Program Correctness

OOSC2 Chapter 11

EECS3311 A & E: Software Design Fall 2020

CHEN-WEI WANG

Learning Objectives

- 1. Motivating Examples: Program Correctness
- 2. Hoare Triple
- 3. Weakest Precondition (wp)
- 4. Rules of wp Calculus
- **5.** Contract of Loops (*invariant* vs. *variant*)
- 6. **Correctness Proofs** of Loops

Assertions: Weak vs. Strong

- Describe each assertion as *a set of satisfying value*.
 - x > 3 has satisfying values $\{ x \mid x > 3 \} = \{ 4, 5, 6, 7, ... \}$ x > 4 has satisfying values $\{ x \mid x > 4 \} = \{ 5, 6, 7, ... \}$
- An assertion p is **stronger** than an assertion $q \mid \text{if} \mid p$'s set of satisfying values is a subset of q's set of satisfying values.
 - Logically speaking, p being stronger than q (or, q being weaker than p) means $p \Rightarrow q$.
 - \circ e.g., $x > 4 \Rightarrow x > 3$
- What's the weakest assertion?

[TRUE]

• What's the strongest assertion?

[FALSE]

- In *Design by Contract*:
 - A <u>weaker</u> <u>invariant</u> has more acceptable object states
 e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT
 - A <u>weaker</u> <u>precondition</u> has more acceptable input values
 - A weaker *postcondition* has more acceptable output values

3 of 51

Assertions: Preconditions

Given preconditions P_1 and P_2 , we say that

 P_2 requires less than P_1 if

 P_2 is *less strict* on (thus *allowing more*) inputs than P_1 does.

$$\{ x \mid P_1(x) \} \subseteq \{ x \mid P_2(x) \}$$

More concisely:

$$P_1 \Rightarrow P_2$$

e.g., For command withdraw (amount: INTEGER),

 P_2 : amount ≥ 0 requires less than P_1 : amount > 0

What is the *precondition* that *requires the least*? [*tr*

[true]

2 of 51

Assertions: Postconditions

Given postconditions or invariants Q_1 and Q_2 , we say that

 Q_2 ensures more than Q_1 if

 $\overline{Q_2}$ is **stricter** on (thus **allowing less**) outputs than Q_1 does.

$$\{ x \mid Q_2(x) \} \subseteq \{ x \mid Q_1(x) \}$$

More concisely:

$$Q_2 \Rightarrow Q_1$$

e.g., For query q(i: INTEGER): BOOLEAN,

 Q_2 : Result = $(i > 0) \land (i \mod 2 = 0)$ ensures more than

 $Q_1 : \mathbf{Result} = (i > 0) \lor (i \bmod 2 = 0)$

What is the postcondition that ensures the most? [false]

5 of 51

LASSONDE SCHOOL OF ENGINEERING

Motivating Examples (1)

Is this feature correct?

Q: Is i > 3 is too weak or too strong?

A: Too weak

: assertion i > 3 allows value 4 which would fail postcondition.

6 of 51

Motivating Examples (2)

Is this feature correct?

Q: Is i > 5 too weak or too strong?

A: Maybe too strong

: assertion i > 5 disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.

7 of 51

Software Correctness

- Correctness is a <u>relative</u> notion:
 <u>consistency</u> of <u>implementation</u> with respect to <u>specification</u>.
 - ⇒ This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program S and its specification (pre-condition Q and

```
post-condition R) as a Boolean predicate: \{Q\} s \{R\}
```

```
\circ e.g., \{i > 3\} i := i + 9 \{i > 13\}
\circ e.g., \{i > 5\} i := i + 9 \{i > 13\}
```

- If $\{Q\}$ s $\{R\}$ can be proved TRUE, then the S is correct.
- e. $\underline{g., \{i > 5\}}$ \underline{i} := i + 9 $\{i > 13\}$ \underline{can} be proved TRUE.
- If $\{Q\}$ s $\{R\}$ cannot be proved TRUE, then the S is incorrect. e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ cannot be proved TRUE.

