
Singleton Design Pattern

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Modeling Concept of Expanded Types (Compositions)
2. Once Routines in Eiffel vs. Static Methods in Java
3. Export Status
4. Sharing via Inheritance (w.r.t. SCP and Cohesion)
5. Singleton Design Pattern

2 of 23



Expanded Class: Modelling
● We may want to have objects which are:
○ Integral parts of some other objects
○ Not shared among objects
e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

3 of 23



Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end
class MONITOR . . . end class NETWORK . . . end
class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:
expanded class KEYBOARD . . . end
expanded class CPU . . . end
expanded class MONITOR . . . end
class NETWORK . . . end
class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

end
4 of 23



Expanded Class: Programming (3)

expanded class
B

feature
change_i (ni: INTEGER)
do
i := ni

end
feature
i: INTEGER

end

1 test_expanded
2 local
3 eb1, eb2: B
4 do
5 check eb1.i = 0 and eb2.i = 0 end
6 check eb1 = eb2 end
7 eb2.change_i (15)
8 check eb1.i = 0 and eb2.i = 15 end
9 check eb1 /= eb2 end

10 eb1 := eb2
11 check eb1.i = 15 and eb2.i = 15 end
12 eb1.change_i (10)
13 check eb1.i = 10 and eb2.i = 15 end
14 check eb1 /= eb2 end
15 end

● L5: object of expanded type is automatically initialized.
● L10,L12,L13: no sharing among objects of expanded type.
● L6,L9,L14: = compares contents between expanded objects.
5 of 23



Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on
a class).

● Every type is either referenced or expanded .
● In reference types:
○ y denotes a reference to some object
○ x := y attaches x to same object as does y
○ x = y compares references

● In expanded types:
○ y denotes some object (of expanded type)
○ x := y copies contents of y into x
○ x = y compares contents [x ∼ y]

6 of 23



Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author expanded-typed author

Hyperlinked author page Physical printed copies

7 of 23



Singleton Pattern: Motivation

Consider two problems:

1. Bank accounts share a set of data.
e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.
e.g., printers

8 of 23



Shared Data via Inheritance
Descendant:

class DEPOSIT inherit SHARED DATA
-- ‘maximum_balance’ relevant

end

class WITHDRAW inherit SHARED DATA
-- ‘minimum_balance’ relevant

end

class INT_TRANSFER inherit SHARED DATA
-- ‘exchange_rate’ relevant

end

class ACCOUNT inherit SHARED DATA
feature

-- ‘interest_rate’ relevant
deposits: DEPOSIT_LIST
withdraws: WITHDRAW_LIST

end

Ancestor:

class
SHARED DATA

feature
interest_rate: REAL
exchange_rate: REAL
minimum_balance: INTEGER
maximum_balance: INTEGER
. . .

end

Problems?

9 of 23



Sharing Data via Inheritance: Architecture

○ Irreverent features are inherited.
⇒ Descendants’ cohesion is broken.

○ Same set of data is duplicated as instances are created.
⇒ Updates on these data may result in inconsistency .

10 of 23



Sharing Data via Inheritance: Limitation

● Each descendant instance at runtime owns a separate copy of
the shared data.

● This makes inheritance not an appropriate solution for both
problems:
○ What if the interest rate changes? Apply the change to all

instantiated account objects?
○ An update to the global lock must be observable by all regulated

processes.
Solution:
○ Separate notions of data and its shared access in two separate

classes.
○ Encapsulate the shared access itself in a separate class.

11 of 23



Introducing the Once Routine in Eiffel (1.1)
1 class A
2 create make
3 feature -- Constructor
4 make do end
5 feature -- Query
6 new_once_array (s: STRING): ARRAY[STRING]
7 -- A once query that returns an array.
8 once
9 create {ARRAY[STRING]} Result.make_empty

10 Result.force (s, Result.count + 1)
11 end
12 new_array (s: STRING): ARRAY[STRING]
13 -- An ordinary query that returns an array.

14 do
15 create {ARRAY[STRING]} Result.make_empty
16 Result.force (s, Result.count + 1)
17 end
18 end

L9 & L10 executed only once for initialization.
L15 & L16 executed whenever the feature is called.

