition(tar, src, choice: INTEGER)
  require
    1 \leq src \leq number_of_states
    1 \le tar \le number of states
    1 ≤ choice ≤ number_of_choices
    transition.put(tar, src, choice)
   end
end
```

24 of 31

Example Test: Non-Interactive Session


```
test_application: BOOLEAN
 local
  app: APPLICATION ; current_state: STATE ; index: INTEGER
  create app.make (6, 3)
  app.put_state (create {INITIAL}.make, 1)
  -- Similarly for other 5 states.
  app.choose_initial (1)
  -- Transit to FINAL given current state INITIAL and choice 1.
  app.put_transition (6, 1, 1)
   -- Similarly for other 10 transitions.
  index := app.initial
  current_state := app.states [index]
  Result := attached {INITIAL} current_state
  check Result end
  -- Say user's choice is 3: transit from INITIAL to FLIGHT_STATUS
  index := app.transition.item (index, 3)
  current_state := app.states [index]
  Result := attached {FLIGHT_ENQUIRY} current_state
25 of 31
```


APPLICATION Class (3): Interactive Session LASSONDE

```
class APPLICATION
feature {TEST APPLICATION} -- Implementation of Transition Graph
 transition: ARRAY2[INTEGER]
 states: ARRAY [STATE]
feature
 execute_session
  local
    current_state: STATE
    index: INTEGER
   do
    from
     index := initial
    until
     is final (index)
      current_state := states[index] -- polymorphism
      current_state.execute -- dynamic binding
      index := transition.item (index, current_state.choice)
    end
   end
end
26 of 31
```

Building an Application

Create instances of STATE.

```
s1: STATE
create {INITIAL} s1.make
```

Initialize an APPLICATION.

```
create app.make(number_of_states, number_of_choices)
```

• Perform polymorphic assignments on app.states.

```
app.put_state(create {INITIAL}.make, 4)
```

Choose an initial state.

```
app.choose_initial(1)
```

Build the transition table.

```
app.put_transition(6, 1, 1)
```

Run the application.

```
app.execute_session
```

Top-Down, Hierarchical vs. OO Solutions

- In the second (top-down, hierarchy) solution, it is required for every state-related feature to explicitly and manually discriminate on the argument value, via a a list of conditionals.
 - e.g., Given display(current_state: INTEGER), the calls display(1) and display(2) behave differently.
- The third (OO) solution, called the State Pattern, makes such conditional *implicit* and *automatic*, by making STATE as a deferred class (whose descendants represent all types of states), and by delegating such conditional actions to *dynamic binding*.

e.g., Given s: state, behaviour of the call s.display depends on the *dynamic type* of s (such as INITIAL vs. FLIGHT_ENQUIRY).

28 of 31

Index (1)

Learning Objectives

Motivating Problem

State Transition Diagram

Design Challenges

A First Attempt

A First Attempt: Good Design?

A Top-Down, Hierarchical Solution

Hierarchical Solution: Good Design?

Hierarchical Solution:

Top-Down Functional Decomposition

Hierarchical Solution: System Control

Index (2)

Hierarchical Solution: State Handling (1)

Hierarchical Solution: State Handling (2)

Hierarchical Solution: State Handling (3)

Hierarchical Solution: Visible Architecture

Hierarchical Solution: Pervasive States

Law of Inversion

Grouping by Data Abstractions

Architecture of the State Pattern

The STATE ADT

The Template Design Pattern

APPLICATION Class: Array of STATE

30 of 31

Index (3)

APPLICATION Class (1)

APPLICATION Class (2)

Example Test: Non-Interactive Session

APPLICATION Class (3): Interactive Session

Building an Application

Top-Down, Hierarchical vs. OO Solutions

Observer Design Pattern Event-Driven Design

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

- 1. Motivating Problem: Distributed Clients and Servers
- 2. First Design Attempt: Remote Procedure Calls
- 3. Second Design Attempt: Observer Design Pattern
- **4.** Third Design Attempt: **Event-Driven Design** (Java vs. Eiffel)
- 5. Use of agent

[\approx C function pointers \approx C# delegates \approx Java lambda]

SLOT31 2013

Motivating Problem

- A weather station maintains weather data such as temperature, humidity, and pressure.
- Various kinds of applications on these *weather data* should regularly update their *displays*:
 - Forecast: if expecting for rainy weather due to reduced pressure.
 - Condition: temperature in celsius and humidity in percentages.
 - Statistics: minimum/maximum/average measures of temperature.

3 of 37

First Design: Weather Station

Whenever the display feature is called, retrieve the current values of temperature, humidity, and/or pressure via the weather_data reference.

4 of 37

Implementing the First Design (1)


```
class WEATHER_DATA create make
feature -- Data
 temperature: REAL
 humidity: REAL
 pressure: REAL
feature -- Oueries
 correct_limits(t,p,h: REAL): BOOLEAN
    Result implies -36 \le t and t \le 60
    Result implies 50 \le p and p \le 110
    Result implies 0.8 \le h and h \le 100
feature -- Commands
 make (t, p, h: REAL)
  require
     correct_limits(t, p, h)
    temperature = t and pressure = p and humidity = h
invariant
  correct_limits(temperature, pressure, humidity)
end
```

5 of 37

Implementing the First Design (2.1)


```
class FORECAST create make
feature -- Attributes
 current_pressure: REAL
 last_pressure: REAL
 weather_data: WEATHER_DATA
feature -- Commands
 make(wd: WEATHER_DATA)
  ensure weather_data = wd
 update
  do last_pressure := current_pressure
     current_pressure := weather_data.pressure
  end
 display
  do update
     if current_pressure > last_pressure then
       print("Improving weather on the way!%N")
     elseif current_pressure = last_pressure then
       print("More of the same%N")
     else print ("Watch out for cooler, rainy weather%N") end
  end
end
6 of 37
```


Implementing the First Design (2.2)

```
class CURRENT CONDITIONS create make
feature -- Attributes
 temperature: REAL
 humidity: REAL
 weather data: WEATHER DATA
feature -- Commands
 make(wd: WEATHER_DATA)
  ensure weather_data = wd
  do temperature := weather_data.temperature
     humidity := weather_data.humidity
 display
     io.put_string("Current Conditions: ")
     io.put_real (temperature) ; io.put_string (" degrees C and ")
     io.put_real (humidity); io.put_string (" percent humidity%N"
  end
end
```

7 of 37

Implementing the First Design (2.3)


```
class STATISTICS create make
feature -- Attributes
 weather_data: WEATHER_DATA
 current temp: REAL
 max, min, sum_so_far: REAL
num_readings: INTEGER
feature -- Commands
make (wd: WEATHER DATA)
  ensure weather_data = wd
  do current_temp := weather_data.temperature
     -- Update min, max if necessary.
  end
 display
  do update
     print("Avg/Max/Min temperature = ")
     print(sum so far / num readings + "/" + max + "/" min + "%N")
  end
end
```

R of 37

Implementing the First Design (3)


```
class WEATHER_STATION create make
   feature -- Attributes
3
     cc: CURRENT CONDITIONS ; fd: FORECAST ; sd: STATISTICS
     wd: WEATHER_DATA
   feature -- Commands
     make
      do create wd.make (9, 75, 25)
8
         create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd)
9
10
         wd.set_measurements (15, 60, 30.4)
11
         cc.display; fd.display; sd.display
12
         cc.display; fd.display; sd.display
13
14
         wd.set_measurements (11, 90, 20)
15
         cc.display; fd.display; sd.display
16
     end
17
   end
```

L14: Updates occur on cc, fd, sd even with the same data.

9 of 37

First Design: Good Design?

- Each application (CURRENT_CONDITION, FORECAST, STATISTICS) cannot know when the weather data change.
- \Rightarrow All applications have to periodically initiate updates in order to keep the <code>display</code> results up to date.
- : Each inquiry of current weather data values is a remote call.
- \therefore Waste of computing resources (e.g., network bandwidth) when there are actually no changes on the weather data.
- To avoid such overhead, it is better to let:
 - Each application is subscribed/attached/registered to the weather data.
 - The weather data *publish/notify* new changes.
 - ⇒ Updates on the application side occur only when necessary

Observer Pattern: Architecture

- Observer (publish-subscribe) pattern: one-to-many relation.
 - Observers (subscribers) are attached to a subject (publisher).
 - The subject notify its attached observers about changes.
- Some interchangeable vocabulary:
 - subscribe ≈ attach ≈ register
 - unsubscribe ≈ detach ≈ unregister
 - publish ≈ notify
 - handle ≈ update

11 of 37

Observer Pattern: Weather Station

14 of 37

Implementing the Observer Pattern (1.1)


