

Learning Objectives

Upon completing this lecture, you are expected to understand:

- 1. Asserting Set Equality in Postconditions (Exercise)
- 2. The basics of discrete math (Self-Guided Study) FUN is a REL, but not vice versa.
- 3. Creating a *mathematical abstraction* for a birthday book
- 4. Using commands and queries from two mathmodels classes: REL and FUN

Math Review: Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S_1 \Rightarrow x \in S_2)$$

LASSONDE

• S_1 and S_2 are *equal* iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

4 of 24

Math Review: Set Operations

Given two sets S_1 and S_2 :

• Union of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

LASSONDE

LASSONDE

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• *Difference* of S_1 and S_2 is a set whose members are in S_1 but not S_2 .

 $S_1 \smallsetminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$

5 of 24

Math Review: Power Sets

The *power set* of a set *S* is a *set* of all *S*' *subsets*.

 $\mathbb{P}(S) = \{s \mid s \subseteq S\}$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set *s* has cardinality 0, 1, 2, or 3:

$$\left\{\begin{array}{l} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array}\right\}$$

Given *n* sets S_1, S_2, \ldots, S_n , a cross product of theses sets is a set of *n*-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set.

 $S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples: $\begin{cases} \{a, b\} \times \{2, 4\} \times \{\$, \&\} \} \\ = & \{ (e_1, e_2, e_3) \mid e_1 \in \{a, b\} \land e_2 \in \{2, 4\} \land e_3 \in \{\$, \&\} \} \\ = & \{(a, 2, \$), (a, 2, \&), (a, 4, \$), (a, 4, \&), (b, 2, \$), (b, 2, \&), (b, 4, \$), (b, 4, \&)\} \end{cases}$ [7 of 24]

Math Models: Relations (1)

- A *relation* is a collection of mappings, each being an *ordered pair* that maps a member of set *S* to a member of set *T*.
 e.g., Say *S* = {1,2,3} and *T* = {*a*,*b*}
 - $\circ \emptyset$ is an empty relation.
 - $S \times T$ is a relation (say r_1) that maps from each member of S to each member in T: {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
 - $\{(x, y) : S \times T \mid x \neq 1\}$ is a relation (say r_2) that maps only some members in *S* to every member in *T*: $\{(2, a), (2, b), (3, a), (3, b)\}$.
- Given a relation r:
 - *Domain* of *r* is the set of *S* members that *r* maps from.

$$\operatorname{dom}(r) = \{ \boldsymbol{s} : \boldsymbol{S} \mid (\exists t \bullet (\boldsymbol{s}, t) \in r) \}$$

e.g., dom $(r_1) = \{1, 2, 3\}$, dom $(r_2) = \{2, 3\}$

• Range of r is the set of T members that r maps to.

$$\operatorname{ran}(r) = \{t : T \mid (\exists s \bullet (s, t) \in r)\}$$

e.g., $ran(r_1) = \{a, b\} = ran(r_2)$

Math Models: Relations (2)

• We use the power set operator to express the set of *all possible relations* on *S* and *T*:

 $\mathbb{P}(S \times T)$

• To declare a relation variable *r*, we use the colon (:) symbol to mean *set membership*:

$$r: \mathbb{P}(S \times T)$$

• Or alternatively, we write:

 $r: S \leftrightarrow T$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

Math Models: Relations (3.2)

LASSONDE

LASSONDE

Math Models: Relations (3.1)

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- r.*domain* : set of first-elements from r
 - r.**domain** = { $d \mid (d, r) \in r$ }
 - e.g., r.**domain** = {*a*, *b*, *c*, *d*, *e*, *f*}
- r.*range*: set of second-elements from r

• r.range = { $r | (d, r) \in r$ }

- r.*inverse* : a relation like *r* except elements are in reverse order
 r.*inverse* = { (*r*, *d*) | (*d*, *r*) ∈ *r* }
 - e.g., r.inverse = $\{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$

Math Models: Relations (3.3)

t

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

r.overridden(t): a relation which agrees on *r* outside domain of *t.domain*, and agrees on *t* within domain of *t.domain* r.overridden(t) = t ∪ r.domain_subtracted(t.domain)

$$r.$$
overridden($\{(a,3), (c,4)\}$)

$$= \underbrace{\{(a,3), (c,4)\}}_{(b,2), (b,2), (d,1), (e,2), (f,3)\}}$$

. . . .

$$= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$

12 of 24

0

Math Review: Functions (1)

LASSONDE

A *function* f on sets S and T is a *specialized form* of relation: it is forbidden for a member of S to map to more than one members of T.

$$\forall \boldsymbol{s}:\boldsymbol{S}; t_1:T; t_2:T \bullet (\boldsymbol{s},t_1) \in \boldsymbol{f} \land (\boldsymbol{s},t_2) \in \boldsymbol{f} \Rightarrow t_1 = t_2$$

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$, which of the following relations are also functions?

