Program Correctness

OOSC2 Chapter 11

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

- Motivating Examples: Program Correctness
- 2. Hoare Triple
- 3. Weakest Precondition (wp)
- 4. Rules of wp Calculus
- **5.** Contract of Loops (*invariant* vs. *variant*)
- 6. **Correctness Proofs** of Loops

LASSONDE SCHOOL OF ENGINEERIN

Assertions: Weak vs. Strong

- Describe each assertion as a set of satisfying value.
 - x > 3 has satisfying values $\{ x \mid x > 3 \} = \{ 4, 5, 6, 7, \dots \}$ x > 4 has satisfying values $\{ x \mid x > 4 \} = \{ 5, 6, 7, \dots \}$
- An assertion p is stronger than an assertion q if p's set of satisfying values is a subset of q's set of satisfying values.
 - Logically speaking, p being stronger than q (or, q being weaker than p) means $p \Rightarrow q$.
 - \circ e.g., $x > 4 \Rightarrow x > 3$
- What's the weakest assertion?

[TRUE]

What's the strongest assertion?

[FALSE]

- In *Design by Contract*:
 - A <u>weaker</u> <u>invariant</u> has more acceptable object states
 e.g., <u>balance</u> > 0 vs. <u>balance</u> > 100 as an invariant for ACCOUNT
 - A <u>weaker</u> <u>precondition</u> has more acceptable input values
 - A <u>weaker</u> postcondition has more acceptable output values

Assertions: Preconditions

Given preconditions P_1 and P_2 , we say that

 P_2 **requires less** than P_1 if

 P_2 is *less strict* on (thus *allowing more*) inputs than P_1 does.

$$\{ x \mid P_1(x) \} \subseteq \{ x \mid P_2(x) \}$$

More concisely:

$$P_1 \Rightarrow P_2$$

e.g., For command withdraw (amount: INTEGER),

 P_2 : amount ≥ 0 requires less than P_1 : amount > 0

What is the *precondition* that *requires the least*?

[true]

Assertions: Postconditions

Given postconditions or invariants Q_1 and Q_2 , we say that

 Q_2 ensures more than Q_1 | if

 Q_2 is **stricter** on (thus **allowing less**) outputs than Q_1 does.

$$\{ x \mid Q_2(x) \} \subseteq \{ x \mid Q_1(x) \}$$

More concisely:

$$Q_2 \Rightarrow Q_1$$

e.g., For query q(i: INTEGER): BOOLEAN,

$$Q_2$$
: Result = $(i > 0) \land (i \mod 2 = 0)$ ensures more than

$$Q_1 : \mathbf{Result} = (i > 0) \lor (i \bmod 2 = 0)$$

What is the postcondition that ensures the most?

[false]

Motivating Examples (1)

Is this feature correct?

Q: Is i > 3 is too weak or too strong?

A: Too weak

: assertion i > 3 allows value 4 which would fail postcondition.

Motivating Examples (2)

Is this feature correct?

Q: Is i > 5 too weak or too strong?

A: Maybe too strong

 \therefore assertion i > 5 disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.

Software Correctness

- Correctness is a <u>relative</u> notion:
 <u>consistency</u> of <u>implementation</u> with respect to <u>specification</u>.
 - ⇒ This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program S and its specification (pre-condition Q and post-condition R) as a Boolean predicate: {Q} s {R}
 - \circ e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ \circ e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$
 - If Q S R can be proved **TRUE**, then the **S** is correct. e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$ can be proved TRUE.
 - If Q S R cannot be proved TRUE, then the S is incorrect. e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ cannot be proved TRUE.

Hoare Logic

- Consider a program S with precondition Q and postcondition R.
 - ∘ {Q} S {R} is a correctness predicate for program S
 - {Q} S {R} is TRUE if program S starts executing in a state satisfying the precondition Q, and then:
 - (a) The program S terminates.
 - **(b)** Given that program **S** terminates, then it terminates in a state satisfying the postcondition R.
- Separation of concerns
 - (a) requires a proof of *termination*.
 - **(b)** requires a proof of **partial** correctness.
 - Proofs of (a) + (b) imply **total** correctness.

