The Composite Design Pattern

EECS3311 A & E: Software Design
' Fall 2020

YORK

v CHEN-WEI WANG
\

cic
z|z
mim
D |
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Learning Objectives

Motivating Problem: Recursive Systems

Two Design Attempts

Multiple Inheritance

Third Design Attempt: Composite Design Pattern
Implementing and Testing the Composite Design Pattern

aproobd

Motivating Problem (1)

LASSONDE

ooooooooooooooooo

¢ Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.
e.g., A computer system is composed of:
« Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.
e Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

¢ Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

LASSONDE

ooooooooooooooooo

Motivating Problem (2)

Design for free structures with whole-part hierarchies.

CABINET

ASSIS

Q

DVD-CDROM

CHASSIS CH

CARD HARD_DRIVE

Challenge : There are base and recursive modelling artifacts.

Design Attempt 1: Architecture LASSONDE Design Attempt 2: Architecture LASSONDE

oooooooooooooooooooooooooooooooooo

equipment
e - N N ~ .
B - N N equipment
/ EQUIPMENT* children+: LISTI[..] \ LoT T TTTTTTTTITT T S
! .
' feature ! s N \\
' ico: REAL* ! EQUIPMENT*
e+ ! price: h children+: LIST[..]
0 feature et feature <
' add_child(e: EQUIPMENT)+ > ' price: REAL*
ensure children[children.count] =e | ™ H \ J

(COMPOSITE*]

feature
add_child(c: EQUIPMENT)+
ensure children[children.count] = ¢

*

YAV

Design Attempt 1: Flaw? e Design Attempt 2: Flaw? e

Q: Any flaw of this second design?

A: Two “composite” features defined at the COMPOSTITE level:
o children: LIST[EQUIPMENT]

o add(child: EQUIPMENT)

= Multiple instantiations of the composite architecture (e.g.,
equipments, furnitures) require duplicates of the COMPOSITE
class.

Q: Any flaw of this first design?

A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]

o add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD_DRIVE) that do
not apply to such features.

Multiple Inheritance: LASSONDE MI: Combining Abstractions (2.2) LASSONDE
Combining Abstractions (1) A: Separating Graphical features and Hierarchical features

class RECTANGLE
A class may have two more parent classes. feature — Queries

class TREE[G]
feature - Queries
descendants: ITERABLE[G]

width, height: REAL

* xpos, ypos: REAL
COMPARABLE feature nd

make (w, h: REAL) fe:;;r(ec. G)C‘
change_width 77' e s
change_height end
move
end
test_window: BOOLEAN
local wil, w2, w3, w4: WINDOW
class WINDOW do
lr;zhEe;;:NGLE create wl.make(8, 6) ; create w2.make (4, 3)
TREE [WINDOW] create w3.make(l, 1) ; create w4.make(1l, 1)
end w2.add(w4) ; wl.add(w2) ; wl.add(w3)
Result := wl.descendants.count = 2
end
MI: Combining Abstractions (2.1) LASSONDE MI: Name Clashes LASSONDE

Q: How do you design class(es) for nested windows?

foo OO

In class ¢, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window

MI: Resolving Name Clashes

foo

foo

rename foo as fog rename foo as zo

(o]

class C o.foo | o.fog | 0.z00
inherit
A rename foo as fog end o: A v X X
B rename foo as zoo end o: B v X X
o C X v v
The Composite Pattern: Architecture o

(

COMPOSITE[T]*

feature
children: LIST[T]+
add_child(c: T)+

ensure children[children.count] = ¢

equipment

EQUIPMENT*

children+: LISTL..]
feature

price: REAL*

7

*

Implementing the Composite Pattern (1)

LSSoNDE

deferred class

EQUIPMENT
feature

name: STRING

price: REAL deferred end - un
end

class
CARD
inherit
EQUIPMENT
feature {NONE }
unit_price: REAL

feature
make (n: STRING; p: REAL)
do name := n ; unit_price := p end
price
do Result := unit_price end
end

[15 of 21]

Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST|[T]

add (c: T)
do
children.extend (c) —-- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

[16 of 21]

Implementing the Composite Pattern (2.2) |.issono: Summay: The Composite Pattern LASSONDE
J : Categorize into base artifacts or recursive artifacts.
deferred class .
COMPOSITE _EQUIPMENT ° .
m;;UrIl;MENT Build a tree structure representing the whole-part hierarchy .
COMPOSITE [EQUIPMENT] .
feature ° ' .
make (n: STRING) - N 7 Allow clients to treat base objects (leafs) and recursive
do na(me;A:Jz knA ; c4r;ea1[t7eA A‘chkllgr“e;nﬁ makAe e:nd R compositions (nodes) un/formly .

price @ RERL - i = | Polymorphism |: leafs and nodes are “substitutable”.

do
across = | Dynamic Binding |: Different versions of the same
children is c¢ _ _ _ . o . .
loop operation is applied on individual objects and composites.
1t := 1 . i —-— d ic bindi .
enltiesu t Result + c.price lynamic binding e.g., leen ’e: EQUIPMENT‘

end o may return the unit price of a DTSk DRIVE.
end

e.price|may sum prices of a cHaszs’ containing equipments.

[7of 21] [9of 21]

Testing the Composite Pattern LASSONDE Index (1) LAssomE
test_composite equipment: BOOLEAN |[Learning Objectives|
losaarld’ drive: EQUIPMENT [Motivating Problem (1)|
zigijz. gfliég?g o 2 BUS and a DISK_DRIVE [Motivating Problem (2)|
gL e s et e o [Design Attempt 1: Architecture]
Greste (DISK DRIVE] drive.make (300 GB harddrives, 500) [Design Attempt 1: Flaw?|

create bus.make ("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

[Design Attempt 2: Architecture|

|Design Attempt 2: Flaw?|

bus.add (card) Multiple Inheritance:
Chaselsade Combining Abstractions (1)
;zfé;tet;jdi;gﬁ?;;ice oo [MI: Combining Abstractions (2.1)|
end [MI: Combining Abstractions (2.2)|

]
Index (2) fASSONDE
MI: Name Clashes

[MI: Resolving Name Clashes|

|The Composite Pattern: Architecture|

[Implementing the Composite Pattern (1)|

[Implementing the Composite Pattern (2.1)|

Implementing the Composite Pattern (2.2)|

[Testing the Composite Pattern|

[Summary: The Composite Pattern|

21 of 21