Hoare Logic

- Consider a program **S** with precondition **Q** and postcondition **R**.
 - {Q} S {R} is a correctness predicate for program S
 - {**Q**} S {**R**} is True if program **S** starts executing in a state satisfying the precondition **Q**, and then:
 - (a) The program S terminates.
 - (b) Given that program **S** terminates, then it terminates in a state satisfying the postcondition \mathbb{R} .
- Separation of concerns
- (a) requires a proof of termination.
- **(b)** requires a proof of **partial** correctness.

Proofs of (a) + (b) imply **total** correctness.

9 of 51

Hoare Logic and Software Correctness

Consider the *contract view* of a feature f (whose body of implementation is **S**) as a Hoare Triple:

$$Q$$
 is the *precondition* of f .

s is the implementation of f.

R is the *postcondition* of f.

∘ {*true*} s {*R*}

All input values are valid

[Most-user friendly]

∘ { **false**} s {**R**}

All input values are invalid

[Most useless for clients]

• {**Q**} s {**true**}

All output values are valid [Most risky for clients; Easiest for suppliers]

∘ {**Q**} S {**false**}

All output values are invalid [Most challenging coding task]

{true} S {true}

10 of 51

All inputs/outputs are valid (No contracts)

[Least informative]

Proof of Hoare Triple using wp

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

- wp(S, R) is the weakest precondition for S to establish R.
 - If $Q \Rightarrow wp(S, \mathbb{R})$, then <u>any</u> execution started in a state satisfying Q will terminate in a state satisfying \mathbb{R} .
 - If Q \(\neq\) wp(S, \(\mathbb{R}\)), then some execution started in a state satisfying Q will terminate in a state violating \(\mathbb{R}\).
- S can be:
 - Assignments (x := y)
 - Alternations (if ... then ... else ... end)
 - Sequential compositions $(S_1; S_2)$
 - Loops (from ... until ... loop ... end)
- We will learn how to calculate the wp for the above programming constructs.

11 of 51

Denoting New and Old Values

In the postcondition, for a program variable x:

- We write x₀ to denote its *pre-state (old)* value.
- We write x to denote its post-state (new) value.
 Implicitly, in the precondition, all program variables have their pre-state values.

e.g.,
$$\{b_0 > a\}$$
 b := b - a $\{b = b_0 - a\}$

- · Notice that:
 - We may choose to write "b" rather than "b₀" in preconditions
 ∴ All variables are pre-state values in preconditions
 - We don't write "b₀" in program
 - : there might be *multiple intermediate values* of a variable due to sequential composition

wp Rule: Assignments (1)

$$Wp(x := e, R) = R[x := e]$$

R[x := e] means to substitute all *free occurrences* of variable x in postcondition R by expression e.

13 of 51

wp Rule: Assignments (2)

Recall:

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

How do we prove $\{Q\} \times := e\{R\}$?

$$\{Q\} \times := e \{R\} \iff Q \Rightarrow R[x := e]$$

$$wp(x := e, R)$$

14 of 51

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

$$\{??\} \times := \times + 1 \{x > x_0\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x > x_0)$.

$$wp(x := x + 1, x > x_0)$$
= $\{Rule \ of \ wp: Assignments\}$
 $x > x_0[x := x_0 + 1]$
= $\{Replacing \ x \ by \ x_0 + 1\}$
 $x_0 + 1 > x_0$
= $\{1 > 0 \ always \ true\}$
True

Any precondition is OK.

False is valid but not useful.

15 of 51

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition x = 23?

$$\{??\} \times := \times + 1 \{x = 23\}$$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x = 23)$.

$$wp(x := x + 1, x = 23)$$
= {Rule of wp: Assignments}
 $x = 23[x := x_0 + 1]$
= {Replacing x by $x_0 + 1$ }
 $x_0 + 1 = 23$
= {arithmetic}
 $x_0 = 22$

Any precondition weaker than x = 22 is not OK.

wp Rule: Assignments (4) Revisit

Given $\{??\}n := n + 9\{n > 13\}$:

- n > 4 is the weakest precondition (wp) for the given implementation (n := n + 9) to start and establish the postcondition (n > 13).
- Any precondition that is *equal to or stronger than* the *wp* (n > 4) will result in a correct program.
 - e.g., $\{n > 5\}n := n + 9\{n > 13\}$ can be proved **TRUE**.
- Any precondition that is **weaker than** the wp (n > 4) will result in an incorrect program.

e.g., $\{n > 3\}n := n + 9\{n > 13\}$ <u>cannot</u> be proved **TRUE**. Counterexample: n = 4 satisfies precondition n > 3 but the output n = 13 fails postcondition n > 13.

