
Inheritance

Readings: OOSCS2 Chapters 14 – 16

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Design Attempts without Inheritance (w.r.t. Cohesion, SCP)
2. Using Inheritance for Code Reuse
3. Static Type & Polymorphism
4. Dynamic Type & Dynamic Binding
5. Type Casting
6. Polymorphism & Dynamic Binding:

Routine Arguments, Routine Return Values, Collections

2 of 21

Aspects of Inheritance

● Code Reuse
● Substitutability○ Polymorphism and Dynamic Binding

[compile-time type checks]
○ Sub-contracting

[runtime behaviour checks]

3 of 21

Why Inheritance: A Motivating Example

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

4 of 21

The COURSE Class

class

COURSE

create -- Declare commands that can be used as constructors

make

feature -- Attributes

title: STRING

fee: REAL

feature -- Commands

make (t: STRING; f: REAL)

-- Initialize a course with title ’t’ and fee ’f’.

do

title := t

fee := f

end

end

5 of 21

No Inheritance: RESIDENT STUDENT Class

class RESIDENT STUDENT

create make

feature -- Attributes

name: STRING

courses: LINKED_LIST[COURSE]

premium rate: REAL

feature -- Constructor

make (n: STRING)

do name := n ; create courses.make end

feature -- Commands

set pr (r: REAL) do premium rate := r end

register (c: COURSE) do courses.extend (c) end

feature -- Queries

tuition: REAL

local base: REAL

do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * premium rate

end

end

6 of 21

No Inheritance: NON RESIDENT STUDENT Class

class NON RESIDENT STUDENT

create make

feature -- Attributes

name: STRING

courses: LINKED_LIST[COURSE]

discount rate: REAL

feature -- Constructor

make (n: STRING)

do name := n ; create courses.make end

feature -- Commands

set dr (r: REAL) do discount rate := r end

register (c: COURSE) do courses.extend (c) end

feature -- Queries

tuition: REAL

local base: REAL

do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * discount rate

end

end

7 of 21

No Inheritance: Testing Student Classes

test_students: BOOLEAN

local

c1, c2: COURSE

jim: RESIDENT_STUDENT

jeremy: NON_RESIDENT_STUDENT

do

create c1.make ("EECS2030", 500.0)

create c2.make ("EECS3311", 500.0)

create jim.make ("J. Davis")

jim.set_pr (1.25)

jim.register (c1)

jim.register (c2)

Result := jim.tuition = 1250

check Result end

create jeremy.make ("J. Gibbons")

jeremy.set_dr (0.75)

jeremy.register (c1)

jeremy.register (c2)

Result := jeremy.tuition = 750

end

8 of 21

No Inheritance:

Issues with the Student Classes

● Implementations for the two student classes seem to work. But
can you see any potential problems with it?

● The code of the two student classes share a lot in common.
● Duplicates of code make it hard to maintain your software!
● This means that when there is a change of policy on the

common part, we need modify more than one places.
⇒ This violates the Single Choice Principle :
when a change is needed, there should be a single place (or
a minimal number of places) where you need to make that
change.

9 of 21

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,
register(Course c)

do

if courses.count >= MAX_CAPACITY then

-- Error: maximum capacity reached.

else

courses.extend (c)

end

end

We need to change the register commands in both student
classes!
⇒ Violation of the Single Choice Principle

10 of 21

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?
e.g.,
tuition: REAL

local base: REAL

do base := 0.0

across courses as c loop base := base + c.item.fee end

Result := base * inflation rate * . . .
end

We need to change the tuition query in both student
classes.
⇒ Violation of the Single Choice Principle

11 of 21

No Inheritance:

A Collection of Various Kinds of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class STUDENT_MANAGEMENT_SYSETM

rs : LINKED_LIST[RESIDENT STUDENT]

nrs : LINKED_LIST[NON RESIDENT STUDENT]

add_rs (rs: RESIDENT STUDENT) do . . . end

add_nrs (nrs: NON RESIDENT STUDENT) do . . . end

register_all (Course c) -- Register a common course ’c’.

do

across rs as c loop c.item.register (c) end

across nrs as c loop c.item.register (c) end

end

end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the
same manner, separately !