```
class SUBJECT create make
feature -- Attributes
 observers : LIST[OBSERVER]
feature -- Commands
 make
  do create {LINKED LIST[OBSERVER]} observers.make
  ensure no_observers: observers.count = 0 end
feature -- Invoked by an OBSERVER
 attach (o: OBSERVER) -- Add 'o' to the observers
  require not_vet_attached: not observers.has (o)
  ensure is_attached: observers.has (o) end
 detach (o: OBSERVER) -- Add 'o' to the observers
  require currently_attached: observers.has (o)
  ensure is_attached: not observers.has (o) end
feature -- invoked by a SUBJECT
 notify -- Notify each attached observer about the update.
  do across observers as cursor loop cursor.item.update end
  ensure all_views_updated:
    across observers as o all o.item.up_to_date_with_subject end
  end
end
13 of 37
```

Implementing the Observer Pattern (1.2)


```
class WEATHER_DATA
inherit SUBJECT rename make as make_subject end
create make
feature -- data available to observers
 temperature: REAL
 humidity: REAL
 pressure: REAL
 correct_limits(t,p,h: REAL): BOOLEAN
feature -- Initialization
 make (t, p, h: REAL)
    make_subject -- initialize empty observers
    set_measurements (t, p, h)
feature -- Called by weather station
 set_measurements(t, p, h: REAL)
  require correct_limits(t,p,h)
invariant
 correct_limits(temperature, pressure, humidity)
end
```


Implementing the Observer Pattern (2.1)

Each effective descendant class of OBSERVER should:

- o Define what weather data are required to be up-to-date.
- Define how to update the required weather data.

15 of 37

Implementing the Observer Pattern (2.2)

```
class FORECAST
inherit OBSERVER
feature -- Commands
 make(a_weather_data: WEATHER_DATA)
  do weather_data := a_weather_data
      weather_data.attach (Current)
  ensure weather_data = a_weather_data
          weather_data.observers.has (Current)
   end
feature -- Oueries
 up_to_date_with_subject: BOOLEAN
  ensure then
    Result = current_pressure = weather_data.pressure
  do -- Same as 1st design; Called only on demand
  end
 display
  do -- No need to update; Display contents same as in 1st design
end
```

Implementing the Observer Pattern (2.3)


```
class CURRENT CONDITIONS
inherit OBSERVER
feature -- Commands
 make (a weather data: WEATHER DATA)
  do weather_data := a_weather_data
      weather_data.attach (Current)
  ensure weather_data = a_weather_data
          weather_data.observers.has (Current)
  end
feature -- Queries
 up_to_date_with_subject: BOOLEAN
  ensure then Result = temperature = weather_data.temperature and
                        humidity = weather_data.humidity
 update
  do -- Same as 1st design; Called only on demand
  end
 display
  do -- No need to update; Display contents same as in 1st design
  end
end
17 ot 37
```

Implementing the Observer Pattern (2.4)


```
class STATISTICS
inherit OBSERVER
feature -- Commands
 make(a_weather_data: WEATHER_DATA)
  do weather_data := a_weather_data
      weather_data.attach (Current)
  ensure weather_data = a_weather_data
          weather_data.observers.has (Current)
  end
feature -- Oueries
 up_to_date_with_subject: BOOLEAN
  ensure then
    Result = current_temperature = weather_data.temperature
  do -- Same as 1st design; Called only on demand
  end
 display
  do -- No need to update; Display contents same as in 1st design
end
18 of 37
```


Implementing the Observer Pattern (3)

```
class WEATHER_STATION create make
2
    feature -- Attributes
3
     cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS
     wd: WEATHER DATA
5
   feature -- Commands
6
     make
7
       do create wd.make (9, 75, 25)
8
          create cc.make (wd); create fd.make (wd); create sd.make(wd
9
10
          wd.set measurements (15, 60, 30.4)
11
          wd.notify
12
          cc.display; fd.display; sd.display
13
          cc.display; fd.display; sd.display
14
15
          wd.set_measurements (11, 90, 20)
16
          wd.notify
17
          cc.display; fd.display; sd.display
18
     end
19
    end
```

L13: cc, fd, sd make use of "cached" data values.

Observer Pattern: Limitation? (1)

- The *observer design pattern* is a reasonable solution to building a one-to-many relationship: one subject (publisher) and multiple observers (subscribers).
- But what if a *many-to-many* relationship is required for the application under development?
 - Multiple weather data are maintained by weather stations.
 - Each application observes all these weather data.
 - But, each application still stores the *latest* measure only. e.g., the statistics app stores one copy of temperature
 - Whenever some weather station updates the temperature of its associated weather data, all relevant subscribed applications (i.e., current conditions, statistics) should update their temperatures.
- How can the observer pattern solve this general problem?
 - Each weather data maintains a list of subscribed applications.
 - Each application is subscribed to multiple weather data.

Observer Pattern: Limitation? (2)

What happens at runtime when building a *many-to-many* relationship using the observer pattern?

Graph complexity, with m subjects and n observers? $[O(m \cdot n)]$

Event-Driven Design (1)

Here is what happens at runtime when building a *many-to-many* relationship using the event-driven design.

Additional cost by adding a new event type?

[O(m+n)]

Event-Driven Design (2)

In an *event-driven design*:

- Each variable being observed (e.g., temperature, humidity, pressure) is called a monitored variable.
 e.g., A nuclear power plant (i.e., the subject) has its temperature and pressure being monitored by a shutdown system (i.e., an observer): as soon as values of these monitored variables exceed the normal threshold, the SDS will be notified and react by shutting down the plant.
- Each *monitored variable* is declared as an *event*:
 - An observer is attached/subscribed to the relevant events.
 - CURRENT_CONDITION attached to events for temperature, humidity.
 - FORECAST only subscribed to the event for pressure.
 - STATISTICS only subscribed to the event for temperature.
 - A subject notifies/publishes changes to the relevant events.

23 of 37

Event-Driven Design: Implementation

- Requirements for implementing an event-driven design are:
- 1. When an *observer* object is *subscribed to* an *event*, it attaches:
 - **1.1** The **reference/pointer** to an update operation Such reference/pointer is used for delayed executions.
 - 1.2 Itself (i.e., the context object for invoking the update operation)
- 2. For the *subject* object to *publish* an update to the *event*, it:
 - **2.1** Iterates through all its observers (or listeners)
 - **2.2** Uses the operation reference/pointer (attached earlier) to update the corresponding observer.
- Both requirements can be satisfied by Eiffel and Java.
- We will compare how an *event-driven design* for the weather station problems is implemented in Eiffel and Java.
 - ⇒ It's much more convenient to do such design in Eiffel.

24 of 37

Event-Driven Design in Java (1)


```
public class Event {
     Hashtable < Object, MethodHandle > listenersActions;
     Event() { listenersActions = new Hashtable<>();
     void subscribe(Object listener, MethodHandle action) {
      listenersActions.put(listener, action);
6
     void publish(Object arg) {
8
      for (Object listener: listenersActions.keySet())
        MethodHandle action = listenersActions.get(listener);
10
11
          action .invokeWithArguments( listener , arg);
12
        } catch (Throwable e) { }
13
14
15
```

- L5: Both the delayed action reference and its context object (or call target) listener are stored into the table.
- L11: An invocation is made from retrieved listener and action.

25 of 37

Event-Driven Design in Java (2)


```
public class WeatherData {
     private double temperature;
     private double pressure;
     private double humidity;
     public WeatherData(double t, double p, double h)
      setMeasurements(t, h, p);
7
     public static Event changeOnTemperature = new Event();
     public static Event changeOnHumidity = new Event();
10
     public static Event changeOnPressure = new Event();
     public void setMeasurements(double t, double h, double p) {
11
12
      temperature = t;
13
      humidity = h;
14
      pressure = p;
15
       changeOnTemperature .publish(temperature);
16
       changeOnHumidity .publish(humidity);
17
       changeOnPressure .publish(pressure);
18
19
```


Event-Driven Design in Java (3)