17 of 51

wp Rule: Alternations (1)

$$wp(\texttt{if} \mid B \mid \texttt{then} \mid S_1 \mid \texttt{else} \mid S_2 \mid \texttt{end}, \mid R) = \begin{pmatrix} B \Rightarrow wp(S_1, \mid R) \\ \land \\ \neg B \Rightarrow wp(S_2, \mid R) \end{pmatrix}$$

The wp of an alternation is such that **all branches** are able to establish the postcondition R.

18 of 51

wp Rule: Alternations (2)

Recall: $\{Q\} \subseteq \{R\} \equiv Q \Rightarrow wp(S, R)$ How do we prove that $\{Q\}$ if B then S_1 else S_2 end $\{R\}$?

```
 \begin{cases} \mathcal{Q} \\ \text{if } & \textbf{B} & \text{then} \\ & \left\{ \mathcal{Q} \land & \textbf{B} \right\} & S_1 & \left\{ R \right\} \\ & \text{else} \\ & \left\{ \mathcal{Q} \land \neg & \textbf{B} \right\} & S_2 & \left\{ R \right\} \\ & \text{end} \\ & \left\{ R \right\}
```

```
 \left\{ \begin{array}{l} \textbf{Q} \right\} \texttt{ if } \quad \textbf{B} \quad \texttt{then } S_1 \texttt{ else } S_2 \texttt{ end } \left\{ \begin{array}{l} \textbf{R} \\ \textbf{R} \end{array} \right\} \\ \iff \left( \begin{array}{l} \left\{ \begin{array}{l} \textbf{Q} \land \textbf{B} \\ \textbf{B} \end{array} \right\} S_1 \left\{ \begin{array}{l} \textbf{R} \\ \textbf{R} \end{array} \right\} \\ \left\{ \begin{array}{l} \textbf{Q} \land \neg \textbf{B} \\ \textbf{B} \end{array} \right\} S_2 \left\{ \begin{array}{l} \textbf{R} \end{array} \right\} \end{array} \right) \iff \left( \begin{array}{l} \left( \textbf{Q} \land \boxed{\textbf{B}} \right) \Rightarrow wp(S_1, \ \textbf{R}) \\ \land \\ \left( \textbf{Q} \land \neg \boxed{\textbf{B}} \right) \Rightarrow wp(S_2, \ \textbf{R}) \end{array} \right)
```

19 of 51

wp Rule: Alternations (3) Exercise

Is this program correct?

```
{x > 0 ∧ y > 0}
if x > y then
bigger := x ; smaller := y
else
bigger := y ; smaller := x
end
{bigger ≥ smaller}
```

```
 \left( \begin{array}{l} \{(x > 0 \land y > 0) \land (x > y)\} \\ \text{bigger} := x ; \text{smaller} := y \\ \{bigger \ge smaller\} \\ \land \\ \left( \begin{array}{l} \{(x > 0 \land y > 0) \land \neg (x > y)\} \\ \text{bigger} := y ; \text{smaller} := x \\ \{bigger \ge smaller\} \end{array} \right)
```

wp Rule: Sequential Composition (1)

$$wp(S_1 ; S_2, \mathbb{R}) = wp(S_1, wp(S_2, \mathbb{R}))$$

The *wp* of a sequential composition is such that the first phase establishes the *wp* for the second phase to establish the postcondition *R*.

21 of 51

wp Rule: Sequential Composition (2)

Recall:

$$\{Q\} S \{R\} \equiv Q \Rightarrow wp(S,R)$$

How do we prove $\{Q\}$ S_1 ; S_2 $\{R\}$?

$$\{Q\}$$
 S_1 ; S_2 $\{P\}$ \iff $Q \Rightarrow \underbrace{wp(S_1, wp(S_2, P))}_{wp(S_1; S_2, P)}$

22 of 51

wp Rule: Sequential Composition (3) ExercisesonDE

 \therefore *True* \Rightarrow y > x does not hold in general.