Hoare Logic and Software Correctness

```
Consider the contract view of a feature f (whose body of
implementation is S) as a Hoare Triple :
                                 {Q} s {R}
   Q is the precondition of f.
   S is the implementation of f.
   R is the postcondition of f.

    {true} s {R}

         All input values are valid
                                                           [ Most-user friendly ]

    {false} S {R}

         All input values are invalid
                                                     [ Most useless for clients ]

    {Q} s {true}

         All output values are valid [ Most risky for clients; Easiest for suppliers ]

    {Q} s {false}

         All output values are invalid
                                                [ Most challenging coding task ]

    {true} s {true}

         All inputs/outputs are valid (No contracts)
                                                           [ Least informative ]
```

10 of 51

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

- wp(S, R) is the weakest precondition for S to establish R.
 - If Q ⇒ wp(S, R), then any execution started in a state satisfying Q will terminate in a state satisfying R.
 - If $Q
 ightharpoonup wp(S, \mathbb{R})$, then **some** execution started in a state satisfying Q will terminate in a state **violating** \mathbb{R} .
- S can be:
 - Assignments (x := y)
 - Alternations (if ... then ... else ... end)
 - Sequential compositions $(S_1 ; S_2)$
 - Loops (from ... until ... loop ... end)
- We will learn how to calculate the wp for the above programming constructs.

Denoting New and Old Values

In the postcondition, for a program variable x:

- We write x_0 to denote its **pre-state** (old) value.
- We write x to denote its post-state (new) value.
 Implicitly, in the precondition, all program variables have their pre-state values.

e.g.,
$$\{b_0 > a\}$$
 b := b - a $\{b = b_0 - a\}$

- Notice that:
 - We may choose to write "b" rather than "b₀" in preconditions
 ∴ All variables are pre-state values in preconditions
 - ∘ We don't write "b₀" in program
 - : there might be *multiple intermediate values* of a variable due to sequential composition

$$wp(x := e, R) = R[x := e]$$

R[x := e] means to substitute all *free occurrences* of variable x in postcondition R by expression e.

Recall:

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

How do we prove $\{Q\} \times = e\{R\}$?

$$\{Q\} \times := e \{R\} \iff Q \Rightarrow \underbrace{R[X := e]}_{wp(x := e, R)}$$

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

$$\{??\} \times := \times + 1 \{x > x_0\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x > x_0)$.

$$wp(x := x + 1, x > x_0)$$
= $\{Rule \ of \ wp : Assignments\}$
 $x > x_0[x := x_0 + 1]$
= $\{Replacing \ x \ by \ x_0 + 1\}$
 $x_0 + 1 > x_0$
= $\{1 > 0 \ always \ true\}$
True

Any precondition is OK.

False is valid but not useful.

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition x = 23?

$$\{??\} \times := \times + 1 \{x = 23\}$$

For the above Hoare triple to be *TRUE*, it must be that $?? \Rightarrow wp(x := x + 1, x = 23)$.

$$wp(x := x + 1, x = 23)$$
= {Rule of wp: Assignments}
 $x = 23[x := x_0 + 1]$
= {Replacing x by $x_0 + 1$ }
 $x_0 + 1 = 23$
= {arithmetic}
 $x_0 = 22$

Any precondition weaker than x = 22 is not OK.

wp Rule: Assignments (4) Revisit

Given
$$\{??\}n := n + 9\{n > 13\}$$
:

- n > 4 is the weakest precondition (wp) for the given implementation (n := n + 9) to start and establish the postcondition (n > 13).
- Any precondition that is equal to or stronger than the wp (n > 4) will result in a correct program.
 - e.g., $\{n > 5\}n := n + 9\{n > 13\}$ <u>can</u> be proved **TRUE**.
- Any precondition that is weaker than the wp (n > 4) will result in an incorrect program.
 - e.g., $\{n > 3\}n := n + 9\{n > 13\}$ <u>cannot</u> be proved **TRUE**.
 - Counterexample: n = 4 satisfies precondition n > 3 but the output n = 13 fails postcondition n > 13.