```
public class CurrentConditions {
     private double temperature; private double humidity;
     public void updateTemperature(double t) { temperature = t; }
     public void updateHumidity(double h) { humidity = h; }
     public CurrentConditions() {
      MethodHandles.Lookup lookup = MethodHandles.lookup();
8
        MethodHandle ut = lookup.findVirtual(
9
         this.getClass(), "updateTemperature",
10
         MethodType.methodType(void.class, double.class));
11
        WeatherData.changeOnTemperature.subscribe(this, ut);
12
        MethodHandle uh = lookup.findVirtual(
13
         this.getClass(), "updateHumidity",
14
         MethodType.methodType(void.class, double.class));
15
        WeatherData.changeOnHumidity.subscribe(this, uh);
16
       } catch (Exception e) { e.printStackTrace(); }
17
18
     public void display() {
19
      System.out.println("Temperature: " + temperature);
       System.out.println("Humidity: " + humidity); } }
```

27 of 37

Event-Driven Design in Java (4)


```
public class WeatherStation {
     public static void main(String[] args) {
      WeatherData wd = new WeatherData(9, 75, 25);
       CurrentConditions cc = new CurrentConditions();
       System.out.println("======");
       wd.setMeasurements(15, 60, 30.4);
       cc.display();
      System.out.println("======");
       wd.setMeasurements(11, 90, 20);
10
      cc.display();
```

```
L4 invokes
     WeatherData.changeOnTemperature.subscribe(
            cc, ''updateTemperature handle'')
       WeatherData.changeOnTemperature.publish(15)
which in turn invokes
 ''updateTemperature handle''.invokeWithArguments(cc, 15)
```

Event-Driven Design in Eiffel (1)


```
class EVENT [ARGUMENT -> TUPLE ]
   create make
   feature -- Initialization
     actions: LINKED LIST[PROCEDURE[ARGUMENT]]
     make do create actions.make end
     subscribe (an_action: PROCEDURE[ARGUMENT])
      require action not already subscribed: not actions.has(an action
      do actions.extend (an_action)
10
      ensure action subscribed: action.has(an action) end
11
     publish (args: ARGUMENT)
12
      do from actions.start until actions.after
13
         loop actions.item.call (args); actions.forth end
14
   end
```

- L1 constrains the generic parameter ARGUMENT: any class that instantiates ARGUMENT must be a descendant of TUPLE.
- L4: The type PROCEDURE encapsulates both the context object and the reference/pointer to some update operation.

29 of 37

Event-Driven Design in Eiffel (2)


```
class WEATHER DATA
   create make
   feature -- Measurements
     temperature: REAL; humidity: REAL; pressure: REAL
     correct_limits(t,p,h: REAL): BOOLEAN do ... end
     make (t, p, h: REAL) do ... end
   feature -- Event for data changes
      change_on_temperature : EVENT[TUPLE[REAL]]once create Result end
     change_on_humidity : EVENT[TUPLE[REAL]]once create Result end
     change_on_pressure : EVENT[TUPLE[REAL]] once create Result end
   feature -- Command
11
12
     set_measurements(t, p, h: REAL)
13
      require correct limits(t,p,h)
14
      do temperature := t ; pressure := p ; humidity := h
15
         change_on_temperature .publish ([t])
16
         change_on_humidity .publish ([p])
17
         change_on_pressure .publish ([h])
   invariant correct_limits(temperature, pressure, humidity) end
```


Event-Driven Design in Eiffel (3)

```
class CURRENT CONDITIONS
2
    create make
3
    feature -- Initialization
     make(wd: WEATHER DATA)
5
6
        wd.change_on_temperature.subscribe (agent update temperature)
7
        wd.change_on_humidity.subscribe (agent update_humidity)
8
       end
9
    feature
10
     temperature: REAL
11
     humidity: REAL
     update_temperature (t: REAL) do temperature := t end
     update_humidity (h: REAL) do humidity := h end
13
     display do ... end
15
   end
```

- | agent cmd | retrieves the pointer to cmd and its context object.
- ... (agent *Current*.update_temperature)
- Contrast L6 with L8-11 in Java class CurrentConditions.

Event-Driven Design in Eiffel (4)


```
class WEATHER_STATION create make
2
    feature
3
     cc: CURRENT CONDITIONS
4
     make
5
      do create wd.make (9, 75, 25)
6
         create cc.make (wd)
          wd.set_measurements (15, 60, 30.4)
8
          cc.display
9
          wd.set_measurements (11, 90, 20)
10
          cc.display
11
       end
12
    end
```

L6 invokes

```
wd.change_on_temperature.subscribe(
               agent cc.update_temperature)
 L7 invokes
         wd.change_on_temperature.publish([15])
 which in turn invokes cc.update_temperature (15)
32 of 37
```

Event-Driven Design: Eiffel vs. Java

• Storing observers/listeners of an event

```
Java, in the Event class:
```

```
Hashtable < Object, MethodHandle > listenersActions;
```

Eiffel, in the EVENT class:

```
actions: LINKED_LIST[PROCEDURE[ARGUMENT]]
```

Creating and passing function pointers

Java, in the CurrentConditions class constructor:

```
MethodHandle ut = lookup.findVirtual(
 this.getClass(), "updateTemperature",
 MethodType.methodType(void.class, double.class));
WeatherData.changeOnTemperature.subscribe(this, ut);
```

• Eiffel, in the CURRENT_CONDITIONS class construction:

```
wd.change_on_temperature.subscribe (agent update_temperature)
```

⇒ Eiffel's type system has been better thought-out for *design*. 33 of 37

Beyond this lecture...

Play with the source code of with the various designs (with an IDE debugger):

```
non_observer.zip
```

observer.zip

JavaObserverEvent.zip

observer_event.zip

[1st Design Attempt] [Observer Design Pattern]

[Event-Driven Design in Java]

[Event-Driven Design in Eiffel]

Index (1)

Learning Objectives

Motivating Problem

First Design: Weather Station

Implementing the First Design (1)

Implementing the First Design (2.1)

Implementing the First Design (2.2)

Implementing the First Design (2.3)

Implementing the First Design (3)

First Design: Good Design?

Observer Pattern: Architecture

Observer Pattern: Weather Station

35 of 37

LASSONDE

Index (2)

Implementing the Observer Pattern (1.1)

Implementing the Observer Pattern (1.2)

Implementing the Observer Pattern (2.1)

Implementing the Observer Pattern (2.2)

Implementing the Observer Pattern (2.3)

Implementing the Observer Pattern (2.4)

Implementing the Observer Pattern (3)

Observer Pattern: Limitation? (1)

Observer Pattern: Limitation? (2)

Event-Driven Design (1)

Event-Driven Design (2)

36 of 37

Index (3)

Event-Driven Design: Implementation

Event-Driven Design in Java (1)

Event-Driven Design in Java (2)

Event-Driven Design in Java (3)

Event-Driven Design in Java (4)

Event-Driven Design in Eiffel (1)

Event-Driven Design in Eiffel (2)

Event-Driven Design in Eiffel (3)

Event-Driven Design in Eiffel (4)

Event-Driven Design: Eiffel vs. Java

Beyond this lecture...

37 of 37

Subcontracting

Readings: OOSCS2 Chapters 14 - 16

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Aspects of Inheritance

- Code Reuse
- Substitutability
 - Polymorphism and Dynamic Binding

[compile-time type checks]

Sub-contracting

[runtime behaviour checks]

2 of 18

Learning Objectives

- 1. Preconditions: require less vs. require more
- 2. Postconditions: ensure less vs. ensure more
- 3. Inheritance and Contracts: Static Analysis
- **4.** Inheritance and Contracts: *Runtime Checks*

Background of Logic (1)

Given preconditions P_1 and P_2 , we say that

 P_2 requires less than P_1 if

 P_2 is *less strict* on (thus *allowing more*) inputs than P_1 does.

$$\{ x \mid P_1(x) \} \subseteq \{ x \mid P_2(x) \}$$

More concisely:

$$P_1 \Rightarrow P_2$$

e.g., For command withdraw (amount: amount),

 P_2 : amount ≥ 0 requires less than P_1 : amount > 0

What is the precondition that requires the least? [true]

4 of 18

Background of Logic (2)

Given postconditions or invariants Q_1 and Q_2 , we say that

 Q_2 ensures more than Q_1 if

 Q_2 is **stricter** on (thus **allowing less**) outputs than Q_1 does.

$$\{ x \mid Q_2(x) \} \subseteq \{ x \mid Q_1(x) \}$$

More concisely:

$$Q_2 \Rightarrow Q_1$$

e.g., For query q(i: INTEGER): BOOLEAN,

 Q_2 : Result = $(i > 0) \land (i \mod 2 = 0)$ ensures more than

 $Q_1 : \text{Result} = (i > 0) \lor (i \mod 2 = 0)$

What is the postcondition that ensures the most? [false]

Inheritance and Contracts (1)

• The fact that we allow polymorphism:

suggests that these instances may substitute for each other.

- Intuitively, when expecting SMART_PHONE, we can substitute it by instances of any of its **descendant** classes.
 - : Descendants *accumulate code* from its ancestors and can thus *meet expectations* on their ancestors.
- Such *substitutability* can be reflected on contracts, where a *substitutable instance* will:
 - Not require more from clients for using the services.
 - Not ensure less to clients for using the services.

6 of 18

7 of 18

Inheritance and Contracts (2.1)

Inheritance and Contracts (2.2)