... The above program is not correct.

23 of 51

Loops

- A loop is a way to compute a certain result by successive approximations.
- e.g. computing the maximum value of an array of integers
- Loops are needed and powerful
- But loops very hard to get right:
 - Infinite loops [termination]
 "off-by-one" error [partial correctness]
 Improper handling of borderline cases
 Not establishing the desired condition [partial correctness]


```
i := 1; j := n; found := false
     i := 1 : i := n
 \mathbf{until}\ i = j\ \mathbf{loop}
                                        until i = j and not found loop
     m := (i + j) // 2
                                            m := (i + j) // 2
     if t @ m \le x then
                                            if t @ m < x then
        i := m
                                                 i := m + 1
     else
                                            elseif t @ m = x then
         j := m
                                                found := true
     end
 Result := (x = t @ i)
                                            end
                                        Result := found
                                                     BS4
                                           i := 0; j := n + 1
 i := 0; i := n
 until i = j loop
                                        until i = j loop
     m := (i + j + 1) // 2
                                            m := (i + j) // 2
     if t @ m \le x then
                                            if t @ m \le x then
        i := m + I
                                               i := m + 1
                                            end
 if i \ge 1 and i \le n then
                                       if i \ge 1 and i \le n then
     Result := (x = t @ i)
                                            Result := (x = t @ i)
                                            Result := false
     Result := false
25 of 51
```

4 implementations for binary search: published, but *wrong*!

See page 381 in *Object Oriented*Software Construction

Correctness of Loops

How do we prove that the following loops are correct?

```
{Q}
from
Sinit
until
B
loop
Sbody
end
{R}
```

```
{ Q }
    S_{init}
    while (¬ B) {
        Sbody
    }
    { R }
```

- In case of C/Java, $\neg B$ denotes the *stay condition*.
- In case of Eiffel, B denotes the exit condition.
 There is native, syntactic support for checking/proving the total correctness of loops.

26 of 51

Contracts for Loops: Syntax


```
from
    S<sub>init</sub>
    invariant
    invariant_tag: I -- Boolean expression for partial correctness
until
    B
loop
    S<sub>body</sub>
variant
    variant_tag: V -- Integer expression for termination
end
```

27 of 51

Contracts for Loops

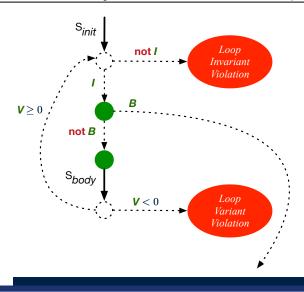
- Use of *loop invariants (LI)* and *loop variants (LV)*.
 - o Invariants: Boolean expressions for partial correctness.
 - Typically a special case of the postcondition. e.g., Given postcondition "Result is maximum of the array":

LI can be "Result is maximum of the part of array scanned so far".

- Established before the very first iteration.
- Maintained TRUE after each iteration.
- Variants: Integer expressions for termination
 - Denotes the *number of iterations remaining*
 - Decreased at the end of each subsequent iteration
 - Maintained *non-negative* at the end of each iteration.
 - As soon as value of LV reaches zero, meaning that no more iterations remaining, the loop must exit.
- Remember:

total correctness = partial correctness + termination

Contracts for Loops: Runtime Checks (1)



Contracts for Loops: Runtime Checks (2)


```
test
2
     local
3
       i: INTEGER
     do
5
       from
6
        i := 1
       invariant
8
        1 <= i \text{ and } i <= 6
9
       until
10
        i > 5
11
       loop
12
        io.put_string ("iteration " + i.out + "%N")
13
        i := i + 1
14
       variant
15
         6 - i
16
       end
17
    end
```

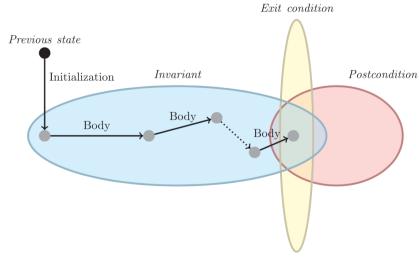
L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation.