$$wp(if B then S_1 else S_2 end, R) = \begin{pmatrix} B \Rightarrow wp(S_1, R) \\ \land \\ \neg B \Rightarrow wp(S_2, R) \end{pmatrix}$$

The wp of an alternation is such that **all branches** are able to establish the postcondition R.

wp Rule: Alternations (2)

```
Recall: \{Q\} S \{R\} \equiv Q \Rightarrow wp(S, R)
```

How do we prove that $\{Q\}$ if B then S_1 else S_2 end $\{R\}$?

```
 \begin{cases} Q \\ \text{if } B \text{ then} \\ \{Q \land B\} \ S_1 \ \{R\} \\ \text{else} \\ \{Q \land \neg B\} \ S_2 \ \{R\} \\ \text{end} \\ \{R\} \\ \end{cases}
```


wp Rule: Alternations (3) Exercise

Is this program correct?

```
{x > 0 ∧ y > 0}
if x > y then
bigger := x ; smaller := y
else
bigger := y ; smaller := x
end
{bigger ≥ smaller}
```

```
\begin{cases} \{(x > 0 \land y > 0) \land (x > y)\} \\ \text{bigger} := x ; \text{smaller} := y \\ \{bigger \ge smaller\} \\ \land \\ \left\{(x > 0 \land y > 0) \land \neg (x > y)\} \\ \text{bigger} := y ; \text{smaller} := x \\ \{bigger \ge smaller\} \end{cases}
```


wp Rule: Sequential Composition (1)

$$wp(S_1 ; S_2, \mathbb{R}) = wp(S_1, wp(S_2, \mathbb{R}))$$

The wp of a sequential composition is such that the first phase establishes the wp for the second phase to establish the postcondition R.

wp Rule: Sequential Composition (2)

Recall:

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

How do we prove $\{Q\}$ S_1 ; S_2 $\{R\}$?

$$\{Q\}$$
 S_1 ; S_2 $\{R\}$ \iff $Q \Rightarrow \underbrace{wp(S_1, wp(S_2, R))}_{wp(S_1; S_2, R)}$

wp Rule: Sequential Composition (3) Exercise sond

```
Is \{ True \}  tmp := x; x := y; y := tmp \{ x > y \}  correct?
If and only if True \Rightarrow wp(tmp := x ; x := y ; y := tmp, x > y)
         wp(tmp := x ; | x := y ; y := tmp |, x > y)
      = {wp rule for seq. comp.}
         wp(tmp := x, wp(x := y ; | y := tmp |, x > y))
      = {wp rule for seq. comp.}
         wp(tmp := x, wp(x := y, wp(y := tmp, x > |y|)))
      = {wp rule for assignment}
         wp(tmp := x, wp(x := y, x > tmp))
      = {wp rule for assignment}
         wp(tmp := x, y > |tmp|)
      = {wp rule for assignment}
         V > X
```

- \therefore *True* \Rightarrow y > x does not hold in general.
- ... The above program is not correct.

Loops

- A loop is a way to compute a certain result by successive approximations.
 - e.g. computing the maximum value of an array of integers
- · Loops are needed and powerful
- But loops very hard to get right:
 - Infinite loops
 - o "off-by-one" error
 - Improper handling of borderline cases
 - Not establishing the desired condition

[termination]

[partial correctness]

[partial correctness]

[partial correctness]

RS1 BS2 from from i := 1; j := ni := 1; j := n; found := falseuntil i = i and not found loop until i = i loopm := (i + i) // 2m := (i + i) // 2if $t @ m \le x$ then if t @ m < x then i := mi := m + 1else elseif t @ m = x then i := mfound := true end else i := m - 1end Result := (x = t @ i)end end Result := foundBS3 BS4 from from i := 0; j := ni := 0; j := n + 1until i = j loop until i = j loopm := (i + i + 1) // 2m := (i + i) // 2if $t @ m \le x$ then if $t @ m \le x$ then i := m + 1i := m + 1else else j := mj := mend end end end if $i \ge 1$ and $i \le n$ then if i >= 1 and i <= n then Result := (x = t @ i)Result := (x = t @ i)else else Result := falseResult := folseend end

4 implementations for binary search: published, but *wrong*!