12 of 23



Introducing the Once Routine in Eiffel (1.2)

1 test_query: BOOLEAN
2 local
3 a: A
4 arr1, arr2: ARRAY[STRING]
5 do
6 create a.make
7
8 arr1 := a.new_array ("Alan")
9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end
11
12 arr2 := a.new_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Mark"
14 check Result end
15
16 Result := not (arr1 = arr2)

17 check Result end
18 end

13 of 23



Introducing the Once Routine in Eiffel (1.3)

1 test_once_query: BOOLEAN
2 local
3 a: A
4 arr1, arr2: ARRAY[STRING]
5 do
6 create a.make
7
8 arr1 := a.new_once_array ("Alan")
9 Result := arr1.count = 1 and arr1[1] ∼ "Alan"

10 check Result end
11
12 arr2 := a.new_once_array ("Mark")

13 Result := arr2.count = 1 and arr2[1] ∼ "Alan"
14 check Result end
15
16 Result := arr1 = arr2
17 check Result end
18 end

14 of 23



Introducing the Once Routine in Eiffel (2)
r (. . .): T

once
-- Some computations on Result
. . .

end

● The ordinary do . . . end is replaced by once . . . end.
● The first time the once routine r is called by some client, it

executes the body of computations and returns the computed
result.

● From then on, the computed result is “cached”.
● In every subsequent call to r , possibly by different clients, the

body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.

● How does this help us?
Cache the reference to the same shared object !

15 of 23



Approximating Once Routine in Java (1)
We may encode Eiffel once routines in Java:
class BankData {
BankData() { }
double interestRate;
void setIR(double r);
. . .

}

class BankDataAccess {
static boolean initOnce;
static BankData data;
static BankData getData() {
if(!initOnce) {
data = new BankData();
initOnce = true;

}
return data;

}
}

class Account {
BankData data;
Account() {
data = BankDataAccess.getData();

}
}

Problem?
Multiple BankData objects may
be created in Account,
breaking the singleton!

Account() {
data = new BankData();

}

16 of 23



Approximating Once Routine in Java (2)

We may encode Eiffel once routines in Java:
class BankData {
private BankData() { }
double interestRate;
void setIR(double r);
static boolean initOnce;
static BankData data;
static BankData getData() {
if(!initOnce) {
data = new BankData();
initOnce = true;

}
return data;

}
}

Problem?
Loss of Cohesion: Data
and Access to Data are
two separate concerns,
so should be decoupled
into two different classes!

17 of 23



Singleton Pattern in Eiffel (1)
Supplier:

class DATA
create {DATA ACCESS} make
feature {DATA ACCESS}
make do v := 10 end

feature -- Data Attributes
v: INTEGER
change_v (nv: INTEGER)
do v := nv end

end

expanded class
DATA ACCESS

feature
data: DATA

-- The one and only access
once create Result.make end

invariant data = data

Client:

test: BOOLEAN
local
access: DATA ACCESS
d1, d2: DATA

do
d1 := access.data
d2 := access.data
Result := d1 = d2
and d1.v = 10 and d2.v = 10

check Result end
d1.change_v (15)
Result := d1 = d2
and d1.v = 15 and d2.v = 15

end
end

Writing create d1.make in test
feature does not compile. Why?

18 of 23



Singleton Pattern in Eiffel (2)
Supplier:

class BANK DATA
create {BANK DATA ACCESS} make
feature {BANK DATA ACCESS}
make do . . . end

feature -- Data Attributes
interest_rate: REAL
set_interest_rate (r: REAL)
. . .

end

expanded class
BANK DATA ACCESS

feature
data: BANK DATA

-- The one and only access
once create Result.make end

invariant data = data

Client:

class
ACCOUNT

feature
data: BANK DATA
make (. . .)

-- Init. access to bank data.
local
data_access: BANK DATA ACCESS

do
data := data_access.data
. . .

end
end

Writing create data.make in
client’s make feature does not
compile. Why?

