Program Correctness

OOSC2 Chapter 11

EECS3311 A \& E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

1. Motivating Examples: Program Correctness
2. Hoare Triple
3. Weakest Precondition (wp)
4. Rules of wp Calculus
5. Contract of Loops (invariant vs. variant)
6. Correctness Proofs of Loops

Assertions: Weak vs. Strong

- Describe each assertion as a set of satisfying value. $x>3$ has satisfying values $\{x \mid x>3\}=\{4,5,6,7, \ldots\}$ $x>4$ has satisfying values $\{x \mid x>4\}=\{5,6,7, \ldots\}$
- An assertion p is stronger than an assertion q if p 's set of satisfying values is a subset of q 's set of satisfying values.
- Logically speaking, p being stronger than q (or, q being weaker than p) means $p \Rightarrow q$.
- e.g., $x>4 \Rightarrow x>3$
- What's the weakest assertion?
- What's the strongest assertion?
- In Design by Contract :
- A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT
- A weaker precondition has more acceptable input values
- A weaker postcondition has more acceptable output values

Assertions: Preconditions

Given preconditions P_{1} and P_{2}, we say that

P_{2} requires less than P_{1} if
P_{2} is less strict on (thus allowing more) inputs than P_{1} does.

$$
\left\{x \mid P_{1}(x)\right\} \subseteq\left\{x \mid P_{2}(x)\right\}
$$

More concisely:

$$
P_{1} \Rightarrow P_{2}
$$

e.g., For command withdraw (amount: INTEGER), P_{2} : amount ≥ 0 requires less than P_{1} : amount >0
What is the precondition that requires the least?

Assertions: Postconditions

Given postconditions or invariants Q_{1} and Q_{2}, we say that Q_{2} ensures more than Q_{1} if
Q_{2} is stricter on (thus allowing less) outputs than Q_{1} does.

$$
\left\{x \mid Q_{2}(x)\right\} \subseteq\left\{x \mid Q_{1}(x)\right\}
$$

More concisely:

$$
Q_{2} \Rightarrow Q_{1}
$$

e.g., For query $q(i:$ INTEGER) : BOOLEAN, $Q_{2}: \operatorname{Result}=(i>0) \wedge(i \bmod 2=0)$ ensures more than
$Q_{1}: \operatorname{Result}=(i>0) \vee(i \bmod 2=0)$
What is the postcondition that ensures the most? [false]

Motivating Examples (1)

Is this feature correct?

```
class FOO
    i: INTEGER
    increment_by_9
        require
            i > 3
    do
        i := i + 9
    ensure
        i > 13
    end
end
```

Q: Is $i>3$ is too weak or too strong?
A: Too weak
\because assertion $i>3$ allows value 4 which would fail postcondition.

Motivating Examples (2)

Is this feature correct?

```
class FOO
    i: INTEGER
    increment_by_9
        require
            i>5
        do
            i}:=i+
        ensure
            i > 13
        end
end
```

Q: Is $i>5$ too weak or too strong?
A: Maybe too strong
\because assertion $i>5$ disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.

Software Correctness

- Correctness is a relative notion:
consistency of implementation with respect to specification.
\Rightarrow This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program \mathbf{S} and its specification (pre-condition Q and post-condition \boldsymbol{R}) as a Boolean predicate : $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$
- e.g., $\{i>3\}$ i $:=i+9\{i>13\}$
- e.g., $\{i>5\}$ i $:=i+9\{i>13\}$
- If $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$ can be proved True, then the \mathbf{S} is correct.
e.g., $\{i>5\}$ i $:=i+9\{i>13\}$ can be proved True.
- If $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\} \underline{\text { cannot }}$ be proved True, then the \mathbf{S} is incorrect.
e.g., $\{i>3\}$ i $:=i+9\{i>13\}$ cannot be proved TruE.

Hoare Logic

- Consider a program \mathbf{S} with precondition Q and postcondition \boldsymbol{R}.
- $\{\boldsymbol{Q}\} \mathrm{S}\{\boldsymbol{R}\}$ is a correctness predicate for program \mathbf{S}
- $\{\boldsymbol{Q}\} S\{R\}$ is TruE if program \mathbf{S} starts executing in a state satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program \mathbf{S} terminates, then it terminates in a state satisfying the postcondition R.
- Separation of concerns
(a) requires a proof of termination.
(b) requires a proof of partial correctness.