```
class SMART_PHONE

get_reminders: LIST[EVENT]

require

α: battery_level ≥ 0.1 -- 10%

ensure

β: ∀e:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end

get_reminders: LIST[EVENT]

require else

γ: battery_level ≥ 0.15 -- 15%

ensure then

δ: ∀e:Result | e happens today or tomorrow
end
```

Contracts in descendant class <code>IPHONE_11_PRO</code> are not suitable. (battery_level $\geq 0.1 \Rightarrow battery_level \geq 0.15$) is not a tautology. e.g., A client able to get reminders on a <code>SMART_PHONE</code>, when battery level is 12%, will fail to do so on an <code>IPHONE_11_PRO</code>.

Inheritance and Contracts (2.3)


```
class SMART_PHONE

get_reminders: LIST[EVENT]

require

α: battery_level ≥ 0.1 -- 10%

ensure
β: ∀e:Result | e happens today

end

class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end

get_reminders: LIST[EVENT]

require else
γ: battery_level ≥ 0.15 -- 15%

ensure then
δ: ∀e:Result | e happens today or tomorrow
end

Contracts in descendant class IPHONE_11_PRO are not suitable.
```

```
(e happens ty. or tw.) ⇒ (e happens ty.) not tautology.
e.g., A client receiving today's reminders from SMART_PHONE are
shocked by tomorrow-only reminders from IPHONE_11_PRO.
```


Inheritance and Contracts (2.4)

```
class SMART_PHONE
 get reminders: LIST[EVENT]
   require
     \alpha: battery_level \geq 0.1 -- 10%
     \beta: \forall e: Result | e happens today
end
class IPHONE_11_PRO
inherit SMART PHONE redefine get reminders end
 get_reminders: LIST[EVENT]
   require else
     \gamma: battery_level \geq 0.05 -- 5%
   ensure then
     \delta \colon \forall e \colon \mathsf{Result} \mid e happens today between 9am and 5pm
end
```

Contracts in descendant class IPHONE_11_PRO are suitable.

· Require the same or less

 $\alpha \Rightarrow \gamma$

Clients satisfying the precondition for SMART_PHONE are **not** shocked by not being to use the same feature for IPHONE_11_PRO.

Inheritance and Contracts (2.5)

```
class SMART_PHONE
 get_reminders: LIST[EVENT]
   require
    \alpha: battery_level \geq 0.1 -- 10%
     \beta: \forall e: Result | e happens today
end
```

```
class IPHONE_11_PRO
inherit SMART_PHONE redefine get_reminders end
 get_reminders: LIST[EVENT]
   require else
    \gamma: battery_level \geq 0.05 -- 5%
   ensure then
    \delta: \forall e: Result | e happens today between 9am and 5pm
end
```

Contracts in descendant class IPHONE 11 PRO are suitable.

• Ensure the same or more Clients benefiting from SMART_PHONE are not shocked by failing to gain at least those benefits from same feature in IPHONE_11_PRO.

Contract Redeclaration Rule (1)

- In the context of some feature in a descendant class:
 - Use require else to redeclare its precondition.
 - Use ensure then to redeclare its postcondition.
- The resulting *runtime assertions checks* are:

```
o original_pre or else new_pre
```

- ⇒ Clients *able to satisfy original_pre* will not be shocked.
- :: true ∨ new_pre ≡ true

A precondition violation will **not** occur as long as clients are able to satisfy what is required from the ancestor classes.

- o | original_post and then new_post
 - ⇒ Failing to gain original_post will be reported as an issue.
 - :: false ∧ new_post ≡ false

A postcondition violation occurs (as expected) if clients do not receive at least those benefits promised from the ancestor classes.

12 of 18

Contract Redeclaration Rule (2.1)


```
class FOO
 f
    do ...
    end
end
```

```
class BAR
inherit FOO redefine f end
 f require else new_pre
   do ...
   end
```

• Unspecified *original_pre* is as if declaring require true

```
:: true ∨ new_pre ≡ true
```

```
class FOO
£
   do
   end
end
```

```
class BAR
inherit FOO redefine f end
 f
  do ...
  ensure then new_post
end
```

• Unspecified *original_post* is as if declaring ensure true

```
: true ∧ new_post = new_post
```



```
class FOO
  f require
    original_pre
    do ...
    end
end
```

```
class BAR
inherit FOO redefine f end
f
   do ...
   end
end
```

Unspecified new_pre is as if declaring require else false
 ∴ original_pre ∨ false ≡ original_pre

```
class FOO

f

do ...
ensure
original_post
end
end
```

```
class BAR
inherit FOO redefine f end
  f
    do ...
    end
end
```

• Unspecified new_post is as if declaring ensure then true

∴ original_post ∧ true = original_post

14 of 18

Invariant Accumulation

- Every class inherits *invariants* from all its ancestor classes.
- Since invariants are like postconditions of all features, they are "conjoined" to be checked at runtime.

```
class POLYGON
  vertices: ARRAY[POINT]
invariant
  vertices.count ≥ 3
end

class RECTANGLE
inherit POLYGON
invariant
```

- What is checked on a RECTANGLE instance at runtime:
 (vertices.count ≥ 3) ∧ (vertices.count = 4) ≡ (vertices.count = 4)
- Can PENTAGON be a descendant class of RECTANGLE?

 $(vertices.count = 5) \land (vertices.count = 4) \equiv$ **false**

Inheritance and Contracts (3)


```
class FOO
   f
    require
       original_pre
    ensure
       original_post
    end
end
```

```
class BAR
inherit FOO redefine f end
f
   require else
   new_pre
   ensure then
   new_post
   end
end
```

(Static) Design Time:

- original_pre → new_pre | should be proved as a tautology
- ∘ | new_post ⇒ original_post | should be proved as a tautology

(Dynamic) Runtime:

- ∘ | *original_pre* ∨ *new_pre* | is checked
- original_post ∧ new_post is checked

16 of 18

Index (1)

Aspects of Inheritance

Learning Objectives

Background of Logic (1)

Background of Logic (2)

Inheritance and Contracts (1)

Inheritance and Contracts (2.1)

Inheritance and Contracts (2.2)

Inheritance and Contracts (2.3)

Inheritance and Contracts (2.4)

Inheritance and Contracts (2.5)

Contract Redeclaration Rule (1)

17 of 18

15 of 18

end

vertices.count = 4

Index (2)

Contract Redeclaration Rule (2.1)

Contract Redeclaration Rule (2.2)

Invariant Accumulation

Inheritance and Contracts (3)

18 of 18

The Composite Design Pattern

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

1. Motivating Problem: Recursive Systems

2. Two Design Attempts

3. Multiple Inheritance

4. Third Design Attempt: Composite Design Pattern

5. Implementing and Testing the Composite Design Pattern

2 of 21

Motivating Problem (1)

 Many manufactured systems, such as computer systems or stereo systems, are composed of *individual components* and sub-systems that contain components.

e.g., A computer system is composed of:

- Individual pieces of equipment (*hard drives*, *cd-rom drives*)

 Each equipment has *properties*: e.g., power consumption and cost.
- Composites such as cabinets, busses, and chassis
 Each cabinet contains various types of chassis, each of which in turn containing components (hard-drive, power-supply) and busses that contain cards.
- Design a system that will allow us to easily build systems and calculate their total cost and power consumption.

Motivating Problem (2)

Design for *tree structures* with whole-part *hierarchies*.

Challenge: There are base and recursive modelling artifacts.

4 of 21

Design Attempt 1: Architecture

Design Attempt 1: Flaw?

Q: Any flaw of this first design?

A: Two "composite" features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]
o add(child: EQUIPMENT)

 \Rightarrow Inherited to all *base* equipments (e.g., HARD_DRIVE) that do not apply to such features.

6 of 21

Design Attempt 2: Architecture

Design Attempt 2: Flaw?

Q: Any flaw of this second design?

A: Two "composite" features defined at the COMPOSITE level:

children: LIST[EQUIPMENT]add(child: EQUIPMENT)

 \Rightarrow Multiple instantiations of the composite architecture (e.g., equipments, furnitures) require duplicates of the COMPOSITE class.

R of 21

Multiple Inheritance: Combining Abstractions (1)

A class may have two more parent classes.

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height, move, parent window, descendant windows, add child window

10 of 21

MI: Combining Abstractions (2.2)

A: Separating Graphical features and Hierarchical features