See page 381 in *Object Oriented* Software Construction

Correctness of Loops

How do we prove that the following loops are correct?

```
{Q}
from
Sinit
until
B
loop
Sbody
end
{R}
```

```
{ Q } S_{init} while (¬ B) { S_{body} } { R }
```

- In case of C/Java, $\neg B$ denotes the **stay condition**.
- In case of Eiffel, B denotes the exit condition.
 There is native, syntactic support for checking/proving the total correctness of loops.


```
from
    S_init
invariant
    invariant_tag: I -- Boolean expression for partial correctness
until
    B
loop
    S_body
variant
    variant_tag: V -- Integer expression for termination
end
```

Contracts for Loops

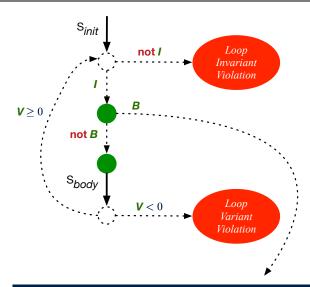
- Use of loop invariants (LI) and loop variants (LV).
 - *Invariants*: Boolean expressions for *partial correctness*.
 - Typically a special case of the postcondition.
 e.g., Given postcondition "Result is maximum of the array":

LI can be "Result is maximum of the part of array scanned so far".

- Established before the very first iteration.
- Maintained TRUE after each iteration.
- Variants: Integer expressions for termination
 - Denotes the <u>number of iterations remaining</u>
 - Decreased at the end of each subsequent iteration
 - Maintained *non-negative* at the end of each iteration.
 - As soon as value of LV reaches zero, meaning that no more iterations remaining, the loop must exit.
- · Remember:

total correctness = partial correctness + termination

Contracts for Loops: Runtime Checks (1)



Contracts for Loops: Runtime Checks (2)

```
test
 local
   i: INTEGER
 do
   from
   i := 1
   invariant
   1 \le i \text{ and } i \le 6
   until
  i > 5
   100p
   io.put string ("iteration " + i.out + "%N")
    i := i + 1
 variant
    6 - i
   end
end
```

L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation. **L15:** Change to 5 - i for a Loop Variant Violation.

5

10

11

12

13

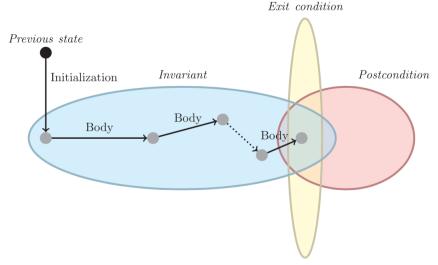
14

15

16

17

Contracts for Loops: Visualization



Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

Contracts for Loops: Example 1.1

```
find max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
    i := a.lower : Result := a[i]
   invariant
     loop_invariant: -- \forall i \mid a.lower \leq i \leq i \bullet Result \geq a[i]
      across a.lower |..| i as j all Result >= a [j.item] end
   until
    i > a.upper
   loop
     if a [i] > Result then Result := a [i] end
     i := i + 1
   variant
    loop\_variant: a.upper - i + 1
   end
 ensure
   correct\_result: -- \forall i \mid a.lower \leq i \leq a.upper \bullet Result \geq a[i]
     across a.lower |..| a.upper as j all Result >= a [j.item]
 end
end
```


Contracts for Loops: Example 1.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a.lower \leq j \leq i$ Result $\geq a[j]$
- Loop Variant: a.upper i + 1

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	✓	×	_
1st	2	20	√	×	3
2nd	3	20	×	_	_