Proofs of (a) + (b) imply total correctness .

Hoare Logic and Software Correctness

Consider the contract view of a feature f (whose body of implementation is \mathbf{S}) as a Hoare Triple:
$\{Q\} S\{R\}$
Q is the precondition of f.
S is the implementation of f.
R is the postcondition of f.

- $\{$ true $\}$ S $\{R\}$

All input values are valid [Most-user friendly]

- \{false\} $\mathrm{S}\{R\}$

All input values are invalid [Most useless for clients]

- $\{Q\}$ S $\{$ true $\}$

All output values are valid [Most risky for clients; Easiest for suppliers]

- $\{Q\}$ S $\{$ false $\}$

All output values are invalid [Most challenging coding task]

- \{true\} S $\{$ true $\}$

Proof of Hoare Triple using wp

$$
\{\boldsymbol{Q}\} \mathrm{S}\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

- $w p(S, R)$ is the weakest precondition for S to establish \boldsymbol{R}.
- If $\boldsymbol{Q} \Rightarrow w p(S, R)$, then any execution started in a state satisfying Q will terminate in a state satisfying R.
- If $Q \nRightarrow w p(S, R)$, then some execution started in a state satisfying Q will terminate in a state violating R.
- S can be:
- Assignments (x := y)
- Alternations (if ... then ... else ... end)
- Sequential compositions ($S_{1} ; S_{2}$)
- Loops (from ... until ... loop ... end)
- We will learn how to calculate the wp for the above programming constructs.

Denoting New and Old Values

In the postcondition, for a program variable x :

- We write x_{0} to denote its pre-state (old) value.
- We write \bar{x} to denote its post-state (new) value.

Implicitly, in the precondition, all program variables have their pre-state values.
e.g., $\left\{b_{0}>a\right\}$ b $:=\mathrm{b}-\mathrm{a}\left\{b=b_{0}-a\right\}$

- Notice that:
- We may choose to write " b " rather than " b_{0} " in preconditions \because All variables are pre-state values in preconditions
- We don't write " b_{0} " in program
\because there might be multiple intermediate values of a variable due to sequential composition

wp Rule: Assignments (1)

$$
w p(\mathrm{x}:=e, R)=R[x:=e]
$$

$R[x:=e]$ means to substitute all free occurrences of variable x in postcondition R by expression e.

wp Rule: Assignments (2)

Recall:

$$
\{\boldsymbol{Q}\} S\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

How do we prove $\{\boldsymbol{Q}\} \times:=e\{\boldsymbol{R}\}$?

$$
\{Q\} \times:=e\{\boldsymbol{R}\} \Longleftrightarrow Q \Rightarrow \underbrace{R[x:=e]}_{w p(\mathrm{x}:=\mathrm{e}, \boldsymbol{R})}
$$

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to establish the postcondition $x>x_{0}$?

$$
\{? ?\} \times:=x+1\left\{x>x_{0}\right\}
$$

For the above Hoare triple to be TRUE, it must be that $? ? \Rightarrow w p\left(\mathrm{x}:=\mathrm{x}+1, x>x_{0}\right)$.

$$
\begin{aligned}
& \text { wp }\left(\mathrm{x}:=\mathrm{x}+1, x>x_{0}\right) \\
= & \{\text { Rule of wp:Assignments }\} \\
& x>x_{0}\left[x:=x_{0}+1\right] \\
= & \left\{\text { Replacing } x \text { by } x_{0}+1\right\} \\
& x_{0}+1>x_{0} \\
= & \{1>0 \text { always true }\} \\
& \text { True }
\end{aligned}
$$

Any precondition is OK.
False is valid but not useful.

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to establish the postcondition $x=23$?

$$
\{? ?\} \mathrm{x}:=\mathrm{x}+1\{x=23\}
$$

For the above Hoare triple to be TRUE, it must be that $? ? \Rightarrow w p(\mathrm{x}:=\mathrm{x}+1, x=23)$.

$$
\begin{aligned}
& w p(\mathrm{x}:=\mathrm{x}+1, x=23) \\
= & \{\text { Rule of wp:Assignments }\} \\
& x=23\left[x:=x_{0}+1\right] \\
= & \left\{\text { Replacing } x \text { by } x_{0}+1\right\} \\
& x_{0}+1=23 \\
= & \{\text { arithmetic }\} \\
& x_{0}=22
\end{aligned}
$$

