
The Composite Design Pattern

EECS3311 A & E: Software Design

Fall 2020

CHEN-WEI WANG

Learning Objectives

1. Motivating Problem: Recursive Systems

2. Two Design Attempts

3. Multiple Inheritance

4. Third Design Attempt: Composite Design Pattern
5. Implementing and Testing the Composite Design Pattern

2 of 21

Motivating Problem (1)

● Many manufactured systems, such as computer systems or

stereo systems, are composed of individual components and

sub-systems that contain components.

e.g., A computer system is composed of:

● Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.

● Composites such as cabinets, busses, and chassis

Each cabinet contains various types of chassis, each of which in turn

containing components (hard-drive, power-supply ) and busses that

contain cards.

● Design a system that will allow us to easily build systems and

calculate their total cost and power consumption.

3 of 21

Motivating Problem (2)
Design for tree structures with whole-part hierarchies.

2 

CABINET 

HARD_DRIVE CARD 

CHASSIS 

POWER_SUPPLY 

DVD-CDROM 

CHASSIS 

Challenge : There are base and recursive modelling artifacts.

4 of 21



Design Attempt 1: Architecture

+
DISK_DRIVE

+
VIDEO_CARD

EQUIPMENT*

feature	
		price:	REAL*
feature	
		add_child(e:	EQUIPMENT)+
						ensure	children[children.count]	=	e

+
CHASSIS

+
BUS

equipment

+
CABINET

*
COMPOSITE_EQUIPMENT

children+:	LIST[..]

+
CLIENT

e+

5 of 21

Design Attempt 1: Flaw?

Q: Any flaw of this first design?

A: Two “composite” features defined at the EQUIPMENT level:○ children: LIST[EQUIPMENT]○ add(child: EQUIPMENT)

⇒ Inherited to all base equipments (e.g., HARD DRIVE) that do

not apply to such features.

6 of 21

Design Attempt 2: Architecture

+
DISK_DRIVE

+
VIDEO_CARD

EQUIPMENT*

feature	
		price:	REAL*

+
CHASSIS

+
BUS

equipment

+
CABINET

children+:	LIST[..]
+

CLIENT
e+

COMPOSITE*

feature		
		add_child(c:	EQUIPMENT)+
						ensure	children[children.count]	=	c

7 of 21

Design Attempt 2: Flaw?

Q: Any flaw of this second design?

A: Two “composite” features defined at the COMPOSITE level:○ children: LIST[EQUIPMENT]○ add(child: EQUIPMENT)

⇒ Multiple instantiations of the composite architecture (e.g.,

equipments, furnitures) require duplicates of the COMPOSITE
class.

8 of 21



Multiple Inheritance:
Combining Abstractions (1)
A class may have two more parent classes.

9 of 21

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window

10 of 21

MI: Combining Abstractions (2.2)
A: Separating Graphical features and Hierarchical features

class RECTANGLE

feature -- Queries
width, height: REAL

xpos, ypos: REAL

feature -- Commands
make (w, h: REAL)
change_width
change_height
move

end

class TREE[G]

feature -- Queries
descendants: ITERABLE[G]

feature -- Commands
add (c: G)

-- Add a child ‘c‘.
end

class WINDOW
inherit

RECTANGLE

TREE[WINDOW]
end

test_window: BOOLEAN

local w1, w2, w3, w4: WINDOW
do

create w1.make(8, 6) ; create w2.make(4, 3)
create w3.make(1, 1) ; create w4.make(1, 1)
w2.add(w4) ; w1.add(w2) ; w1.add(w3)
Result := w1.descendants.count = 2

end

11 of 21

MI: Name Clashes

In class C, feature foo inherited from ancestor class A clashes

with feature foo inherited from ancestor class B.

12 of 21



MI: Resolving Name Clashes

class C
inherit

A rename foo as fog end

B rename foo as zoo end

. . .

o.foo o.fog o.zoo
o: A ✓ × ×
o: B ✓ × ×
o: C × ✓ ✓

13 of 21

The Composite Pattern: Architecture

+
DISK_DRIVE

+
VIDEO_CARD

EQUIPMENT*

feature	
		price:	REAL*

+
CHASSIS

+
BUS

equipment

+
CABINET

*
COMPOSITE_EQUIPMENT

children+:	LIST[..]
+

CLIENT
e+

COMPOSITE[T]*

feature		
		children:	LIST[T]+
		add_child(c:	T)+
						ensure	children[children.count]	=	c

14 of 21

Implementing the Composite Pattern (1)

deferred class

EQUIPMENT
feature

name: STRING

price: REAL deferred end -- uniform access principle
end

class

CARD
inherit

EQUIPMENT
feature {NONE}
unit_price: REAL

feature

make (n: STRING; p: REAL)
do name := n ; unit_price := p end

price
do Result := unit_price end

end

15 of 21

Implementing the Composite Pattern (2.1)

deferred class

COMPOSITE[T]
feature

children: LINKED_LIST[T]

add (c: T)
do

children.extend (c) -- Polymorphism

end

end

Exercise: Make the COMPOSITE class iterable.

16 of 21



Implementing the Composite Pattern (2.2)

deferred class

COMPOSITE_EQUIPMENT
inherit

EQUIPMENT
COMPOSITE [EQUIPMENT]

feature

make (n: STRING)
-- Child classes will declare this command as a constructor.

do name := n ; create children.make end

price : REAL -- price is a query
-- Sum the net prices of all sub-equipments

do

across

children is c
loop

Result := Result + c.price -- dynamic binding

end

end

end

17 of 21

Testing the Composite Pattern

test_composite_equipment: BOOLEAN

local

card, drive: EQUIPMENT
cabinet: CABINET -- holds a CHASSIS
chassis: CHASSIS -- contains a BUS and a DISK_DRIVE
bus: BUS -- holds a CARD

do

create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

bus.add(card)
chassis.add(bus)
chassis.add(drive)
cabinet.add(chassis)
Result := cabinet.price = 700

end

18 of 21

Summay: The Composite Pattern
● Design : Categorize into base artifacts or recursive artifacts.

● Programming :

Build a tree structure representing the whole-part hierarchy .

● Runtime :

Allow clients to treat base objects (leafs) and recursive

compositions (nodes) uniformly .

⇒ Polymorphism : leafs and nodes are “substitutable”.

⇒ Dynamic Binding : Different versions of the same

operation is applied on individual objects and composites.

e.g., Given e: EQUIPMENT :

○ e.price may return the unit price of a DISK DRIVE.

○ e.price may sum prices of a CHASIS’ containing equipments.

19 of 21

Index (1)

Learning Objectives

Motivating Problem (1)

Motivating Problem (2)

Design Attempt 1: Architecture

Design Attempt 1: Flaw?

Design Attempt 2: Architecture

Design Attempt 2: Flaw?
Multiple Inheritance:
Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2.2)
20 of 21



Index (2)
MI: Name Clashes

MI: Resolving Name Clashes

The Composite Pattern: Architecture

Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

Summary: The Composite Pattern

21 of 21