Loop invariant violation at the end of the 2nd iteration:

$$\forall j \mid a.lower \leq j \leq \boxed{3} \bullet \boxed{20} \geq a[j]$$

evaluates to *false* : 20 ≱ a[3] = 40

Contracts for Loops: Example 2.1

```
find max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
    i := a.lower : Result := a[i]
   invariant
     loop_invariant: -- \forall i \mid a.lower \leq i < i \bullet Result \geq a[i]
      across a.lower | ... | (i - 1) as j all Result >= a [j.item] end
   until
    i > a.upper
   loop
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
    loop_variant: a.upper - i
   end
 ensure
   correct\_result: -- \forall i \mid a.lower \leq i \leq a.upper \bullet Result \geq a[i]
     across a.lower |..| a.upper as j all Result >= a [j.item]
 end
end
```


Contracts for Loops: Example 2.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a.\overline{lower \leq j < i} \bullet Result \geq a[j]$
- Loop Variant: a.upper i

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	_	×	_
1st	2	20	✓	×	2
2nd	3	20	✓	×	1
3rd	4	40	✓	×	0
4th	5	40	✓	✓	-1

Loop variant violation at the end of the 4th iteration

 \therefore a.upper – i = 4 – 5 evaluates to **non-zero**.

Contracts for Loops: Example 3.1

```
find max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
    i := a.lower : Result := a[i]
   invariant
     loop_invariant: -- \forall i \mid a.lower \leq i < i \bullet Result \geq a[i]
      across a.lower | ... | (i - 1) as j all Result >= a [j.item] end
   until
    i > a.upper
   loop
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
    loop\_variant: a.upper - i + 1
   end
 ensure
   correct\_result: -- \forall i \mid a.lower \leq i \leq a.upper \bullet Result \geq a[i]
     across a.lower |..| a.upper as j all Result >= a [j.item]
 end
end
```


Contracts for Loops: Example 3.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

• **Loop Invariant**: $\forall j \mid a.lower \le j < i \bullet Result \ge a[j]$

• Loop Variant: a.upper – i + 1

• Postcondition: $\forall j \mid a.lower \leq j \leq a.upper • Result \geq a[j]$

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	✓	×	_
1st	2	20	✓	×	3
2nd	3	20	\	×	2
3rd	4	40	✓	×	1
4th	5	40	✓	✓	0

Contracts for Loops: Exercise

```
class DICTIONARY[V, K]
feature {NONE} -- Implementations
 values: ARRAY[K]
 kevs: ARRAY[K]
feature -- Abstraction Function
 model: FUN[K, V]
feature -- Oueries
 get_keys(v: V): ITERABLE[K]
   local i: INTEGER; ks: LINKED LIST[K]
   do
     from i := keys.lower ; create ks.make_empty
     invariant
     until i > keys.upper
     do if values[i] ~ v then ks.extend(keys[i]) end
     end
     Result := ks.new cursor
   ensure
     result_valid: \forall k \mid k \in \text{Result} \bullet model.item(k) \sim v
     no_missing_keys: \forall k \mid k \in model.domain \bullet model.item(k) \sim v \Rightarrow k \in Result
   end
```


Proving Correctness of Loops (1)

```
{Q} from Sinit invariant I until B loop Sbody variant V end {R}
```

- A loop is partially correct if:
 - Given precondition Q, the initialization step S_{init} establishes LI I.
 - At the end of S_{body} , if not yet to exit, LII is maintained.
 - If ready to exit and LI I maintained, postcondition R is established.
- A loop terminates if:
 - Given *LI I*, and not yet to exit, S_{body} maintains *LV V* as non-negative.
 - Given **LI** I, and not yet to exit, S_{body} decrements **LV** V.

