
Case Study: Abstraction of a Birthday Book

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Asserting Set Equality in Postconditions (Exercise)
2. The basics of discrete math (Self-Guided Study)

FUN is a REL, but not vice versa.

3. Creating a mathematical abstraction for a birthday book
4. Using commands and queries from two mathmodels classes:

REL and FUN

2 of 24

Math Review: Set Definitions and Membership

● A set is a collection of objects.○ Objects in a set are called its elements or members.○ Order in which elements are arranged does not matter.○ An element can appear at most once in the set.● We may define a set using:○ Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}○ Set Comprehension: Implicitly specify the condition that all
members satisfy.
e.g., {x � 1 ≤ x ≤ 10 ∧ x is an odd number}● An empty set (denoted as {} or �) has no members.● We may check if an element is a member of a set:
e.g., 5 ∈ {1,3,5,7,9} [true]
e.g., 4 �∈ {x � x ≤ 1 ≤ 10,x is an odd number} [true]● The number of elements in a set is called its cardinality .

e.g., ��� = 0, �{x � x ≤ 1 ≤ 10,x is an odd number}� = 5
3 of 24

Math Review: Set Relations

Given two sets S1 and S2:
● S1 is a subset of S2 if every member of S1 is a member of S2.

S1 ⊆ S2 ⇐⇒ (∀x ● x ∈ S1 ⇒ x ∈ S2)

● S1 and S2 are equal iff they are the subset of each other.

S1 = S2 ⇐⇒ S1 ⊆ S2 ∧S2 ⊆ S1

● S1 is a proper subset of S2 if it is a strictly smaller subset.

S1 ⊂ S2 ⇐⇒ S1 ⊆ S2 ∧ �S1� < �S2�
4 of 24

Math Review: Set Operations

Given two sets S1 and S2:
● Union of S1 and S2 is a set whose members are in either.

S1 ∪S2 = {x � x ∈ S1 ∨ x ∈ S2}

● Intersection of S1 and S2 is a set whose members are in both.

S1 ∩S2 = {x � x ∈ S1 ∧ x ∈ S2}

● Difference of S1 and S2 is a set whose members are in S1 but
not S2.

S1 �S2 = {x � x ∈ S1 ∧ x �∈ S2}
5 of 24

Math Review: Power Sets

The power set of a set S is a set of all S’ subsets.

P(S) = {s � s ⊆ S}

The power set contains subsets of cardinalities 0, 1, 2, . . . , �S�.
e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

�������������

�,{1}, {2}, {3},{1,2}, {2,3}, {3,1},{1,2,3}

�������������
6 of 24

Math Review: Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross product of theses sets is
a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) � ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}= { (e1,e2,e3) � e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }
= {(a,2,$), (a,2,&), (a,4,$), (a,4,&),(b,2,$), (b,2,&), (b,4,$), (b,4,&)}

7 of 24

Math Models: Relations (1)

● A relation is a collection of mappings, each being an ordered

pair that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}○ � is an empty relation.○ S × T is a relation (say r1) that maps from each member of S to

each member in T : {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}○ {(x ,y) ∶ S × T � x ≠ 1} is a relation (say r2) that maps only some
members in S to every member in T : {(2,a), (2,b), (3,a), (3,b)}.● Given a relation r :○ Domain of r is the set of S members that r maps from.

dom(r) = {s ∶ S � (∃t ● (s, t) ∈ r)}
e.g., dom(r1) = {1,2,3}, dom(r2) = {2,3}○ Range of r is the set of T members that r maps to.

ran(r) = {t ∶ T � (∃s ● (s, t) ∈ r)}
e.g., ran(r1) = {a,b} = ran(r2)

8 of 24

Math Models: Relations (2)

● We use the power set operator to express the set of all possible

relations on S and T :
P(S × T)

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T)
● Or alternatively, we write:

r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T)
9 of 24

Math Models: Relations (3.1)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}
● r.domain : set of first-elements from r○ r.domain = { d � (d , r) ∈ r }○ e.g., r.domain = {a,b,c,d ,e, f}
● r.range : set of second-elements from r

○ r.range = { r � (d , r) ∈ r }○ e.g., r.range = {1,2,3,4,5,6}
● r.inverse : a relation like r except elements are in reverse order○ r.inverse = { (r ,d) � (d , r) ∈ r }○ e.g., r.inverse = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}