12 of 21

Inheritance Architecture

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

13 of 21

Inheritance: The STUDENT Parent Class

1 class STUDENT

2 create make

3 feature -- Attributes

4 name: STRING

5 courses: LINKED_LIST[COURSE]

6 feature -- Commands that can be used as constructors.

7 make (n: STRING) do name := n ; create courses.make end

8 feature -- Commands

9 register (c: COURSE) do courses.extend (c) end

10 feature -- Queries

11 tuition: REAL

12 local base: REAL

13 do base := 0.0

14 across courses as c loop base := base + c.item.fee end

15 Result := base

16 end

17 end

14 of 21

Inheritance:

The RESIDENT STUDENT Child Class

1 class

2 RESIDENT_STUDENT

3 inherit

4 STUDENT

5 redefine tuition end

6 create make

7 feature -- Attributes

8 premium rate : REAL

9 feature -- Commands

10 set pr (r: REAL) do premium_rate := r end

11 feature -- Queries

12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base * premium rate end

15 end

● L3: RESIDENT STUDENT inherits all features from STUDENT.● There is no need to repeat the register command● L14: Precursor returns the value from query tuition in STUDENT.
15 of 21

Inheritance:

The NON RESIDENT STUDENT Child Class

1 class

2 NON_RESIDENT_STUDENT

3 inherit

4 STUDENT

5 redefine tuition end

6 create make

7 feature -- Attributes

8 discount rate : REAL

9 feature -- Commands

10 set dr (r: REAL) do discount_rate := r end

11 feature -- Queries

12 tuition: REAL

13 local base: REAL

14 do base := Precursor ; Result := base * discount rate end

15 end

● L3: NON RESIDENT STUDENT inherits all features from STUDENT.● There is no need to repeat the register command● L14: Precursor returns the value from query tuition in STUDENT.
16 of 21

Inheritance Architecture Revisited

RESIDENT STUDENT NON RESIDENT STUDENT

STUDENT

inherit
inherit

● The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

● Each “specialized” class is called a child , sub , or
descendent class.

17 of 21

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:○ Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class○ Define an “specialized” version of the class which:
● inherits definitions of all attributes, commands, and queries

e.g., attributes name, courses
e.g., command register

e.g., query on base amount in tuition

This means code reuse and elimination of code duplicates!
● defines new features if necessary

e.g., set pr for RESIDENT STUDENT

e.g., set dr for NON RESIDENT STUDENT● redefines features if necessary
e.g., compounded tuition for RESIDENT STUDENT

e.g., discounted tuition for NON RESIDENT STUDENT

18 of 21

Testing the Two Student Sub-Classes

test_students: BOOLEAN

local

c1, c2: COURSE

jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT

do

create c1.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)

create jim.make ("J. Davis")

jim.set_pr (1.25) ; jim.register (c1); jim.register (c2)

Result := jim.tuition = 1250

check Result end

create jeremy.make ("J. Gibbons")

jeremy.set_dr (0.75); jeremy.register (c1); jeremy.register (c2)

Result := jeremy.tuition = 750

end

● The software can be used in exactly the same way as before
(because we did not modify feature signatures).● But now the internal structure of code has been made
maintainable using inheritance .

19 of 21

Index (1)

Learning Objectives

Aspects of Inheritance

Why Inheritance: A Motivating Example

The COURSE Class

No Inheritance: RESIDENT STUDENT Class

No Inheritance: NON RESIDENT STUDENT Class

No Inheritance: Testing Student Classes

No Inheritance:

Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

20 of 21

Index (2)

No Inheritance:

A Collection of Various Kinds of Students

Inheritance Architecture

Inheritance: The STUDENT Parent Class

Inheritance:

The RESIDENT STUDENT Child Class

Inheritance:

The NON RESIDENT STUDENT Child Class

Inheritance Architecture Revisited

Using Inheritance for Code Reuse

Testing the Two Student Sub-Classes

21 of 21