19 of 23



Testing Singleton Pattern in Eiffel
test_bank_shared_data: BOOLEAN

-- Test that a single data object is manipulated
local acc1, acc2: ACCOUNT
do
comment("t1: test that a single data object is shared")
create acc1.make ("Bill")
create acc2.make ("Steve")
Result := acc1.data = acc2.data
check Result end
Result := acc1.data ∼ acc2.data
check Result end
acc1.data.set_interest_rate (3.11)
Result :=

acc1.data.interest_rate = acc2.data.interest_rate
and acc1.data.interest_rate = 3.11

check Result end
acc2.data.set_interest_rate (2.98)
Result :=

acc1.data.interest_rate = acc2.data.interest_rate
and acc1.data.interest_rate = 2.98

end
20 of 23



Singleton Pattern: Architecture

client_1

DATA+

create	{DATA_ACCESS}	--	Creation	Restriction
			make

feature	{DATA_ACCESS}	--	Update	Restriction
			make+
						--	Initialize	a	data	object

feature	--	Data
			v:	SOME_DATA_CLASS
									--	An	example	query
			c
									--	An	example	command	

DATA_ACCESS+

feature	--	Data
			data+:	DATA
						--	Reference	to	a	shared	data	object
									once
												create	Result.make
									end		

invariant
			shared_instance:
						data	=	data

data+

supplier_of_shared_data

data_access+

+
APPLICATION_1

client_2

+
APPLICATION_2

client_3

+
APPLICATION_3

data_access+

data_access+

Important Exercises: Instantiate this architecture to the
problem of shared bank data.
Draw it in draw.io.

21 of 23



Beyond this lecture
The singleton pattern is instantiated in the ETF framework:
● ETF MODEL (shared data)
● ETF MODEL ACCESS (exclusive once access)
● ETF COMMAND and its effective descendants:

deferred class
ETF_COMMAND

feature -- Attributes
model: ETF_MODEL

feature {NONE}
make(. . .)
local
ma: ETF_MODEL_ACCESS

do
. . .
model := ma.m

end
end

class
ETF_MOVE

inherit
ETF_MOVE_INTERFACE
-- which inherits ETF_COMMAND

feature -- command
move(. . .)
do
. . .
model.some_routine (. . .)
. . .

end
end

22 of 23



Index (1)

Learning Objectives

Expanded Class: Modelling

Expanded Class: Programming (2)

Expanded Class: Programming (3)

Reference vs. Expanded (1)

Reference vs. Expanded (2)

Singleton Pattern: Motivation

Shared Data via Inheritance

Sharing Data via Inheritance: Architecture

Sharing Data via Inheritance: Limitation

Introducing the Once Routine in Eiffel (1.1)
23 of 23



Index (2)
Introducing the Once Routine in Eiffel (1.2)

Introducing the Once Routine in Eiffel (1.3)

Introducing the Once Routine in Eiffel (2)

Approximating Once Routines in Java (1)

Approximating Once Routines in Java (2)

Singleton Pattern in Eiffel (1)

Singleton Pattern in Eiffel (2)

Testing Singleton Pattern in Eiffel

Singleton Pattern: Architecture

Beyond this lecture

24 of 23


	Learning Objectives
	Expanded Class: Modelling
	Expanded Class: Programming (2)
	Expanded Class: Programming (3)
	Reference vs. Expanded (1)
	Reference vs. Expanded (2)
	Singleton Pattern: Motivation
	Shared Data via Inheritance
	Sharing Data via Inheritance: Architecture
	Sharing Data via Inheritance: Limitation
	Introducing the Once Routine in Eiffel (1.1)
	Introducing the Once Routine in Eiffel (1.2)
	Introducing the Once Routine in Eiffel (1.3)
	Introducing the Once Routine in Eiffel (2)
	Approximating Once Routines in Java (1)
	Approximating Once Routines in Java (2)
	Singleton Pattern in Eiffel (1)
	Singleton Pattern in Eiffel (2)
	Testing Singleton Pattern in Eiffel
	Singleton Pattern: Architecture
	Beyond this lecture