10 of 24

Math Models: Relations (3.2)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}● r.domain restricted(ds) : sub-relation of r with domain ds.○ r.domain restricted(ds) = { (d , r) � (d , r) ∈ r ∧ d ∈ ds }○ e.g., r.domain restricted({a, b}) = {(a,1), (b,2), (a,4), (b,5)}● r.domain subtracted(ds) : sub-relation of r with domain not ds.○ r.domain subtracted(ds) = { (d , r) � (d , r) ∈ r ∧ d �∈ ds }○ e.g., r.domain subtracted({a, b}) ={(c,3), (c,6), (d,1), (e,2), (f,3)}● r.range restricted(rs) : sub-relation of r with range rs.○ r.range restricted(rs) = { (d , r) � (d , r) ∈ r ∧ r ∈ rs }○ e.g., r.range restricted({1, 2}) = {(a,1), (b,2), (d ,1), (e,2)}● r.range subtracted(ds) : sub-relation of r with range not ds.○ r.range subtracted(rs) = { (d , r) � (d , r) ∈ r ∧ r �∈ rs }○ e.g., r.range subtracted({1, 2}) ={{(c,3), (a,4), (b,5), (c,6), (f ,3)}}
11 of 24

Math Models: Relations (3.3)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}
● r.overridden(t) : a relation which agrees on r outside domain of

t .domain, and agrees on t within domain of t .domain○ r.overridden(t) = t ∪ r .domain subtracted(t .domain)○
r .overridden({(a,3), (c,4)}���

t

)
= {(a,3), (c,4)}���

t

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}���
r .domain subtracted(t .domain����������������������������

{a,c}
)

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}
12 of 24

Math Review: Functions (1)

A function f on sets S and T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T .

∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ f ∧ (s, t2) ∈ f ⇒ t1 = t2

e.g., Say S = {1,2,3} and T = {a,b}, which of the following
relations are also functions?○ S × T [No]○ (S × T) − {(x ,y) � (x ,y) ∈ S × T ∧ x = 1} [No]○ {(1,a), (2,b), (3,a)} [Yes]○ {(1,a), (2,b)} [Yes]

13 of 24

Math Review: Functions (2)

● We use set comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

{r ∶ S↔ T �(∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)}
● This set (of possible functions) is a subset of the set (of

possible relations): P(S × T) and S↔ T .
● We abbreviate this set of possible functions as S→ T and use it

to declare a function variable f :

f ∶ S→ T

14 of 24

Math Review: Functions (3.1)

Given a function f ∶ S→ T :
● f is injective (or an injection) if f does not map two members of

S to the same member of T .

f is injective ⇐⇒(∀s1 ∶ S;s2 ∶ S; t ∶ T ● (s1, t) ∈ r ∧ (s2, t) ∈ r ⇒ s1 = s2)
e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

● f is surjective (or a surjection) if f maps to all members of T .

f is surjective ⇐⇒ ran(f) = T

● f is bijective (or a bijection) if f is both injective and surjective.
15 of 24

Math Review: Functions (3.2)

16 of 24

Math Models: Command-Query Separation

Command Query

domain restrict domain restricted
domain restrict by domain restricted by
domain subtract domain subtracted

domain subtract by domain subtracted by

range restrict range restricted
range restrict by range restricted by
range subtract range subtracted

range subtract by range subtracted by

override overridden
override by overridden by

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}● Commands modify the context relation objects.
r.domain restrict({a}) changes r to {(a,1), (a,4)}

● Queries return new relations without modifying context objects.
r.domain restricted({a}) returns {(a,1), (a,4)} with r untouched

17 of 24

Math Models: Example Test

test_rel: BOOLEAN

local

r, t: REL[STRING, INTEGER]
ds: SET[STRING]

do

create r.make_from_tuple_array (
<<["a", 1], ["b", 2], ["c", 3],

["a", 4], ["b", 5], ["c", 6],
["d", 1], ["e", 2], ["f", 3]>>)

create ds.make_from_array (<<"a">>)
-- r is not changed by the query ‘domain_subtracted’
t := r.domain subtracted (ds)
Result :=
t /∼ r and not t.domain.has ("a") and r.domain.has ("a")

check Result end

-- r is changed by the command ‘domain_subtract’
r.domain subtract (ds)
Result :=
t ∼ r and not t.domain.has ("a") and not r.domain.has ("a")

end

18 of 24

Case Study: A Birthday Book

● A birthday book stores a collection of entries, where each entry
is a pair of a person’s name and their birthday.

● No two entries stored in the book are allowed to have the same
name.