Any precondition weaker than $x=22$ is not OK.

wp Rule: Assignments (4) Revisit

Given $\{? ?\} n:=n+9\{n>13\}$:

- $n>4$ is the weakest precondition (wp) for the given implementation $(\mathrm{n}:=\mathrm{n}+9)$ to start and establish the postcondition ($n>13$).
- Any precondition that is equal to or stronger than the wp ($n>4$) will result in a correct program.
e.g., $\{n>5\} n:=n+9\{n>13\}$ can be proved TRUE.
- Any precondition that is weaker than the wp $(n>4)$ will result in an incorrect program.
e.g., $\{n>3\} n:=n+9\{n>13\}$ cannot be proved TRUE.

Counterexample: $n=4$ satisfies precondition $n>3$ but the output $n=13$ fails postcondition $n>13$.

wp Rule: Alternations (1)

$w p\left(\right.$ if B then S_{1} else S_{2} end, $\left.R\right)=\left(\begin{array}{l}B \Rightarrow w p\left(S_{1}, \boldsymbol{R}\right) \\ \wedge \\ \neg B \Rightarrow w p\left(S_{2}, R\right)\end{array}\right)$

The wp of an alternation is such that all branches are able to establish the postcondition \boldsymbol{R}.

wp Rule: Alternations (2)

Recall: $\quad\{\boldsymbol{Q}\} S\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})$
How do we prove that $\{Q\}$ if B then S_{1} else S_{2} end $\{R\}$?

```
{Q}
if B then
    {Q^B} S S {R}
else
    {Q^\negB} S2 {R}
end
{R}
```

$\{Q\}$ if B then S_{1} else S_{2} end $\{R\}$

$$
\Longleftrightarrow\left(\begin{array}{l}
\{\boldsymbol{Q} \wedge B\} S_{1}\{\boldsymbol{R}\} \\
\wedge \\
\{\boldsymbol{Q} \wedge \neg B\} S_{2}\{\boldsymbol{R}\}
\end{array}\right) \Longleftrightarrow\left(\begin{array}{l}
(\boldsymbol{Q} \wedge B) \Rightarrow w p\left(S_{1}, \boldsymbol{R}\right) \\
\wedge \\
(\boldsymbol{Q} \wedge \neg B) \Rightarrow w p\left(S_{2}, \boldsymbol{R}\right)
\end{array}\right)
$$

wp Rule: Alternations (3) Exercise

Is this program correct?

```
{x>0^y>0}
if x > y then
    bigger := x ; smaller := y
else
    bigger := y ; smaller := x
end
{bigger \geq smaller}
```

$$
\begin{aligned}
& \left(\begin{array}{l}
\{(x>0 \wedge y>0) \wedge(x>y)\} \\
\text { bigger }:=x ; \text { smaller }:=y \\
\{\text { bigger } \geq \text { smaller }\}
\end{array}\right. \\
& \wedge
\end{aligned}\left(\begin{array}{c}
\{(x>0 \wedge y>0) \wedge \neg(x>y)\} \\
\text { bigger }:=y ; \text { smaller }:=\mathrm{x} \\
\{\text { bigger } \geq \text { smaller }\}
\end{array}\right) .
$$

wp Rule: Sequential Composition (1)

$$
w p\left(S_{1} ; S_{2}, R\right)=w p\left(S_{1}, w p\left(S_{2}, R\right)\right)
$$

The wp of a sequential composition is such that the first phase establishes the wp for the second phase to establish the postcondition R.

wp Rule: Sequential Composition (2)

Recall:

$$
\{\boldsymbol{Q}\} \mathrm{s}\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

How do we prove $\{\boldsymbol{Q}\} S_{1} ; S_{2}\{\boldsymbol{R}\}$?

