
Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

● Purpose of a Design Diagram: an Abstraction of Your Design
● Architectural Relation: Client-Supplier vs. Inheritance
● Presenting a class: Compact vs. Detailed
● Denoting a Class or Feature: Deferred vs. Effective

2 of 26

Why a Design Diagram?
● SOURCE CODE is not an appropriate form for communication.
● Use a DESIGN DIAGRAM showing selective sets of important:
○ clusters (i.e., packages)
○ classes

[deferred vs. effective]
[generic vs. non-generic]

○ architectural relations
[client-supplier vs. inheritance]

○ routines (queries and commands)
[deferred vs. effective vs. redefined]

○ contracts
[precondition vs. postcondition vs. class invariant]

● Your design diagram is called an abstraction of your system:
○ Being selective on what to show, filtering out irrelevant details
○ Presenting contractual specification in a mathematical form

(e.g., ∀ instead of across . . . all . . . end).
3 of 26

Classes:
Detailed View vs. Compact View (1)

● Detailed view shows a selection of:
○ features (queries and/or commands)
○ contracts (class invariant and feature pre-post-conditions)
○ Use the detailed view if readers of your design diagram should

know such details of a class.
e.g., Classes critical to your design or implementation

● Compact view shows only the class name.
○ Use the compact view if readers should not be bothered with

such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED LIST, HASH TABLE)

4 of 26

Classes:
Detailed View vs. Compact View (2)

Detailed View Compact View

FOO
feature	--	{	A,	B,	C	}
		--	features	exported	to	classes	A,	B,	and	C
feature	--	{	NONE	}
		--	private	features
invariant
		inv_1:	0	<	balance	<	1,000,000

FOO

5 of 26

Contracts: Mathematical vs. Programming
○ When presenting the detailed view of a class, you should include

contracts of features which you judge as important .
○ Consider an array-based linear container:

ARRAYED_CONTAINER+
feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	the	container

feature	--	Commands
		assign_at+	(i:	INTEGER;	s:	STRING)
						--	Change	the	value	at	position	'i'	to	's'.
				require
						valid_index:	1	≤	i	≤	count
				ensure
						size_unchanged:	imp.count	=	(old	imp.twin).count
						item_assigned:	imp[i]	~	s
						others_unchanged:	∀j	:	1	≤	j	≤	imp.count	:	j	≠	i	⇒imp[j]	~	(old	imp.twin)	[j]			

feature	--	{	NONE	}
		imp+:	ARRAY[STRING]
				--	Implementation	of	an	arrayed-container

invariant
				consistency:	imp.count	=	count

● A tag should be included for each contract.
● Use mathematical symbols (e.g., ∀, ∃, ≤) instead of programming

symbols (e.g., across . . . all . . . , across . . . some . . . , <=).
6 of 26

Classes: Generic vs. Non-Generic

● A class is generic if it declares at least one type parameters.
○ Collection classes are generic: ARRAY[G], HASH TABLE[G, H], etc.
○ Type parameter(s) of a class may or may not be instantiated :

HASH_TABLE[G,	H] MY_TABLE_1[STRING,	INTEGER] MY_TABLE_2[PERSON,	INTEGER]

○ If necessary, present a generic class in the detailed form:

DATABASE[G]+
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	imp:	ARRAY[G]
invariant
		--	some	class	invariant	here

MY_DB_1[STRING]+
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	imp:	ARRAY[STRING]
invariant
		--	some	class	invariant	here

MY_DB_2[PERSON]+
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	imp:	ARRAY[PERSON]
invariant
		--	some	class	invariant	here

● A class is non-generic if it declares no type parameters.

7 of 26

Deferred vs. Effective

Deferred means unimplemented (≈ abstract in Java)

Effective means implemented

8 of 26

Classes: Deferred vs. Effective

● A deferred class has at least one feature unimplemented .
○ A deferred class may only be used as a static type (for

declaration), but cannot be used as a dynamic type.
○ e.g., By declaring list: LIST[INTEGER] (where LIST is a

deferred class), it is invalid to write:
● create list.make
● create {LIST[INTEGER]} list.make

● An effective class has all features implemented .
○ An effective class may be used as both static and dynamic types.
○ e.g., By declaring list: LIST[INTEGER], it is valid to write:
● create {LINKED LIST[INTEGER]} list.make
● create {ARRAYED LIST[INTEGER]} list.make

where LINKED LIST and ARRAYED LIST are both effective
descendants of LIST.