```
class RECTANGLE
feature -- Queries
width, height: REAL
xpos, ypos: REAL
feature -- Commands
make (w, h: REAL)
change_width
change_height
move
end
```

class WINDOW
inherit
RECTANGLE
TREE [WINDOW]
end

```
test_window: BOOLEAN
local w1, w2, w3, w4: WINDOW
do
    create w1.make(8, 6); create w2.make(4, 3)
    create w3.make(1, 1); create w4.make(1, 1)
    w2.add(w4); w1.add(w2); w1.add(w3)
    Result := w1.descendants.count = 2
end
```

MI: Name Clashes

In class C, feature $f \circ O$ inherited from ancestor class A clashes with feature $f \circ O$ inherited from ancestor class B.

12 of 21

MI: Resolving Name Clashes

class C							
inherit							
A rename	foo	as	fog	end			
B rename	foo	as	z00	end			

		o.foo	o.fog	0.Z00
0:	А	✓	×	×
0:	В	√	×	×
0:	С	×	√	√

13 of 21

The Composite Pattern: Architecture

Implementing the Composite Pattern (1)


```
class
    CARD
inherit
    EQUIPMENT
feature {NONE}
    unit_price: REAL
feature
    make (n: STRING; p: REAL)
    do name := n; unit_price := p end
    price
    do Result := unit_price end
end
```


Implementing the Composite Pattern (2.1)

```
deferred class
    COMPOSITE[T]
feature
    children: LINKED_LIST[T]

add (c: T)
    do
        children.extend (c) -- Polymorphism
    end
end
```

Exercise: Make the COMPOSITE class iterable.

16 of 21

Implementing the Composite Pattern (2.2)

```
deferred class
 COMPOSITE_EQUIPMENT
inherit
 EOUIPMENT
 COMPOSITE [EQUIPMENT]
feature
 make (n: STRING)
    -- Child classes will declare this command as a constructor.
  do name := n ; create children.make end
 price : REAL -- price is a query
    -- Sum the net prices of all sub-equipments
  do
    across
     children is c
     Result := Result + c.price -- dynamic binding
    end
   end
end
```

17 of 21

Testing the Composite Pattern


```
test_composite_equipment: BOOLEAN
local
  card, drive: EQUIPMENT
  cabinet: CABINET -- holds a CHASSIS
  chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
  bus: BUS -- holds a CARD
  create {CARD} card.make("16Mbs Token Ring", 200)
  create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
  create bus.make("MCA Bus")
  create chassis.make("PC Chassis")
  create cabinet.make("PC Cabinet")
  bus.add(card)
  chassis.add(bus)
  chassis.add(drive)
  cabinet.add(chassis)
  Result := cabinet.price = 700
end
```

18 of 21

Summay: The Composite Pattern

- **Design**: Categorize into *base* artifacts or *recursive* artifacts.
- Programming

Build a *tree structure* representing the whole-part *hierarchy* .

• Runtime :

Allow clients to treat *base* objects (leafs) and *recursive* compositions (nodes) *uniformly*.

- ⇒ Polymorphism : leafs and nodes are "substitutable".
- ⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.

e.g., Given e: **EQUIPMENT**:

- e.price may return the unit price of a DISK_DRIVE.
- e.price may sum prices of a *CHASIS*' containing equipments.

Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Design Attempt 1: Architecture

Design Attempt 1: Flaw?

Design Attempt 2: Architecture

Design Attempt 2: Flaw?

Multiple Inheritance:

Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2.2)

20 of 21

LASSONDE

Index (2)

MI: Name Clashes

MI: Resolving Name Clashes

The Composite Pattern: Architecture

Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

Summary: The Composite Pattern

The Visitor Design Pattern

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

- 1. Motivating Problem: *Processing* Recursive Systems
- 2. First Design Attempt: Cohesion & Single-Choice Principle?
- 3. Open-Closed Principle
- 4. Second Design Attempt: Visitor Design Pattern
- 5. Implementing and Testing the Visitor Design Pattern

of 21 2 2 of 1

Motivating Problem (1)

Based on the *composite pattern* you learned, design classes to model *structures* of arithmetic expressions (e.g., 341, 2, 341 + 2).

Motivating Problem (2)

Extend the *composite pattern* to support *operations* such as evaluate, pretty printing (print_prefix, print_postfix), and type_check.

Problems of Extended Composite Pattern

 Distributing the various unrelated operations across nodes of the abstract syntax tree violates the single-choice principle:

To add/delete/modify an operation

- ⇒ Change of all descendants of EXPRESSION
- Each node class lacks in cohesion:
 - A *class* is supposed to group *relevant* concepts in a *single* place.
 - ⇒ Confusing to mix codes for evaluation, pretty printing, and type checking.
 - \Rightarrow We want to avoid "polluting" the classes with these various unrelated operations.

5 of 15

Open/Closed Principle

Software entities (classes, features, etc.) should be *open* for *extension*, but *closed* for *modification*.

- ⇒ When *extending* the behaviour of a system, we:
- May add/modify the *open* (unstable) part of system.
- May not add/modify the *closed* (stable) part of system.

e.g., In designing the application of an expression language:

- ALTERNATIVE 1:
 - Syntactic constructs of the language may be *open*, whereas operations on the language may be *closed*.
- ALTERNATIVE 2: Syntactic constructs of the language may be *closed*, whereas operations on the language may be *open*.

Visitor Pattern

- Separation of concerns:
 - Set of language constructs
 - Set of operations
 - ⇒ Classes from these two sets are decoupled and organized into two separate clusters.
- Open-Closed Principle (OCP):

[ALTERNATIVE 2]

- o Closed, staple part of system: set of language constructs
- o Open, unstable part of system: set of operations
- ⇒ *OCP* helps us determine if Visitor Pattern is *applicable*.
- ⇒ If it was decided that language constructs are *open* and operations are *closed*, then do **not** use Visitor Pattern.

7 of 15

Visitor Pattern: Architecture

R of 15

Visitor Pattern Implementation: Structures

Cluster expression_language

- Declare deferred feature | accept (v: VISITOR) | in EXPRSSION.
- o Implement accept feature in each of the descendant classes.

```
class CONSTANT inherit EXPRESSION
...
accept(v: VISITOR)
do
v.visit_constant (Current)
end
end

class ADDITION
```

```
class ADDITION
inherit EXPRESSION COMPOSITE
...
    accept(v: VISITOR)
    do
        v.visit_addition (Current)
    end
end
```

Visitor Pattern Implementation: Operations LASSONDE

Cluster expression_operations

 \circ For each descendant class C of EXPRESSION, declare a deferred feature $visit_c$ (e: C) in the deferred class VISITOR.

```
deferred class VISITOR
  visit_constant(c: CONSTANT) deferred end
  visit_addition(a: ADDITION) deferred end
end
```

Each descendant of VISITOR denotes a kind of operation.