$$
\{\boldsymbol{Q}\} S_{1} ; S_{2}\{\boldsymbol{R}\} \Longleftrightarrow \boldsymbol{Q} \Rightarrow \underbrace{w p\left(S_{1}, w p\left(S_{2}, R\right)\right)}_{w p\left(S_{1} ; S_{2}, R\right)}
$$

wp Rule: Sequential Composition (3) Exercisis sonos

Is $\{$ True \} tmp $:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}$; $\mathrm{y}:=\mathrm{tmp}\{x>y\}$ correct?
If and only if True $\Rightarrow w p(\operatorname{tmp}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}$; $\mathrm{y}:=\operatorname{tmp}, x>y)$

$$
\begin{aligned}
& w p(\text { tmp }:=\mathrm{x} ; \mathrm{x}:=\mathrm{y} ; \mathrm{y}:=\mathrm{tmp}, \mathrm{x}>\mathrm{y}) \\
= & \{w p \text { rule for seq. comp.\}} \\
& w p(\mathrm{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y} ; \mathrm{y}:=\mathrm{tmp}, \mathrm{x}>y)) \\
= & \{w p \text { rule for } \operatorname{seq} \cdot \operatorname{comp} \cdot\} \\
& w p(\mathrm{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y}, w p(\mathrm{y}:=\mathrm{tmp}, \mathrm{x}>\mathrm{y}))) \\
= & \{w p \text { rule for assignment }\} \\
& w p(\mathrm{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y}, \mathrm{x}>\text { tmp })) \\
= & \{w p \text { rule for assignment }\} \\
& w p(\mathrm{tmp}:=\mathrm{x}, y>\operatorname{tmp}) \\
= & \{w p \text { rule for assignment }\} \\
& y>x
\end{aligned}
$$

\because True $\Rightarrow y>x$ does not hold in general.
\therefore The above program is not correct.

Loops

- A loop is a way to compute a certain result by successive approximations.
e.g. computing the maximum value of an array of integers
- Loops are needed and powerful
- But loops very hard to get right:
- Infinite loops
- "off-by-one" error
- Improper handling of borderline cases
- Not establishing the desired condition
[termination]
[partial correctness]
[partial correctness]
[partial correctness]

Loops: Binary Search

BS1	BS 2
from	from
$i:=1 ; j:=n$	$i:=1 ; j:=n ;$ found $:=$ false
until $i=j$ loop	until $i=j$ and not found loop
$m:=(i+j) / / 2$	$m:=(i+j) / / 2$
if t @ $m<=x$ then	if t @ $m<x$ then
it=m	$i:=m+1$
else	elseif t @ $m=x$ then
$j:=m$	found := true
end	else
end	$j:=m-1$
Result := $x=t$ @ $)$	end
	end
	Result $:=$ found
BS3	BS4
from	from
$i:=0 ; j:=n$	$i:=0 ; j:=n+1$
until $i=j$ loop	until $i=j$ loop
$m:=(i+j+1) / / 2$	$m:=(i+j) / / 2$
if t @ $m<=x$ then	If t @ $m<=x$ then
$i:=m+1$	$i:=m+1$
else	else
$j:=m$	$j:=m$
end	end
end	end
If $i>=1$ and $i<=n$ then	If $i>=1$ and $i<=n$ then
Result $:=(x=t$ @ $i)$	Result $:=(x=t$ @ $i)$
else	else
Result $:=$ false	Result := false
end	end

4 implementations for binary search: published, but wrong!

See page 381 in Object Oriented Software Construction

Correctness of Loops

How do we prove that the following loops are correct?

QQ $\}$
from
$S_{\text {init }}$
until
B
loop
$S_{\text {body }}$
end
$\{R\}$

```
\{ Q \}
\(S_{\text {init }}\)
while ( \(\neg B\) )
    \(S_{\text {body }}\)
\}
\{ \(\boldsymbol{R}\) \}
```

- In case of C/Java, $\boxed{\neg B}$ denotes the stay condition.
- In case of Eiffel, B denotes the exit condition.

There is native, syntactic support for checking/proving the total correctness of loops.

Contracts for Loops: Syntax

```
from
    Sinit
invariant
    invariant_tag: l -- Boolean expression for partial correctness
until
    B
loop
    Sbody
variant
    variant_tag: V -- Integer expression for termination
end
```


Contracts for Loops

- Use of loop invariants (LI) and loop variants (LV).
- Invariants: Boolean expressions for partial correctness.
- Typically a special case of the postcondition.
e.g., Given postcondition " Result is maximum of the array ":

LI can be " Result is maximum of the part of array scanned so far ".

