Case Study: Abstraction of a Birthday Book

EECS3311 A \& E: Software Design Fall 2020

YORK
 UNIVERSITE U N I VERS I T Y U

Chen-WEI WANG

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. Asserting Set Equality in Postconditions (Exercise)
2. The basics of discrete math (Self-Guided Study) FUN is a REL, but not vice versa.
3. Creating a mathematical abstraction for a birthday book
4. Using commands and queries from two mathmodels classes: REL and FUN

Math Review: Set Definitions and Membershiponos

- A set is a collection of objects.
- Objects in a set are called its elements or members.
- Order in which elements are arranged does not matter.
- An element can appear at most once in the set.
- We may define a set using:
- Set Enumeration: Explicitly list all members in a set. e.g., $\{1,3,5,7,9\}$
- Set Comprehension: Implicitly specify the condition that all members satisfy.
e.g., $\{x \mid 1 \leq x \leq 10 \wedge x$ is an odd number $\}$
- An empty set (denoted as $\}$ or \varnothing) has no members.
- We may check if an element is a member of a set:

```
e.g., \(5 \in\{1,3,5,7,9\}\)
e.g., 4\not\in{x|x\leq1\leq10,x is an odd number} [true]
```

- The number of elements in a set is called its cardinality. e.g., $|\varnothing|=0, \mid\{x \mid x \leq 1 \leq 10, x$ is an odd number $\} \mid=5$ 3 of 24

Math Review: Set Relations

Given two sets S_{1} and S_{2} :

- S_{1} is a subset of S_{2} if every member of S_{1} is a member of S_{2}.

$$
S_{1} \subseteq S_{2} \Longleftrightarrow\left(\forall x \bullet x \in S_{1} \Rightarrow x \in S_{2}\right)
$$

- S_{1} and S_{2} are equal iff they are the subset of each other.

$$
S_{1}=S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge S_{2} \subseteq S_{1}
$$

- S_{1} is a proper subset of S_{2} if it is a strictly smaller subset.

$$
S_{1} \subset S_{2} \Longleftrightarrow S_{1} \subseteq S_{2} \wedge|S 1|<|S 2|
$$

Math Review: Set Operations

Given two sets S_{1} and S_{2} :

- Union of S_{1} and S_{2} is a set whose members are in either.

$$
S_{1} \cup S_{2}=\left\{x \mid x \in S_{1} \vee x \in S_{2}\right\}
$$

- Intersection of S_{1} and S_{2} is a set whose members are in both.

$$
S_{1} \cap S_{2}=\left\{x \mid x \in S_{1} \wedge x \in S_{2}\right\}
$$

- Difference of S_{1} and S_{2} is a set whose members are in S_{1} but not S_{2}.

$$
S_{1}, S_{2}=\left\{x \mid x \in S_{1} \wedge x \notin S_{2}\right\}
$$

5 of 24

Math Review: Power Sets

The power set of a set S is a set of all S^{\prime} subsets.

$$
\mathbb{P}(S)=\{s \mid s \subseteq S\}
$$

The power set contains subsets of cardinalities $0,1,2, \ldots,|S|$. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality $0,1,2$, or 3 :

$$
\left\{\begin{array}{l}
\varnothing, \\
\{1\},\{2\},\{3\}, \\
\{1,2\},\{2,3\},\{3,1\}, \\
\{1,2,3\}
\end{array}\right\}
$$

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$, a cross product of theses sets is a set of n-tuples.
Each n-tuple ($e_{1}, e_{2}, \ldots, e_{n}$) contains n elements, each of which a member of the corresponding set.

$$
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(e_{1}, e_{2}, \ldots, e_{n}\right) \mid e_{i} \in S_{i} \wedge 1 \leq i \leq n\right\}
$$

e.g., $\{a, b\} \times\{2,4\} \times\{\$, \&\}$ is a set of triples:

$$
\begin{aligned}
& \{a, b\} \times\{2,4\} \times\{\$, \&\} \\
= & \left\{\left(e_{1}, e_{2}, e_{3}\right) \mid e_{1} \in\{a, b\} \wedge e_{2} \in\{2,4\} \wedge e_{3} \in\{\$, \&\}\right\} \\
= & \{(a, 2, \$),(a, 2, \&),(a, 4, \$),(a, 4, \&), \\
& (b, 2, \$),(b, 2, \&),(b, 4, \$),(b, 4, \&)\}
\end{aligned}
$$

7 of 24

Math Models: Relations (1)

- A relation is a collection of mappings, each being an ordered pair that maps a member of set S to a member of set T.
e.g., Say $S=\{1,2,3\}$ and $T=\{a, b\}$
$\circ \phi$ is an empty relation.
- $S \times T$ is a relation (say r_{1}) that maps from each member of S to each member in T : $\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
$\circ\{(x, y): S \times T \mid x \neq 1\}$ is a relation (say r_{2}) that maps only some members in S to every member in $T:\{(2, a),(2, b),(3, a),(3, b)\}$.
- Given a relation r :
- Domain of r is the set of S members that r maps from.