```
test_expression_evaluation: BOOLEAN
2
     local add, c1, c2: EXPRESSION; v: VISITOR
3
      create {CONSTANT} c1.make (1) ; create {CONSTANT} c2.make (2)
      create {ADDITION} add.make (c1, c2)
6
      create {EVALUATOR} v.make
       add.accept(v)
8
      check attached {EVALUATOR} v as eval then
9
        Result := eval.value = 3
10
      end
     end
```

Double Dispatch in Line 7:

1. DT of add is ADDITION ⇒ Call accept in ADDITION

```
v.visit_<u>addition</u>(add)
```

2. DT of v is $evaluator \Rightarrow Call$ visit_addition in evaluator

visiting result of add.left + visiting result of add.right

11 of 15

LASSONDE

To Use or Not to Use the Visitor Pattern

- In the architecture of visitor pattern, what kind of *extensions* is easy and hard? Language structure? Language Operation?
 - Adding a new kind of operation element is easy.

To introduce a new operation for generating C code, we only need to introduce a new descendant class <code>C_CODE_GENERATOR</code> of VISITOR, then implement how to handle each language element in that class.

- ⇒ Single Choice Principle is obeyed.
- Adding a new kind of structure element is hard.

After adding a descendant class MULTIPLICATION of EXPRESSION, every concrete visitor (i.e., descendant of VISITOR) must be amended to provide a new visit_multiplication operation.

- ⇒ Single Choice Principle is violated.
- The applicability of the visitor pattern depends on to what extent the *structure* will change.
 - ⇒ Use visitor if *operations* applied to *structure* change often.
 - \Rightarrow Do not use visitor if the **structure** changes often.

12 of 15

Beyond this Lecture...

• Learn about implementing the Composite and Visitor Patterns, from scratch, in this tutorial series:

https://www.voutube.com/playlist?list=PL5dxAmCmjv4z5eXGW-ZBqsS2WZTyBHY2

 The Visitor Pattern can be used to facilitate the development of a language compiler:

https://www.youtube.com/playlist?list=PL5dxAmCmjv 4FGYtGzcvBeoS-BobRTJLo

13 of 15

Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Problems of Extended Composite Pattern

Open/Closed Principle

Visitor Pattern

Visitor Pattern: Architecture

Visitor Pattern Implementation: Structures

Visitor Pattern Implementation: Operations

Testing the Visitor Pattern

To Use or Not to Use the Visitor Pattern

Index (2)

Beyond this Lecture...

15 of 15

Program Correctness

OOSC2 Chapter 11

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

- 1. Motivating Examples: Program Correctness
- 2. Hoare Triple
- 3. Weakest Precondition (wp)
- 4. Rules of wp Calculus
- **5.** Contract of Loops (*invariant* vs. *variant*)
- 6. Correctness Proofs of Loops

2 of 51

Assertions: Weak vs. Strong

- Describe each assertion as a set of satisfying value.
 - x > 3 has satisfying values $\{ x \mid x > 3 \} = \{ 4, 5, 6, 7, \dots \}$
 - x > 4 has satisfying values $\{x \mid x > 4\} = \{5, 6, 7, \dots\}$
- An assertion p is stronger than an assertion q if p's set of satisfying values is a subset of q's set of satisfying values.
 - Logically speaking, p being stronger than q (or, q being weaker than p) means $p \Rightarrow q$.
 - \circ e.g., $x > 4 \Rightarrow x > 3$
- What's the weakest assertion?

[TRUE]

What's the strongest assertion?

[FALSE]

- In *Design by Contract*:
 - A <u>weaker</u> <u>invariant</u> has more acceptable object states e.g., <u>balance</u> > 0 vs. <u>balance</u> > 100 as an invariant for ACCOUNT
 - A weaker precondition has more acceptable input values
 - A <u>weaker</u> postcondition has more acceptable output values

Assertions: Preconditions

Given preconditions P_1 and P_2 , we say that

 P_2 requires less than P_1 if

 $\overline{P_2}$ is *less strict* on (thus *allowing more*) inputs than P_1 does.

$$\{ x \mid P_1(x) \} \subseteq \{ x \mid P_2(x) \}$$

More concisely:

$$P_1 \Rightarrow P_2$$

e.g., For command withdraw (amount: INTEGER),

 P_2 : amount ≥ 0 requires less than P_1 : amount > 0

What is the *precondition* that *requires the least*? [*true*]

4 of 51

LASSONDE

Assertions: Postconditions

Given postconditions or invariants Q_1 and Q_2 , we say that

 Q_2 ensures more than Q_1 if

 Q_2 is **stricter** on (thus **allowing less**) outputs than Q_1 does.

$$\{ x \mid Q_2(x) \} \subseteq \{ x \mid Q_1(x) \}$$

More concisely:

$$Q_2 \Rightarrow Q_1$$

e.g., For query q(i: INTEGER): BOOLEAN,

 Q_2 : Result = $(i > 0) \land (i \mod 2 = 0)$ ensures more than

 $Q_1 : \text{Result} = (i > 0) \lor (i \mod 2 = 0)$

What is the postcondition that ensures the most? [false]

Motivating Examples (1)

Is this feature correct?

Q: Is i > 3 is too weak or too strong?

A: Too weak

 \therefore assertion i > 3 allows value 4 which would fail postcondition.

6 of 51

Motivating Examples (2)

Is this feature correct?

Q: Is i > 5 too weak or too strong?

A: Maybe too strong

: assertion i > 5 disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.

Software Correctness

- Correctness is a relative notion: consistency of implementation with respect to specification.
 - ⇒ This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program **S** and its *specification* (pre-condition **Q** and

```
post-condition R) as a Boolean predicate: \{Q\} S \{R\}
```

- \circ e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$
- \circ e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$
- If $\{Q\}$ s $\{R\}$ can be proved TRUE, then the S is correct. e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$ can be proved TRUE.
- If {Q} s {R} cannot be proved TRUE, then the S is incorrect. e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ cannot be proved TRUE.

8 of 51

Hoare Logic

- Consider a program S with precondition Q and postcondition R.
 - {Q} s {R} is a correctness predicate for program S
 - {Q} S {R} is True if program S starts executing in a state satisfying the precondition **Q**, and then:
 - (a) The program S terminates.
 - (b) Given that program S terminates, then it terminates in a state satisfying the postcondition R.
- Separation of concerns
- (a) requires a proof of termination.
- **(b)** requires a proof of **partial** correctness.
- Proofs of (a) + (b) imply **total** correctness.

9 of 51

Hoare Logic and Software Correctness

Consider the *contract view* of a feature *f* (whose body of implementation is S) as a Hoare Triple :

All output values are invalid {true} s {true}

[Most challenging coding task]

10 of 51

∘ {**Q**} S {**false**}

All inputs/outputs are valid (No contracts)

[Least informative]

Proof of Hoare Triple using wp

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

- wp(S, R) is the weakest precondition for S to establish R.
 - If $Q \Rightarrow wp(S, R)$, then **any** execution started in a state satisfying Qwill terminate in a state satisfying R.
 - If $Q \neq wp(S, \mathbb{R})$, then **some** execution started in a state satisfying Q will terminate in a state violating R.
- S can be:
 - Assignments (x := y)
 - Alternations (if ... then ... else ... end)
 - Sequential compositions (S₁; S₂)
 - Loops (from ... until ... loop ... end)
- We will learn how to calculate the wp for the above programming constructs.

Denoting New and Old Values

In the *postcondition*, for a program variable x:

- We write x_0 to denote its **pre-state** (old) value.
- We write x to denote its post-state (new) value.
 Implicitly, in the precondition, all program variables have their pre-state values.

e.g.,
$$\{b_0 > a\}$$
 b := b - a $\{b = b_0 - a\}$

- Notice that:
 - We may choose to write "b" rather than "b₀" in preconditions
 ∴ All variables are pre-state values in preconditions
 - We don't write "b₀" in program
 ∴ there might be multiple intermediate values of a variable due to sequential composition

12 of 51

wp Rule: Assignments (1)

$$wp(x := e, R) = R[x := e]$$

R[x := e] means to substitute all *free occurrences* of variable x in postcondition R by expression e.

wp Rule: Assignments (2)

Recall:

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

How do we prove $\{Q\} \times := e\{R\}$?

$$\{Q\} \times := e \{R\} \iff Q \Rightarrow \underbrace{R[X := e]}_{wp(x := e, R)}$$

14 of 51

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

$$\{??\} \times := \times + 1 \{x > x_0\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x > x_0)$.

$$wp(x := x + 1, x > x_0)$$
= $\{Rule \ of \ wp: Assignments\}$
 $x > x_0[x := x_0 + 1]$
= $\{Replacing \ x \ by \ x_0 + 1\}$
 $x_0 + 1 > x_0$
= $\{1 > 0 \ always \ true\}$
True

Any precondition is OK.

False is valid but not useful.

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition x = 23?

$$\{??\} \times := \times + 1 \{x = 23\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x = 23)$.

$$wp(x := x + 1, x = 23)$$
= {Rule of wp: Assignments}
 $x = 23[x := x_0 + 1]$
= {Replacing x by $x_0 + 1$ }
 $x_0 + 1 = 23$
= {arithmetic}
 $x_0 = 22$

Any precondition weaker than x = 22 is not OK.

wp Rule: Assignments (4) Revisit

Given $\{??\}n := n + 9\{n > 13\}$:

- n > 4 is the weakest precondition (wp) for the given implementation (n := n + 9) to start and establish the postcondition (n > 13).
- Any precondition that is *equal to or stronger than* the *wp* (n > 4) will result in a correct program.
 - e.g., $\{n > 5\}n := n + 9\{n > 13\}$ can be proved **TRUE**.
- Any precondition that is **weaker than** the wp (n > 4) will result in an incorrect program.
 - e.g., $\{n > 3\}n := n + 9\{n > 13\}$ <u>cannot</u> be proved **TRUE**. Counterexample: n = 4 satisfies precondition n > 3 but the output n = 13 fails postcondition n > 13.

17 of 51

wp Rule: Alternations (1)

 $wp(\texttt{if} \ \ \ \ \ \ \ \ B) = \begin{pmatrix} B \Rightarrow wp(S_1, R) \\ \land \\ \neg B \Rightarrow wp(S_2, R) \end{pmatrix}$

The wp of an alternation is such that **all branches** are able to establish the postcondition R.

18 of 51

wp Rule: Alternations (2)

Recall: $\{Q\} \subseteq \{R\} \equiv Q \Rightarrow wp(S, R)$ How do we prove that $\{Q\}$ if $\{R\}$ then $\{S_1 \in S_2 \in$

$$\begin{cases} \mathcal{Q} \\ \text{if } & \text{B} \text{ then} \\ & \left\{ \mathcal{Q} \wedge & B \right\} \right. S_1 \left. \left\{ \mathcal{R} \right\} \\ & \text{else} \\ & \left\{ \mathcal{Q} \wedge \neg B \right\} \right. S_2 \left. \left\{ \mathcal{R} \right\} \\ & \text{end} \\ & \left\{ \mathcal{R} \right\}$$

$$\left\{ \begin{array}{l} \textbf{\textit{Q}} \} \text{ if } \begin{array}{l} \textbf{\textit{B}} \end{array} \text{ then } S_1 \text{ else } S_2 \text{ end } \{ \textbf{\textit{R}} \} \\ \\ \iff \left(\begin{array}{l} \left\{ \begin{array}{l} \textbf{\textit{Q}} \wedge \begin{array}{c} \textbf{\textit{B}} \end{array} \right\} S_1 \left\{ \begin{array}{l} \textbf{\textit{R}} \end{array} \right\} \\ \\ \wedge \\ \left\{ \begin{array}{l} \textbf{\textit{Q}} \wedge \neg \begin{array}{c} \textbf{\textit{B}} \end{array} \right\} S_2 \left\{ \begin{array}{l} \textbf{\textit{R}} \end{array} \right\} \end{array} \right) \iff \left(\begin{array}{l} \left(\textbf{\textit{Q}} \wedge \begin{array}{c} \textbf{\textit{B}} \end{array} \right) \Rightarrow wp(S_1, \textbf{\textit{R}}) \\ \\ \wedge \\ \left(\begin{array}{l} \textbf{\textit{Q}} \wedge \neg \begin{array}{c} \textbf{\textit{B}} \end{array} \right) \Rightarrow wp(S_2, \textbf{\textit{R}}) \end{array} \right)$$

wp Rule: Alternations (3) Exercise

Is this program correct?