- Established before the very first iteration.
- Maintained TRUE after each iteration.
- Variants: Integer expressions for termination
- Denotes the number of iterations remaining
- Decreased at the end of each subsequent iteration
- Maintained non-negative at the end of each iteration.
- As soon as value of $L V$ reaches zero, meaning that no more iterations remaining, the loop must exit.
- Remember:
total correctness $=$ partial correctness + termination

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

```
test
    local
        i: INTEGER
    do
        from
            i := 1
        invariant
            1 <= i and i <= 6
        until
            i > 5
    loop
        io.put_string ("iteration " + i.out + "%N")
        i := i + 1
        variant
            6-i
        end
end
```

L8: Change to $1<=i$ and $i<=5$ for a Loop Invariant Violation.
L15: Change to 5 - i for a Loop Variant Violation.

Contracts for Loops: Visualization

Exit condition

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

Contracts for Loops: Example 1.1

```
find_max (a: ARRAY [INTEGER]): INTEGER
    local i: INTEGER
    do
        from
            i := a.lower ; Result := a[i]
        invariant
            loop_invariant: -- \forallj| a.lower }\leqj\leqi\bullet Result \geqa[j
                across a.lower |..| i as j all Result >= a [j.item] end
        until
            i > a.upper
        loop
            if a [i] > Result then Result := a [i] end
            i := i + 1
        variant
            loop_variant: a.upper - i + 1
            end
    ensure
            correct_result: -- \forallj| a.lower }\leqj\leqa.upper - Result \geqa[j
            across a.lower |..| a.upper as j all Result >= a [j.item]
    end
end
```


Contracts for Loops: Example 1.2

Consider the feature call find_max $(\langle\langle 20,10,40,30\rangle\rangle)$, given:

- Loop Invariant: $\forall j \mid$ a.lower $\leq j \leq i$ • Result $\geq a[j]$
- Loop Variant: a.upper -i+1
After Iteration

Initialization	1	20	\checkmark	\times	-
1st	2	20	\checkmark	\times	3
2nd	3	20	\times	-	-

Loop invariant violation at the end of the 2nd iteration:

$$
\forall j \mid \text { a.lower } \leq j \leq 3 \cdot 20 \geq a[j]
$$

evaluates to false $\because 20 \neq a[3]=40$

Contracts for Loops: Example 2.1

```
find_max (a: ARRAY [INTEGER]) : INTEGER
    local i: INTEGER
    do
        from
            i := a.lower ; Result := a[i]
        invariant
            Ioop_invariant: -- \forallj| a.lower }\leqj<i\bullet Result \geqa[j
                across a.lower |..| (i - 1) as j all Result >= a [j.item] end
        until
            i > a.upper
        loop
            if a [i] > Result then Result := a [i] end
            i := i + 1
        variant
            loop_variant: a.upper - i
        end
    ensure
        correct_result: -- \forallj| a.lower }\leqj\leq\mathrm{ a.upper • Result }\geqa[j
            across a.lower |..| a.upper as j all Result >= a [j.item]
    end
end
```


Contracts for Loops: Example 2.2

Consider the feature call find_max $(\langle\langle 20,10,40,30\rangle\rangle)$, given:

- Loop Invariant: $\forall j \mid$ a.lower $\leq j<i$ • Result $\geq a[j]$
- Loop Variant: a.upper - i

AFTER ITERATION	i	Result	LI	ExIT (i> a.upper)?	LV
Initialization	1	20	\checkmark	\times	-
1st	2	20	\checkmark	\times	2
2nd	3	20	\checkmark	\times	1
3rd	4	40	\checkmark	\times	0
4th	5	40	\checkmark	\checkmark	-1

Loop variant violation at the end of the 4th iteration
\because a.upper - $i=4-5$ evaluates to non-zero.

Contracts for Loops: Example 3.1

```
find_max (a: ARRAY [INTEGER]) : INTEGER
    local i: INTEGER
    do
        from
            i := a.lower ; Result := a[i]
        invariant
            Ioop_invariant: -- \forallj| a.lower }\leqj<i\bullet Result \geqa[j
                across a.lower |..| (i - 1) as j all Result >= a [j.item] end
        until
            i > a.upper
        loop
            if a [i] > Result then Result := a [i] end
            i := i + 1
        variant
            loop_variant: a.upper - i + 1
            end
    ensure
        correct_result: -- \forallj|a.lower }\leqj\leqa.upper . Result \geqa[j
            across a.lower |..| a.upper as j all Result >= a [j.item]
    end
end
```


Contracts for Loops: Example 3.2

Consider the feature call find_max $(\langle\langle 20,10,40,30\rangle\rangle)$, given:

- Loop Invariant: $\forall j \mid$ a.lower $\leq j<i$ • Result $\geq a[j]$
- Loop Variant: a.upper - i+1
- Postcondition : $\forall j \mid$ a.lower $\leq j \leq$ a.upper \bullet Result $\geq a[j]$

AFTER ITERATION

Initialization	1	20	\checkmark	\times	-
1st	2	20	\checkmark	\times	3
2nd	3	20	\checkmark	\times	2
3rd	4	40	\checkmark	\times	1
4th	5	40	\checkmark	\checkmark	0

Contracts for Loops: Exercise

class DICTIONARY[V, K]
feature \{NONE\} -- Implementations
values: ARRAY[K]
keys: ARRAY[K]
feature -- Abstraction Function
model: FUN[K, V]
feature -- Queries
get_keys ($v: V)$: ITERABLE[$K]$
local $i:$ INTEGER; $k s:$ LINKED_LIST[K] do
from i := keys.lower ; create ks.make_empty
invariant ??
until $i>k e y s . u p p e r$
do if values[i] $\sim v$ then ks.extend(keys[i]) end end
Result := ks.new_cursor
ensure
result_valid: $\forall k \mid k \in$ Result • model.item $(k) \sim v$
no_missing_keys: $\forall k \mid k \in$ model.domain • model.item $(k) \sim v \Rightarrow k \in$ Result end

Proving Correctness of Loops (1)

$\{Q\} \quad$	from
	$S_{\text {init }}$
	invariant
	I
	until
	B
	loop
	$S_{\text {body }}$
	variant
	V
	end $\quad\{R\}$

- A loop is partially correct if:
- Given precondition Q, the initialization step $S_{\text {init }}$ establishes LI I.
- At the end of $S_{b o d y}$, if not yet to exit, $L / /$ is maintained.
- If ready to exit and $L / /$ maintained, postcondition R is established.
- A loop terminates if:
- Given LI I, and not yet to exit, $S_{\text {body }}$ maintains $L V$ V as non-negative.
- Given $L I I$, and not yet to exit, $S_{b o d y}$ decrements LV V.

Proving Correctness of Loops (2)

$\{Q\}$ from $S_{\text {init }}$ invariant I until B loop $S_{\text {body }}$ variant V end $\{R\}$

- A loop is partially correct if:
- Given precondition Q, the initialization step $S_{\text {init }}$ establishes LI I.

$$
\{Q\} S_{\text {init }}\{I\}
$$

- At the end of $S_{\text {body }}$, if not yet to exit, $L I I$ is maintained.

$$
\{I \wedge \neg B\} S_{\text {body }}\{I\}
$$

- If ready to exit and $L /$ / maintained, postcondition R is established.

$$
1 \wedge B \Rightarrow R
$$

- A loop terminates if:
- Given $L I I$, and not yet to exit, $S_{\text {body }}$ maintains $L V V$ as non-negative.

$$
\{I \wedge \neg B\} S_{\text {body }}\{V \geq 0\}
$$

- Given LII, and not yet to exit, $S_{\text {body }}$ decrements $L V V$.

$$
\{I \wedge \neg B\} S_{\text {body }}\left\{V<V_{0}\right\}
$$

Proving Correctness of Loops: Exercise (1.1)

Prove that the following program is correct:

```
find_max (a: ARRAY [INTEGER]): INTEGER
    local i: INTEGER
    do
        from
            i := a.lower ; Result := a[i]
            invariant
            loop_invariant: }\forallj|\mathrm{ a.lower }\leqj<i\bullet Result \geqa[j
            until
            i > a.upper
            loop
            if a [i] > Result then Result := a [i] end
            i := i + 1
            variant
            loop_variant: a.upper - i + 1
            end
    ensure
            correct_result: }\forallj|\mathrm{ a.lower }\leqj\leqa.upper • Result \geqa[j
    end
end
```


Proving Correctness of Loops: Exercise (1.2) ssowes

Prove that each of the following Hoare Triples is True.