9 of 26

Features: Deferred, Effective, Redefined (1)

A deferred feature is declared with its header only
(i.e., name, parameters, return type).
○ The word “deferred” means a descendant class would later

implement this feature.
○ The resident class of the deferred feature must also be deferred .

deferred class
DATABASE[G]

feature -- Queries
search (g: G): BOOLEAN

-- Does item ‘g‘ exist in database?
deferred end

end

10 of 26

Features: Deferred, Effective, Redefined (2)

● An effective feature implements some inherited deferred
feature.

class
DATABASE_V1[G]

inherit
DATABASE[G]

feature -- Queries
search (g: G): BOOLEAN

-- Perform a linear search on the database.
do end

end

● A descendant class may still later re-implement this feature.

11 of 26

Features: Deferred, Effective, Redefined (3)

● A redefined feature re-implements some inherited effective
feature.

class
DATABASE_V2[G]

inherit
DATABASE_V1[G]

redefine search end
feature -- Queries
search (g: G): BOOLEAN

-- Perform a binary search on the database.
do end

end

● A descendant class may still later re-implement this feature.

12 of 26

Classes: Deferred vs. Effective (2.1)

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

● Deferred or effective classes may be in the compact form:

DATABASE[G]* DATABASE_V1[G]+ DATABASE_V2[G]+

LIST[G]* LINKED_LIST[G]+ ARRAYED_LIST[G]+

LIST[LIST[PERSON]]* LINKED_LIST[INTEGER]+ ARRAYED_LIST[G]+

13 of 26

Classes: Deferred vs. Effective (2.2)
Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

● Deferred or effective classes may be in the detailed form:

DATABASE[G]*
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item*	(g:	G)
						--	Add	new	item	`g`	into	database.
				require	
						non_existing_item:	¬	exists	(g)
				ensure	
						size_incremented:	count	=	old	count	+	1
						item_added:	exists	(g)

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database
				ensure	
						correct_result:	Result	=	data.count

		exists*	(g:	G):	BOOLEAN
						--	Does	item	`g`	exist	in	database?
				ensure	
						correct_result:	Result	=	(∃i	:	1	≤	i	≤	count	:	data[i]	~	g)

DATABASE_V1[G]+
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item+	(g:	G)
						--	Append	new	item	`g`	into	end	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists+	(g:	G):	BOOLEAN
						--	Perform	a	linear	search	on	`data`	array.

DATABASE_V2[G]+
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item++	(g:	G)
						--	Insert	new	item	`g`	into	the	right	slot	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists++	(g:	G):	BOOLEAN
						--	Perform	a	binary	search	on	`data`	array.

		invariant
				sorted_data:		∀i	:	1	≤	i	<	count	:	data[i]	<	data[i	+	1]

14 of 26

Class Relations: Inheritance (1)
● An inheritance hierarchy is formed using red arrows.
○ Arrow’s origin indicates the child /descendant class.
○ Arrow’s destination indicates the parent /ancestor class.

● You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

*
LIST[G]

MY_LIST_INTERFACE[G]*
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	some	implementation	features	here
invariant
		--	some	class	invariant	here

+
MY_LIST_IMP_ONE[G]+

+
MY_LIST_IMP_TWO[G]+

15 of 26

Class Relations: Inheritance (2)
More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy Features being (Re-)Implemented

DATABASE[G]*

DATABASE_V1[G]+

DATABASE_V2[G]+

DATABASE[G]*
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item*	(g:	G)
						--	Add	new	item	`g`	into	database.
				require	
						non_existing_item:	¬	exists	(g)
				ensure	
						size_incremented:	count	=	old	count	+	1
						item_added:	exists	(g)

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database
				ensure	
						correct_result:	Result	=	data.count

		exists*	(g:	G):	BOOLEAN
						--	Does	item	`g`	exist	in	database?
				ensure	
						correct_result:	Result	=	(∃i	:	1	≤	i	≤	count	:	data[i]	~	g)

DATABASE_V1[G]+

DATABASE_V2[G]+
feature	{NONE}	--	Implementation
		data:	ARRAY[G]		

feature	--	Commands
		add_item++	(g:	G)
						--	Insert	new	item	`g`	into	the	right	slot	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists++	(g:	G):	BOOLEAN
						--	Perform	a	binary	search	on	`data`	array.

		invariant
				sorted_data:		∀i	:	1	≤	i	<	count	:	data[i]	<	data[i	+	1]

16 of 26

Class Relations: Client-Supplier (1)

● A client-supplier (CS) relation exists between two classes:

one (the client) uses the service of another (the supplier).
● Programmatically, there is CS relation if in class CLIENT there

is a variable declaration s1: SUPPLIER .
○ A variable may be an attribute, a parameter, or a local variable.

● A green arrow is drawn between the two classes.
○ Arrow’s origin indicates the client class.
○ Arrow’s destination indicates the supplier class.
○ Above the arrow there should be a label indicating the supplier

name (i.e., variable name).
○ In the case where supplier is a routine, indicate after the label

name if it is deferred (*), effective (+), or redefined (++).