```
{x > 0 ∧ y > 0}
if x > y then
bigger := x ; smaller := y
else
bigger := y ; smaller := x
end
{bigger ≥ smaller}
```

```
\begin{cases} \{(x > 0 \land y > 0) \land (x > y)\} \\ \text{bigger} := x ; \text{smaller} := y \\ \{bigger \ge smaller\} \end{cases}
\land \begin{cases} \{(x > 0 \land y > 0) \land \neg (x > y)\} \\ \text{bigger} := y ; \text{smaller} := x \\ \{bigger \ge smaller\} \end{cases}
```

20 of 51

wp Rule: Sequential Composition (1)

$$wp(S_1 ; S_2, \mathbb{R}) = wp(S_1, wp(S_2, \mathbb{R}))$$

The wp of a sequential composition is such that the first phase establishes the wp for the second phase to establish the postcondition R.

21 of 51

wp Rule: Sequential Composition (2)

Recall:

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

How do we prove $\{Q\}$ S_1 ; S_2 $\{R\}$?

$$\{Q\}$$
 S_1 ; S_2 $\{R\}$ \iff $Q \Rightarrow \underbrace{wp(S_1, wp(S_2, R))}_{wp(S_1; S_2, R)}$

22 of 51

wp Rule: Sequential Composition (3) Exercisesonde

```
Is { True } tmp := x; x := y; y := tmp { x > y } correct?

If and only if True \Rightarrow wp(tmp := x ; x := y ; y := tmp, x > y)

 wp(tmp := x ; x := y ; y := tmp, x > y)
 = \{ wp \ rule \ for \ seq. \ comp. \}
 wp(tmp := x, wp(x := y ; y := tmp, x > y))
 = \{ wp \ rule \ for \ seq. \ comp. \}
 wp(tmp := x, wp(x := y, wp(y := tmp, x > y)))
 = \{ wp \ rule \ for \ assignment \}
 wp(tmp := x, wp(x := y, x) > tmp))
 = \{ wp \ rule \ for \ assignment \}
 wp(tmp := x, y > tmp)
 = \{ wp \ rule \ for \ assignment \}
 wp(tmp := x, y > tmp)
 = \{ wp \ rule \ for \ assignment \}
 wp(tmp := x, y > tmp)
```

 \therefore *True* \Rightarrow y > x does not hold in general.

: The above program is not correct.

Loops

- A loop is a way to compute a certain result by successive approximations.
 - e.g. computing the maximum value of an array of integers
- Loops are needed and powerful
- But loops very hard to get right:
 - Infinite loops
 - o "off-by-one" error
 - $\circ~$ Improper handling of borderline cases
 - Not establishing the desired condition
- [termination]
- [partial correctness]
- [partial correctness]
- [partial correctness]

24 of 51

Loops: Binary Search

Loops: Binary Search					
BS1	BS2				
from	from				
i := I; j := n	i := 1; j := n; found := false				
until $i = j$ loop	until $i = j$ and not found loop				
m := (i + j) // 2	m := (i+j) // 2				
if $t @ m \le x$ then	if $t @ m < x$ then				
i := m	i := m + 1				
else	elseif $t @ m = x$ then				
j := m	found := true				
end	else				
end	j := m - 1				
Result := (x = t @ i)	end				
	end				
	Result := found				
BS3	BS4				
from	from				
i := 0; j := n	i := 0; j := n + 1				
$\mathbf{until}\ i = j\ \mathbf{loop}$	until $i = j$ loop				
m := (i + j + I) // 2	m := (i+j) // 2				
if $t @ m \le x$ then	if $t @ m \le x$ then				
i := m + I	i := m + I				
else	else				
j := m	j := m				
end	end				

if $i \ge 1$ and $i \le n$ then

4 implementations for binary search: published, but *wrong*!

See page 381 in *Object Oriented*Software Construction

25 of 51

if $i \ge 1$ and $i \le n$ then

Correctness of Loops

How do we prove that the following loops are correct?

```
 \begin{cases} \{\mathcal{Q}\} \\ \text{from} \\ S_{init} \\ \text{until} \\ B \\ \text{loop} \\ S_{body} \\ \text{end} \\ \{ \mathbf{\textit{R}} \} \end{cases}
```

```
\{Q\}
S_{init}
\mathbf{while} (\neg B) \{
S_{body}
\}
\{R\}
```

- In case of C/Java, $\neg B$ denotes the **stay condition**.
- In case of Eiffel, B denotes the exit condition.
 There is native, syntactic support for checking/proving the total correctness of loops.

26 of 51

Contracts for Loops: Syntax


```
from
    S_init
invariant
    invariant_tag: I -- Boolean expression for partial correctness
until
    B
loop
    S_body
variant
    variant_tag: V -- Integer expression for termination
end
```

Contracts for Loops

- Use of *loop invariants (LI)* and *loop variants (LV)*.
 - *Invariants*: Boolean expressions for *partial correctness*.
 - Typically a special case of the postcondition.
 e.g., Given postcondition "Result is maximum of the array":

LI can be "Result is maximum of the part of array scanned so far".

- Established before the very first iteration.
- Maintained TRUE after each iteration.
- Variants: Integer expressions for termination
 - Denotes the *number of iterations remaining*
 - Decreased at the end of each subsequent iteration
 - Maintained *non-negative* at the end of each iteration.
 - As soon as value of LV reaches zero, meaning that no more iterations remaining, the loop must exit.
- Remember:

total correctness = partial correctness + termination

28 of 51

29 of 51

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)