● Each birthday is characterized by a month and a day.
● A birthday book is first created to contain an empty collection of

entires.
● Given a birthday book, we may:○ Inquire about the number of entries currently stored in the book○ Add a new entry by supplying its name and the associated birthday○ Remove the entry associated with a particular person○ Find the birthday of a particular person○ Get a reminder list of names of people who share a given birthday

19 of 24

Birthday Book: Decisions

● Design Decision○ Classes○ Client Supplier vs. Inheritance○ Mathematical Model? [e.g., REL or FUN]○ Contracts
● Implementation Decision○ Two linear structures (e.g., arrays, lists) [O(n)]○ A balanced search tree (e.g., AVL tree) [O(log ⋅ n)]○ A hash table [O(1)]
● Implement an abstraction function that maps implementation

to the math model.

20 of 24

Birthday Book: Design

BIRTHDAY_BOOK
model: FUN[NAME, BIRTHDAY]
 -- abstraction function

count: INTEGER
 -- number of entries

put(n: NAME; d: BIRTHDAY)
 ensure
 model_operation: model ~ (old model.deep_twin).overriden_by ([n,d])
 -- infix symbol for override operator: @<+

remind(d: BIRTHDAY): ARRAY[NAME]
 ensure
 nothing_changed: model ~ (old model.deep_twin)
 same_counts: Result.count = (model.range_restricted_by(d)).count
 same_contents: ∀ name ∈ (model.range_restricted_by(d)).domain: name ∈ Result
 -- infix symbol for range restriction: model @> (d)

invariant:
 consistent_book_and_model_counts: count = model.count

NAME
item: STRING

invariant
���item[1] ∈ A..Z

�

BIRTHDAY
day: INTEGER
month: INTEGER

invariant
 1 ≤ month ≤ 12
 1 ≤ day ≤ 31

�

model: FUN[NAME, ..]

remind: ARRAY[..]

21 of 24

Birthday Book: Implementation

BIRTHDAY_BOOK
model: FUN[NAME, BIRTHDAY]
 -- abstraction function
 do
 -- promote hashtable to function
 ensure
 same_counts: Result.count = implementation.count
 same_contents: ∀ [name, date] ∈ Result: [name, date] ∈ implementation
 end

put(n: NAME; d: BIRTHDAY)
 do
 -- implement using hashtable
 ensure
 model_operation: model ~ (old model.deep_twin) @<+ [n,d]
 end

remind(d: BIRTHDAY): ARRAY[NAME]
 do
 -- implement using hashtable
 ensure
 nothing_changed: model ~ (old model.deep_twin)
 same_counts: Result.count = (model @> d).count
 same_contents: ∀ name ∈ (model @> d).domain: name ∈ Result
 end

count: INTEGER -- number of names

feature {NONE}
 implementation: HASH_TABLE[BIRTHDAY, NAME]

invariant:
 consistent_book_and_model_counts: count = model.count
 consistent_book_and_imp_counts: count = implementation.count

*
HASHABLE

BIRTHDAY
day: INTEGER
month: INTEGER

invariant
 1 ≤ month ≤ 12
 1 ≤ day ≤ 31

�

model: FUN[NAME, ..]

remind: ARRAY[..]

NAME
item: STRING

invariant
���item[1] ∈ A..Z

�

22 of 24

Beyond this lecture . . .

● Familiarize yourself with the features of class REL, FUN, and
SET.

● Exercise:○ Consider an alternative implementation using two linear structures
(e.g., here in Java).○ Implement the design of birthday book covered in lectures.○ Create another LINEAR BIRTHDAY BOOK class and modify the
implementation of abstraction function accordingly.
Do all contracts still pass? What should change? What remain
unchanged?

23 of 24

Index (1)

Learning Objectives

Math Review: Set Definitions and Membership

Math Review: Set Relations

Math Review: Set Operations

Math Review: Power Sets

Math Review: Set of Tuples

Math Models: Relations (1)

Math Models: Relations (2)

Math Models: Relations (3.1)

Math Models: Relations (3.2)

Math Models: Relations (3.3)

24 of 24

Index (2)

Math Review: Functions (1)

Math Review: Functions (2)

Math Review: Functions (3.1)

Math Review: Functions (3.2)

Math Models: Command-Query Separation

Math Models: Example Test

Case Study: A Birthday Book

Birthday Book: Decisions

Birthday Book: Design

Birthday Book: Implementation

Beyond this lecture . . .

25 of 24