L15: Change to 5 - i for a Loop Variant Violation.

30 of 51

29 of 51

Contracts for Loops: Visualization



Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

Contracts for Loops: Example 1.1


```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
    i := a.lower ; Result := a[i]
    loop_invariant: -- \forall j \mid a.lower \leq j \leq i \bullet Result \geq a[j]
      across a.lower |..| i as j all Result >= a [j.item] end
   until
    i > a.upper
   loop
    if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
     loop\_variant: a.upper - i + 1
   end
   correct\_result: -- \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
     across a.lower |..| a.upper as j all Result >= a [j.item]
end
32 of 51
```


Contracts for Loops: Example 1.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a.lower \le j \le i$ Result $\ge a[j]$
- Loop Variant: a.upper i + 1

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	_	×	_
1st	2	20	✓	×	3
2nd	3	20	×	_	_

Loop invariant violation at the end of the 2nd iteration:

$$\forall j \mid a.lower \leq j \leq \boxed{3} \bullet \boxed{20} \geq a[j]$$

evaluates to *false* : 20 ≱ *a*[3] = 40

33 of 51

34 of 51

Contracts for Loops: Example 2.1

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
    i := a.lower ; Result := a[i]
    loop_invariant: -- \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
      across a.lower | ... | (i - 1) as j all Result >= a [j.item] end
   until
    i > a.upper
   loop
    if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
    loop_variant: a.upper - i
   end
   correct\_result: -- \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
    across a.lower |..| a.upper as j all Result >= a [j.item]
end
```

Contracts for Loops: Example 2.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: ∀j | a.lower ≤ j < i Result ≥ a[j]
- Loop Variant: a.upper i

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	/	×	_
1st	2	20	✓	×	2
2nd	3	20	\	×	1
3rd	4	40	\	×	0
4th	5	40	✓	✓	-1

Loop variant violation at the end of the 4th iteration

 \therefore a.upper – i = 4 – 5 evaluates to **non-zero**.

35 of 51

Contracts for Loops: Example 3.1


```
find max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
    i := a.lower ; Result := a[i]
     loop_invariant: -- \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
      across a.lower | ... | (i - 1) as j all Result >= a [j.item] end
   until
    i > a.upper
   loop
     if a [i] > Result then Result := a [i] end
     i := i + 1
   variant
     loop\_variant: a.upper - i + 1
   end
   correct_result: -- \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
     across a.lower |..| a.upper as j all Result >= a [j.item]
end
36 of 51
```


Contracts for Loops: Example 3.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a.\overline{lower \leq j < i} \bullet Result \geq a[j]$
- Loop Variant: a.upper i + 1
- Postcondition: $\forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]$

AFTER ITERATION	i	Result	LI	EXIT (i > a.upper)?	LV
Initialization	1	20	✓	×	_
1st	2	20	✓	×	3
2nd	3	20	\	×	2
3rd	4	40	✓	×	1
4th	5	40	✓	✓	0

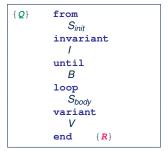
37 of 51

38 of 51

Contracts for Loops: Exercise