Proving Correctness of Loops (2)

- $\{Q\}$ from S_{init} invariant I until B loop S_{body} variant V end $\{R\}$
 - A loop is *partially correct* if:
 - Given precondition Q, the initialization step S_{init} establishes LII.

$$\{Q\}$$
 S_{init} $\{I\}$

• At the end of S_{body} , if not yet to exit, LII is maintained.

$$\{I \land \neg B\} \ S_{body} \ \{I\}$$

If ready to exit and LI I maintained, postcondition R is established.

$$I \wedge B \Rightarrow R$$

- A loop terminates if:
 - Given LI I, and not yet to exit, S_{body} maintains LV V as non-negative.

$$\{I \land \neg B\} \ S_{body} \ \{V \ge 0\}$$

Given LI I, and not yet to exit, S_{body} decrements LV V.

$$\{I \land \neg B\} \ S_{body} \ \{V < V_0\}$$

Proving Correctness of Loops: Exercise (1.1)

Prove that the following program is correct:

```
find max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
    i := a.lower ; Result := a[i]
   invariant.
     loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
   until
     i > a.upper
   loop
    if a [i] > Result then Result := a [i] end
     i := i + 1
   variant
     loop_variant: a.upper - i + 1
   end
 ensure
   correct_result: \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
 end
end
```

Proving Correctness of Loops: Exercise (1.2) SSONDI

Prove that each of the following *Hoare Triples* is TRUE.

1. Establishment of Loop Invariant:

2. Maintenance of Loop Invariant:

```
 \left\{ \begin{array}{l} \left( \ \forall j \ | \ a.lower \leq j < i \bullet \ Result \geq a[j] \right) \land \neg (i > a.upper) \ \right\} \\ \textbf{if} \ a \ [i] > \ Result \ then \ Result := a \ [i] \ end \\ i := i + 1 \\ \left( \ \forall j \ | \ a.lower \leq j < i \bullet \ Result \geq a[j] \right) \ \right\}
```

3. Establishment of Postcondition upon Termination:

```
(\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land i > a.upper \Rightarrow \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
```

Proving Correctness of Loops: Exercise (1.3) SSONDI

Prove that each of the following *Hoare Triples* is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right. \\  \left. \begin{array}{l} \textbf{if} \ a \ [i] > \textbf{Result then Result} \ := \ a \ [i] \ \textbf{end} \\        i \ := \ i \ + \ 1 \\ \left. \begin{array}{l} a.upper - i + 1 \geq 0 \end{array} \right. \right\}
```

5. Loop Variant Keeps Decrementing before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right. \\  \left. \begin{array}{l} \textbf{if} \ a \ [i] > \textbf{Result then Result} \ := \ a \ [i] \ \textbf{end} \\  i \ := \ i \ + \ 1 \\ \left. \begin{array}{l} a.upper - i + 1 < (a.upper - i + 1)_0 \end{array} \right. \right\}
```

where $(a.upper - i + 1)_0 \equiv a.upper_0 - i_0 + 1$

Proof Tips (1)

$$\{Q\} \mathrel{\mathbb{S}} \{R\} \Rightarrow \{Q \land P\} \mathrel{\mathbb{S}} \{R\}$$

In order to prove $\{Q \land P\} \le \{R\}$, it is sufficient to prove a version with a *weaker* precondition: $\{Q\} \le \{R\}$.

Proof:

- ∘ Assume: $\{Q\} S \{R\}$ It's equivalent to assuming: $\boxed{Q} \Rightarrow wp(S, R)$ (A1)
- ∘ To prove: $\{Q \land P\}$ S $\{R\}$
 - It's equivalent to proving: $Q \land P \Rightarrow wp(S, R)$
 - Assume: $Q \wedge P$, which implies |Q|
 - According to **(A1)**, we have wp(S, R).

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

$$wp(S, a.lower \le i \le a.upper \land a[i] > 0)$$

e.g., Before calculating wp(x := a[i], R), augment it as

$$wp(x := a[i], a.lower \le i \le a.upper \land R)$$

Beyond this lecture

Exercise on proving the *total correctness* of a program:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/ EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf

Index (1)

Learning Objectives

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Denoting New and Old Values

47 of 51

Index (2)

wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Assignments (5) Revisit

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise

48 of 51

Loops

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1

Index (4)

Contracts for Loops: Example 2.2

Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)

Index (5)

Beyond this lecture