$$
\operatorname{dom}(r)=\{s: S \mid(\exists t \bullet(s, t) \in r)\}
$$

e.g., $\operatorname{dom}\left(r_{1}\right)=\{1,2,3\}, \operatorname{dom}\left(r_{2}\right)=\{2,3\}$

- Range of r is the set of T members that r maps to.

$$
\operatorname{ran}(r)=\{t: T \mid(\exists s \bullet(s, t) \in r)\}
$$

e.g., $\operatorname{ran}\left(r_{1}\right)=\{a, b\}=\operatorname{ran}\left(r_{2}\right)$

- We use the power set operator to express the set of all possible relations on S and T :

$$
\mathbb{P}(S \times T)
$$

- To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$
r: \mathbb{P}(S \times T)
$$

- Or alternatively, we write:

$$
r: S \leftrightarrow T
$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

Math Models: Relations (3.1)

Say $r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}$

- r.domain: set of first-elements from r
- r.domain $=\{d \mid(d, r) \in r\}$
- e.g., r.domain $=\{a, b, c, d, e, f\}$
- r.range: set of second-elements from r
- r.range $=\{r \mid(d, r) \in r\}$
- e.g., r.range $=\{1,2,3,4,5,6\}$
- r.inverse: a relation like r except elements are in reverse order
- r.inverse $=\{(r, d) \mid(d, r) \in r\}$
- e.g., r.inverse $=\{(1, a),(2, b),(3, c),(4, a),(5, b),(6, c),(1, d),(2, e),(3, f)\}$

Say $r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}$

- r.domain_restricted(ds): sub-relation of r with domain ds.
- r.domain_restricted(ds) $=\{(d, r) \mid(d, r) \in r \wedge d \in d s\}$
- e.g., r.domain_restricted $(\{a, b\})=\{(\mathbf{a}, 1),(\mathbf{b}, 2),(\mathbf{a}, 4),(\mathbf{b}, 5)\}$
- r.domain_subtracted(ds): sub-relation of r with domain not $d s$.
- r.domain_subtracted(ds) $=\{(d, r) \mid(d, r) \in r \wedge d \notin d s\}$
- e.g., r.domain_subtracted $(\{a, b\})=$
$\{(\mathbf{c}, 3),(\mathbf{c}, 6),(\mathbf{d}, 1),(\mathbf{e}, 2),(\mathbf{f}, 3)\}$
- r.range_restricted(rs): sub-relation of r with range r s. or.range_restricted(rs) $=\{(d, r) \mid(d, r) \in r \wedge r \in r s\}$
- e.g., r.range_restricted $(\{1,2\})=\{(a, 1),(b, 2),(d, \mathbf{1}),(e, 2)\}$
- r.range_subtracted(ds): sub-relation of r with range not $d s$.
- r.range_subtracted(rs) $=\{(d, r) \mid(d, r) \in r \wedge r \notin r s\}$
- e.g., r.range_subtracted $(\{1,2\})=$ $\{\{(c, \mathbf{3}),(\mathbf{a}, \mathbf{4}),(b, \mathbf{5}),(c, \mathbf{6}),(f, 3)\}\}$
11 of 24

Math Models: Relations (3.3)

Say $r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}$

- r.overridden(t): a relation which agrees on r outside domain of t.domain, and agrees on t within domain of t.domain
- r.overridden $(\mathrm{t})=t \cup r$.domain_subtracted $(t$.domain $)$

○

$$
\begin{aligned}
& \text { r.overridden }(\underbrace{\{(a, 3),(c, 4)\}}_{t}) \\
= & \underbrace{\{(a, 3),(c, 4)\}}_{t} \cup \underbrace{}_{r . \text { domain_subtracted }(\underbrace{\{(b, 2),(b, 5)}_{\{a, \text { domain }}),(d, 1),(e, 2),(f, 3)\}}
\end{aligned}
$$

$=\{(a, 3),(c, 4),(b, 2),(b, 5),(d, 1),(e, 2),(f, 3)\}$

A function f on sets S and T is a specialized form of relation: it is forbidden for a member of S to map to more than one members of T.

$$
\forall s: S ; t_{1}: T ; t_{2}: T \bullet\left(s, t_{1}\right) \in f \wedge\left(s, t_{2}\right) \in f \Rightarrow t_{1}=t_{2}
$$

e.g., Say $S=\{1,2,3\}$ and $T=\{a, b\}$, which of the following relations are also functions?

```
- S\timesT
\circ}(S\timesT)-{(x,y)|(x,y)\inS\timesT^x=1
- \(\{(1, a),(2, b)\}\)

\section*{Math Review: Functions (2)}
- We use set comprehension to express the set of all possible functions on \(S\) and \(T\) as those relations that satisfy the functional property :
\[
\begin{aligned}
& \{r: S \leftrightarrow T \mid \\
& \left.\quad\left(\forall s: S ; t_{1}: T ; t_{2}: T \bullet\left(s, t_{1}\right) \in r \wedge\left(s, t_{2}\right) \in r \Rightarrow t_{1}=t_{2}\right)\right\}
\end{aligned}
\]
- This set (of possible functions) is a subset of the set (of possible relations): \(\mathbb{P}(S \times T)\) and \(S \leftrightarrow T\).
- We abbreviate this set of possible functions as \(S \rightarrow T\) and use it to declare a function variable \(f\) :
\[
f: S \rightarrow T
\]

Given a function \(f: S \rightarrow T\) :
- \(f\) is injective (or an injection) if \(f\) does not map two members of \(S\) to the same member of \(T\).
```