```
class DICTIONARY[V, K]
feature {NONE} -- Implementations
 values: ARRAY[K]
 keys: ARRAY[K]
feature -- Abstraction Function
 model: FUN[K, V]
feature -- Queries
 get_keys(v: V): ITERABLE[K]
   local i: INTEGER; ks: LINKED_LIST[K]
     from i := keys.lower ; create ks.make_empty
     invariant
    until i > keys.upper
    do if values[i] ~ v then ks.extend(keys[i]) end
    Result := ks.new_cursor
     result_valid: \forall k \mid k \in \text{Result} \bullet model.item(k) \sim V
    no_missing_keys: \forall k \mid k \in model.domain \bullet model.item(k) \sim v \Rightarrow k \in Result
```

Proving Correctness of Loops (1)



- A loop is partially correct if:
 - Given precondition Q, the initialization step S_{init} establishes LI I.
 - At the end of S_{body}, if not yet to exit, LI I is maintained.
 - If ready to exit and *LI I* maintained, postcondition *R* is established.
- A loop *terminates* if:
 - Given *LI I*, and not yet to exit, S_{body} maintains *LV V* as non-negative.
 - Given LI I, and not yet to exit, S_{body} decrements LV V.

39 of 51

Proving Correctness of Loops (2)

- $\{Q\}$ from S_{init} invariant I until B loop S_{body} variant V end $\{\ref{R}\}$
 - A loop is *partially correct* if:
 - Given precondition Q, the initialization step S_{init} establishes LI I.

$$\{Q\}$$
 S_{init} $\{I\}$

• At the end of S_{body} , if not yet to exit, LII is maintained.

$$\{I \land \neg B\} \ S_{body} \ \{I\}$$

• If ready to exit and *LI I* maintained, postcondition *R* is established.

$$I \wedge B \Rightarrow R$$

- A loop terminates if:
 - Given *LI I*, and not yet to exit, S_{body} maintains *LV V* as non-negative.

$$\{I \land \neg B\} \ S_{body} \ \{V \ge 0\}$$

• Given LI I, and not yet to exit, S_{body} decrements LV V.

$$\{I \land \neg B\} \ S_{body} \ \{V < V_0\}$$

Prove that the following program is correct:

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
     i := a.lower ; Result := a[i]
    loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
    i > a.upper
   loop
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
    loop_variant: a.upper - i + 1
   end
 ensure
   correct_result: \forall i \mid a.lower \leq i \leq a.upper \bullet Result \geq a[i]
end
```

41 of 51

Proving Correctness of Loops: Exercise (1.2) ASSONDE

Prove that each of the following *Hoare Triples* is TRUE.

1. Establishment of Loop Invariant:

```
{ True }
 i := a.lower
 Result := a[i]
\{ \forall j \mid a.lower \leq j < i \bullet Result \geq a[j] \}
```

2. Maintenance of Loop Invariant:

```
\{ (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \}
 if a [i] > Result then Result := a [i] end
 i := i + 1
\{ (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \}
```

3. Establishment of Postcondition upon Termination:

```
(\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land i > a.upper
        \Rightarrow \forall i \mid a.lower \leq i \leq a.upper \bullet Result \geq a[i]
```

42 of 51

Proving Correctness of Loops: Exercise (1.3) SSONDE

Prove that each of the following *Hoare Triples* is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

```
\{ (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \}
 if a [i] > Result then Result := a [i] end
 i := i + 1
\{a.upper - i + 1 \ge 0 \}
```

5. Loop Variant Keeps Decrementing before Exit:

```
\{ (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \}
 if a [i] > Result then Result := a [i] end
 i := i + 1
\{a.upper - i + 1 < (a.upper - i + 1)_0 \}
```

where $(a.upper - i + 1)_0 \equiv a.upper_0 - i_0 + 1$

43 of 51

Proof Tips (1)

$${Q} S {R} \Rightarrow {Q \land P} S {R}$$

In order to prove $\{Q \land P\} \le \{R\}$, it is sufficient to prove a version with a *weaker* precondition: $\{Q\} \subseteq \{R\}$.

Proof:

- Assume: {*Q*} s {*R*} It's equivalent to assuming: $|Q| \Rightarrow wp(S, R)$ (A1) • To prove: $\{Q \land P\} \le \{R\}$
- It's equivalent to proving: $Q \land P \Rightarrow wp(S, R)$
- Assume: $Q \wedge P$, which implies Q
- According to (A1), we have wp(S, R).

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

$$wp(S, a.lower \le i \le a.upper \land a[i] > 0)$$

e.g., Before calculating wp(x := a[i], R), augment it as

$$wp(x := a[i], a.lower \le i \le a.upper \land R)$$

45 of 51

Beyond this lecture

Exercise on proving the *total correctness* of a program:

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/ EECS3311/exercises/EECS3311_F20_Exercise_WP.sol.pdf

Index (1)

Learning Objectives

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Denoting New and Old Values

47 of 51

Index (2)

wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Assignments (5) Revisit

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise

Index (3)

Loops

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1

49 of 51

Index (4)

Contracts for Loops: Example 2.2

Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)

50 of 51

Index (5)

Beyond this lecture