```
test
2
     local
3
       i: INTEGER
       from
        i := 1
       invariant
        1 <= i \text{ and } i <= 6
8
9
       until
10
        i > 5
11
12
         io.put_string ("iteration " + i.out + "%N")
13
         i := i + 1
14
       variant
15
         6 - i
16
       end
17
   end
```

L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation.

L15: Change to 5 - i for a Loop Variant Violation.

30 of 51

Contracts for Loops: Visualization

Exit condition

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

R1 of 51

Contracts for Loops: Example 1.1

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
    i := a.lower ; Result := a[i]
    loop_invariant: -- \forall j \mid a.lower \leq j \leq i \bullet Result \geq a[j]
      across a.lower |..| i as j all Result >= a [j.item] end
    i > a.upper
   1000
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
    loop\_variant: a.upper - i + 1
 ensure
   correct\_result: -- \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
     across a.lower |..| a.upper as j all Result >= a [j.item]
 end
end
32 of 51
```


Contracts for Loops: Example 1.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a.lower \leq j \leq i$ Result $\geq a[j]$
- Loop Variant: a.upper i + 1

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	_	×	_
1st	2	20	✓	×	3
2nd	3	20	×	_	_

Loop invariant violation at the end of the 2nd iteration:

$$\forall j \mid a.lower \leq j \leq \boxed{3} \bullet \boxed{20} \geq a[j]$$

evaluates to **false** : $20 \ngeq a[3] = 40$

33 of 51

Contracts for Loops: Example 2.1


```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
   from
    i := a.lower ; Result := a[i]
    loop_invariant: -- \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
      across a.lower | ... | (i - 1) as j all Result >= a [j.item] end
    i > a.upper
   loop
    if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
    loop_variant: a.upper - i
 ensure
   correct_result: -- \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
    across a.lower |..| a.upper as j all Result >= a [j.item]
 end
end
```

Contracts for Loops: Example 2.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: ∀j | a.lower ≤ j < i Result ≥ a[j]
- Loop Variant a.upper i

34 of 51

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	_	×	_
1st	2	20	✓	×	2
2nd	3	20	✓	×	1
3rd	4	40	✓	×	0
4th	5	40	✓	✓	-1

Loop variant violation at the end of the 4th iteration \therefore a.upper – i = 4 - 5 evaluates to non-zero.

Contracts for Loops: Example 3.1

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
    i := a.lower ; Result := a[i]
    loop_invariant: -- \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
      across a.lower | ... | (i - 1) as j all Result >= a [j.item] end
     i > a.upper
   1000
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
     loop\_variant: a.upper - i + 1
 ensure
   correct\_result: -- \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
     across a.lower |..| a.upper as j all Result >= a [j.item]
 end
end
36 of 51
```

Contracts for Loops: Example 3.2

Consider the feature call find_max($\langle (20, 10, 40, 30) \rangle$), given:

- Loop Invariant: ∀j | a.lower ≤ j < i Result ≥ a[j]
- Loop Variant: a.upper i + 1
- Postcondition: $\forall j \mid a.lower \leq j \leq a.upper$ Result $\geq a[j]$

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	✓	×	_
1st	2	20	✓	×	3
2nd	3	20	\	×	2
3rd	4	40	✓	×	1
4th	5	40	✓	✓	0

37 of 51

Contracts for Loops: Exercise


```
class DICTIONARY[V, K]
feature {NONE} -- Implementations
 values: ARRAY[K]
 keys: ARRAY[K]
feature -- Abstraction Function
 model: FUN[K, V]
feature -- Queries
 get_keys(v: V): ITERABLE[K]
   local i: INTEGER; ks: LINKED_LIST[K]
     from i := keys.lower ; create ks.make_empty
     invariant
    until i > keys.upper
     do if values[i] ~ v then ks.extend(keys[i]) end
    Result := ks.new_cursor
     result_valid: \forall k \mid k \in \text{Result} \bullet model.item(k) \sim V
     no_missing_keys: \forall k \mid k \in model.domain \bullet model.item(k) \sim v \Rightarrow k \in Result
```

38 of 51

Proving Correctness of Loops (1)

```
{Q} from Sinit invariant / until B loop Sbody variant V end {R}
```

- A loop is partially correct if:
 - Given precondition Q, the initialization step S_{init} establishes LI I.
 - At the end of S_{body} , if not yet to exit, **LI** I is maintained.
 - If ready to exit and *LI I* maintained, postcondition *R* is established.
- A loop *terminates* if:
 - Given LI I, and not yet to exit, S_{body} maintains LV V as non-negative.
 - Given *LI I*, and not yet to exit, S_{body} decrements *LV V*.

Proving Correctness of Loops (2)

- $\{Q\}$ from S_{init} invariant I until B loop S_{body} variant V end $\{R\}$
 - A loop is partially correct if:
 - Given precondition Q, the initialization step S_{init} establishes LII. $Q S_{init} \{I\}$
 - At the end of S_{body} , if not yet to exit, LII is maintained.

$$\{I \land \neg B\} S_{body} \{I\}$$

• If ready to exit and LI I maintained, postcondition R is established.

$$I \wedge B \Rightarrow R$$

- A loop *terminates* if:
 - Given LII, and not yet to exit, S_{body} maintains LVIV as non-negative.

$$\{I \land \neg B\} \ S_{body} \ \{V \ge 0\}$$

• Given LII, and not yet to exit, S_{body} decrements LVV.

$$\{I \land \neg B\} \ S_{body} \ \{V < V_0\}$$

40 of 51

Proving Correctness of Loops: Exercise (1.1) SSSONDE

Prove that the following program is correct:

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
     i := a.lower ; Result := a[i]
   invariant
     loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
   until
     i > a.upper
   1000
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
     loop_variant: a.upper - i + 1
 ensure
   correct_result: \forall i \mid a.lower \leq i \leq a.upper \bullet Result \geq a[i]
 end
end
```

41 of 51

Proving Correctness of Loops: Exercise (1.2) SSONDE

Prove that each of the following *Hoare Triples* is TRUE.

1. Establishment of Loop Invariant:

2. Maintenance of Loop Invariant:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg (i > a.upper) \end{array} \right. \\ \textbf{if} \quad a \quad [i] \quad > \textbf{Result then Result} := a \quad [i] \quad \textbf{end} \\ i \quad := \quad i \quad + \quad 1 \\ \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \end{array} \right. \right\}
```

3. Establishment of Postcondition upon Termination:

```
(\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land i > a.upper

\Rightarrow \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
```

42 of 51

Proving Correctness of Loops: Exercise (1.3) ASSONDE

Prove that each of the following *Hoare Triples* is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right. \\ \text{if } a \ [i] > \text{Result then Result } := a \ [i] \text{ end} \\ i := i + 1 \\ \left\{ \begin{array}{l} a.upper - i + 1 \geq 0 \end{array} \right. \right\}
```

5. Loop Variant Keeps Decrementing before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right\} \\ \text{if } a \ [i] > Result \ then \ Result := a \ [i] \ end \\ i := i + 1 \\ \left\{ \begin{array}{l} a.upper - i + 1 < (a.upper - i + 1)_0 \end{array} \right\}
```

where $(a.upper - i + 1)_0 \equiv a.upper_0 - i_0 + 1$

Proof Tips (1)

(A1)

$${Q} S {R} \Rightarrow {Q \land P} S {R}$$

In order to prove $\{Q \land P\} \le \{R\}$, it is sufficient to prove a version with a *weaker* precondition: $\{Q\} \le \{R\}$.

Proof:

- Assume: {*Q*} s {*R*}
 - It's equivalent to assuming: $\boxed{Q} \Rightarrow wp(S, R)$
- ∘ To prove: $\{Q \land P\}$ S $\{R\}$
 - It's equivalent to proving: $Q \land P \Rightarrow wp(S, R)$
 - Assume: $Q \wedge P$, which implies Q
 - According to (A1), we have wp(S, R).

44 of 51

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

$$wp(S, a.lower \le i \le a.upper \land a[i] > 0)$$

e.g., Before calculating wp(x := a[i], R), augment it as

$$wp(x := a[i], a.lower \le i \le a.upper \land R)$$

45 of 51

Beyond this lecture

Exercise on proving the *total correctness* of a program:

nttps://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/

EECS3311/exercises/EECS3311 F20 Exercise WP.sol.pdf

46 of 51

Index (1)

Learning Objectives

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Denoting New and Old Values

Index (2)

wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Assignments (5) Revisit

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise

48 of 51

Index (3)

Loops

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1

49 of 51

Index (4)

Contracts for Loops: Example 2.2

Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)

50 of 51

Index (5)

Beyond this lecture