f is injective \Longleftrightarrow
(\forall\mp@subsup{s}{1}{}:S; s2:S;t:T\bullet(\mp@subsup{s}{1}{},t)\inr\wedge(\mp@subsup{s}{2}{},t)\inr=>\mp@subsup{s}{1}{}=\mp@subsup{s}{2}{})

```
e.g., Considering an array as a function from integers to objects, being injective means that the array does not contain any duplicates.
- \(f\) is surjective (or a surjection) if \(f\) maps to all members of \(T\).
\[
f \text { is surjective } \Longleftrightarrow \operatorname{ran}(f)=T
\]
- \(f\) is bijective (or a bijection) if \(f\) is both injective and surjective.

15 of 24

\begin{tabular}{c||c} 
Command & Query \\
\hline \hline \begin{tabular}{c} 
domain_restrict \\
domain_restrict_by \\
domain_subtract \\
domain_subtract_by
\end{tabular} & \begin{tabular}{c} 
domain_restricted \\
domain_restricted_by \\
domain_subtracted \\
domain_subtracted_by
\end{tabular} \\
\hline \hline range_restrict & range_restricted \\
range_restrict_by \\
range_subtract & range_restricted_by \\
range_subtract_by & range_subtracted \\
\hline \hline override & overridden \\
override_by & overridden_by
\end{tabular}

Say \(r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\}\)
- Commands modify the context relation objects.
r.domain_restrict \((\{a\})\) changes \(r\) to \(\{(a, 1),(a, 4)\}\)
- Queries return new relations without modifying context objects. r.domain_restricted \((\{a\})\) returns \(\{(a, 1),(a, 4)\}\) with \(r\) untouched 17 of 24

\section*{Math Models: Example Test}
```

test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]
do
create r.make_from_tuple_array (
<<["a", 1], ["b", 2], ["c", 3],
["a", 4], ["b", 5], ["c", 6],
["d", 1], ["e", 2], ["f", 3]>>)
create ds.make_from_array (<<"a">>
f is not changed by the query 'domain_subtracted'
t := r.domain_subtracted (ds)
Result :=
t /~ r and not t.domain.has ("a") and r.domain.has ("a")
check Result end
-- r is changed by the command 'domain_subtract'
r.domain_subtract (ds)
Result :=
t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
end

```
- A birthday book stores a collection of entries, where each entry is a pair of a person's name and their birthday.
- No two entries stored in the book are allowed to have the same name.
- Each birthday is characterized by a month and a day.
- A birthday book is first created to contain an empty collection of entires.
- Given a birthday book, we may:
- Inquire about the number of entries currently stored in the book
- Add a new entry by supplying its name and the associated birthday
- Remove the entry associated with a particular person
- Find the birthday of a particular person
- Get a reminder list of names of people who share a given birthday 19 of 24

\section*{Birthday Book: Decisions}
- Design Decision
- Classes
- Client Supplier vs. Inheritance
- Mathematical Model?
[e.g., REL or FUN ]
- Contracts
- Implementation Decision
- Two linear structures (e.g., arrays, lists)
- A balanced search tree (e.g., AVL tree)
- A hash table
[ O(1)]
- Implement an abstraction function that maps implementation to the math model.

Birthday Book: Design


21 of 24

- Familiarize yourself with the features of class REL, FUN, and SET.
- Exercise:
- Consider an alternative implementation using two linear structures (e.g., here in Java).
- Implement the design of birthday book covered in lectures.
- Create another LINEAR_BIRTHDAY_BOOK class and modify the implementation of abstraction function accordingly. Do all contracts still pass? What should change? What remain unchanged?

23 of 24

Index (1)
```

Learning Objectives
Math Review: Set Definitions and Membership
Math Review: Set Relations
Math Review: Set Operations
Math Review: Power Sets
Math Review: Set of Tuples
Math Models: Relations (1)
Math Models: Relations (2)
Math Models: Relations (3.1)
Math Models: Relations (3.2)
Math Models: Relations (3.3)
24 of 24

```

> Index (2)

Math Review: Functions (1)

Math Review: Functions (2)
Math Review: Functions (3.1)
Math Review: Functions (3.2)
Math Models: Command-Query Separation
Math Models: Example Test
Case Study: A Birthday Book
Birthday Book: Decisions
Birthday Book: Design
Birthday Book: Implementation
Beyond this lecture ...
25 of 24```