1. Establishment of Loop Invariant:
```
{ True }
    i := a.lower
    Result := a[i]
{ \forallj|a.lower }\leqj<i\bulletResult \geqa[j] 
```

2. Maintenance of Loop Invariant:
```
{(\forallj| a.lower }\leqj<i\bulletResult \geqa[j])^\neg(i> a.upper) }
    if a [i] > Result then Result := a [i] end
    i := i + 1
{(\forallj| a.lower \leqj<i\bullet Result \geqa[j]) }
```

3. Establishment of Postcondition upon Termination:

$$
\begin{aligned}
& (\forall j \mid \text { a.lower } \leq j<i \bullet \text { Result } \geq a[j]) \wedge i>\text { a.upper } \\
& \quad \Rightarrow \forall j \mid \text { a.lower } \leq j \leq \text { a.upper } \bullet \text { Result } \geq a[j]
\end{aligned}
$$

Proving Correctness of Loops: Exercise (1.3) hssovos

Prove that each of the following Hoare Triples is True.
4. Loop Variant Stays Non-Negative Before Exit:

```
{(\forallj| a.lower }\leqj<i\bullet\mathrm{ Result }\geqa[j])\wedge\neg(i> a.upper) 
    if a [i] > Result then Result := a [i] end
    i := i + 1
{ a.upper -i+1\geq0}
```

5. Loop Variant Keeps Decrementing before Exit:
```
{(\forallj| a.lower }\leqj<i\bullet\mathrm{ Result }\geqa[j])\wedge\neg(i> a.upper) 
    if a [i] > Result then Result := a [i] end
    i := i + 1
{ a.upper -i+1<(a.upper -i+1)0 }
```

where (a.upper $-i+1)_{0} \equiv$ a.upper ${ }_{0}-i_{0}+1$

Proof Tips (1)

$$
\{Q\} s\{R\} \Rightarrow\{Q \wedge P\} s\{R\}
$$

In order to prove $\{Q \wedge P\} S\{R\}$, it is sufficient to prove a version with a weaker precondition: $\{Q\} S\{R\}$.

Proof:

- Assume: $\{Q\}$ s $\{R\}$

It's equivalent to assuming: $Q \Rightarrow w p(s, R)$

- To prove: $\{Q \wedge P\} S\{R\}$
- It's equivalent to proving: $Q \wedge P \Rightarrow w p(s, R)$
- Assume: $Q \wedge P$, which implies Q
- According to (A1), we have $w p(S, R)$.

Proof Tips (2)

When calculating $w p(S, R)$, if either program s or postcondition R involves array indexing, then R should be augmented accordingly.
e.g., Before calculating $w p(s, a[i]>0)$, augment it as

$$
w p(s, \text { a.lower } \leq i \leq \text { a.upper } \wedge a[i]>0)
$$

e.g., Before calculating $w p(\mathrm{x}:=\mathrm{a}[\mathrm{i}], R)$, augment it as

$$
w p(\mathrm{x}:=\mathrm{a}[\mathrm{i}], \text { a.lower } \leq i \leq \text { a.upper } \wedge R)
$$

Beyond this lecture

Exercise on proving the total correctness of a program:

```
https://www.eecs.yorku.ca/~ jackie/teaching/lectures/2020/F/
```


Index (1)

Learning Objectives
Assertions: Weak vs. Strong
Assertions: Preconditions
Assertions: Postconditions
Motivating Examples (1)
Motivating Examples (2)
Software Correctness
Hoare Logic
Hoare Logic and Software Correctness
Proof of Hoare Triple using wp
Denoting New and Old Values

Index (2)

wp Rule: Assignments (1)
wp Rule: Assignments (2)
wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise
wp Rule: Assignments (5) Revisit
wp Rule: Alternations (1)
wp Rule: Alternations (2)
wp Rule: Alternations (3) Exercise
wp Rule: Sequential Composition (1)
wp Rule: Sequential Composition (2)
wp Rule: Sequential Composition (3) Exercise
48 of 51

Index (3)

Loops
Loops: Binary Search
Correctness of Loops
Contracts for Loops: Syntax
Contracts for Loops
Contracts for Loops: Runtime Checks (1)
Contracts for Loops: Runtime Checks (2)
Contracts for Loops: Visualization
Contracts for Loops: Example 1.1
Contracts for Loops: Example 1.2
Contracts for Loops: Example 2.1

Index (4)

Contracts for Loops: Example 2.2
Contracts for Loops: Example 3.1
Contracts for Loops: Example 3.2
Contracts for Loops: Exercise
Proving Correctness of Loops (1)
Proving Correctness of Loops (2)
Proving Correctness of Loops: Exercise (1.1)
Proving Correctness of Loops: Exercise (1.2)
Proving Correctness of Loops: Exercise (1.3)
Proof Tips (1)
Proof Tips (2)

Index (5)

Beyond this lecture