$\circ S \times T$	[No]
$\circ (S \times T) - \{(x, y) \mid (x, y) \in S \times T \land x = 1\}$	[No]
• $\{(1,a), (2,b), (3,a)\}$	[Yes]
• $\{(1,a),(2,b)\}$	[Yes]

13 of 24

Math Review: Functions (3.1)

LASSONDE

Given a function $f : S \rightarrow T$:

- *f* is *injective* (or an injection) if *f* does not map two members of *S* to the same member of *T*.
 - $\begin{array}{l} f \text{ is injective} & \longleftrightarrow \\ (\forall s_1 : S; s_2 : S; t : T \bullet (s_1, t) \in r \land (s_2, t) \in r \Rightarrow s_1 = s_2) \end{array}$

e.g., Considering an array as a function from integers to objects, being injective means that the array does not contain any duplicates.

• *f* is *surjective* (or a surjection) if *f* maps to all members of *T*.

f is surjective $\iff \operatorname{ran}(f) = T$

• *f* is *bijective* (or a bijection) if *f* is both injective and surjective.

Math Review: Functions (2)

• We use *set comprehension* to express the set of all possible functions on *S* and *T* as those relations that satisfy the *functional property* :

 $\{ r : S \leftrightarrow T \mid \\ (\forall s : S; t_1 : T; t_2 : T \bullet (s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2) \}$

- This set (of possible functions) is a subset of the set (of possible relations): P(S × T) and S ↔ T.
- We abbreviate this set of possible functions as *S* → *T* and use it to declare a function variable *f*:

 $f: S \to T$

Math Review: Functions (3.2)

Math Models: Command-Query Separation

Command	Query
domain_restrict	domain_restrict ed
domain_restrict_by	domain_restrict ed _by
domain_subtract	domain_subtract ed
domain_subtract_by	domain_subtract ed _by
range_restrict	range_restrict ed
range_restrict_by	range_restrict ed _by
range_subtract	range_subtract ed
range_subtract_by	range_subtract ed _by
override	overrid den
override_by	overrid den _by

Say $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- Commands modify the context relation objects.
 r.domain_restrict({a}) changes r to {(a, 1), (a, 4)}
- **Queries** return new relations without modifying context objects. $r.domain_restricted(\{a\})$ returns $\{(a, 1), (a, 4)\}$ with r untouched 17 of 24

Case Study: A Birthday Book

- A birthday book stores a collection of entries, where each entry is a pair of a person's name and their birthday.
- No two entries stored in the book are allowed to have the same name.
- Each birthday is characterized by a month and a day.
- A birthday book is first created to contain an empty collection of entires.
- Given a birthday book, we may:
 - Inquire about the number of entries currently stored in the book
 - · Add a new entry by supplying its name and the associated birthday
 - Remove the entry associated with a particular person
 - Find the birthday of a particular person
 - Get a reminder list of names of people who share a given birthday
- 19 of 24

Birthday Book: Design

Beyond this lecture

- Familiarize yourself with the features of class REL, FUN, and SET.
- Exercise:

LASSONDE

LASSONDE

BIRTHDAY

 Consider an alternative implementation using two linear structures (e.g., here in Java).

LASSONDE

LASSONDE

- Implement the design of birthday book covered in lectures.
- Create another LINEAR_BIRTHDAY_BOOK class and modify the implementation of abstraction function accordingly. Do all contracts still pass? What should change? What remain unchanged?

21 of 24

end

do

ensure

end

do

ensure

end

ivariant

23 of 24

Index (1)

Learning Objectives

Math Review: Set Definitions and Membership

Math Review: Set Relations

Math Review: Set Operations

Math Review: Power Sets

- Math Review: Set of Tuples
- Math Models: Relations (1)
- Math Models: Relations (2)

Math Models: Relations (3.1)

- Math Models: Relations (3.2)
- Math Models: Relations (3.3)

Index (2)

Math Review: Functions (1)

Math Review: Functions (2)

Math Review: Functions (3.1)

Math Review: Functions (3.2)

Math Models: Command-Query Separation

Math Models: Example Test

Case Study: A Birthday Book

Birthday Book: Decisions

Birthday Book: Design

Birthday Book: Implementation

Beyond this lecture ...