17 of 26

Class Relations: Client-Supplier (2.1)
class DATABASE
feature {NONE} -- implementation
data: ARRAY[STRING]

feature -- Commands
add_name (nn: STRING)

-- Add name ‘nn‘ to database.
require . . . do . . . ensure . . . end

name_exists (n: STRING): BOOLEAN
-- Does name ‘n‘ exist in database?

require . . .
local
u: UTILITIES

do . . . ensure . . . end
invariant
. . .

end

class UTILITIES
feature -- Queries
search (a: ARRAY[STRING]; n: STRING): BOOLEAN

-- Does name ‘n‘ exist in array ‘a‘?
require . . . do . . . ensure . . . end

end

○ Query data: ARRAY[STRING] indicates two suppliers:
STRING and ARRAY.

○ Parameters nn and n may have an arrow with label nn, n ,
pointing to the STRING class.

○ Local variable u may have an arrow with label u , pointing to the
UTILITIES class.

18 of 26

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is data: ARRAY[...] ,
where . . . denotes the supplier class STRING being pointed to.

DATABASE+
feature	
		add_name+	(nn:	STRING)
						--	Add	name	`nn`	into	database.
				require
								...
				ensure
								...

		name_exists+	(n:	STRING):	BOOLEAN
						--	Does	name	`n`	exist?
				require
								...
				ensure
								...

invariant
		...

+
STRING

n,	nn

data+:	ARRAY[...]

UTILITIES+
feature	
		search+	(a:	ARRAY[STRING];	n:	STRING):	BOOLEAN
						--	Does	name	`n`	exist	in	array	`a`?
				require
								...
				ensure
								...

u

19 of 26

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is data .
The supplier’s name should be complete: ARRAY[STRING]

DATABASE+
feature	
		add_name+	(nn:	STRING)
						--	Add	name	`nn`	into	database.
				require
								...
				ensure
								...

		name_exists+	(n:	STRING):	BOOLEAN
						--	Does	name	`n`	exist?
				require
								...
				ensure
								...

invariant
		...

+
ARRAY[STRING]

n,	nn

u

data+

+
STRING

+
UTILITIES

20 of 26

Class Relations: Client-Supplier (3.1)
Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED LIST).

● DESIGN ONE:
class DATABASE_V1
feature {NONE} -- implementation
imp: ARRAYED_LIST[PERSON]

. . . -- more features and contracts
end

● DESIGN TWO:
class DATABASE_V2
feature {NONE} -- implementation
imp: LIST[PERSON]

. . . -- more features and contracts
end

Question: Which design is better? [DESIGN TWO]
Rationale: Program to the interface, not the implementation.

21 of 26

Class Relations: Client-Supplier (3.2.1)

We may focus on the PERSON supplier class, which may not
help judge which design is better.

DATABASE_V1+
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	some	implementation	features	here
invariant
		--	some	class	invariant	here

+
PERSON

imp+:	ARRAYED_LIST[...]

DATABASE_V2+
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	some	implementation	features	here
invariant
		--	some	class	invariant	here

+
PERSON

imp+:	LIST[...]

22 of 26

Class Relations: Client-Supplier (3.2.2)

Alternatively, we may focus on the LIST supplier class, which in
this case helps us judge which design is better.
DATABASE_V1+

feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	some	implementation	features	here
invariant
		--	some	class	invariant	here

+
ARRAYED_LIST[PERSON]

imp+

DATABASE_V2+
feature	
		--	some	public	features	here
feature	--	{	NONE	}
		--	some	implementation	features	here
invariant
		--	some	class	invariant	here

*
LIST[PERSON]

+
ARRAYED_LIST[PERSON]

+
LINKED_LIST[PERSON]

imp+

23 of 26

Clusters: Grouping Classes

Use clusters to group classes into logical units.

base-library

model

*
LIST[G]

+
ARRAYED_LIST[G]

+
LINKED_LIST[G]

imp

DATABASE[G]+
feature	--	Commands
		add_item++	(g:	G)
						--	Insert	new	item	`g`	into	the	right	slot	of	`data`.	

feature	--	Queries
		count+:	INTEGER
						--	Number	of	items	stored	in	database

		exists++	(g:	G):	BOOLEAN
						--	Perform	a	binary	search	on	`data`	array.

		invariant
				sorted_data:		∀i	:	1	≤	i	<	count	:	data[i]	<	data[i	+	1]

DATABASE[G]*

DATABASE_V1[G]+

DATABASE_TESTS+
db

tests

24 of 26

Beyond this lecture

● Your Lab0 introductory tutorial series contains the following
classes:
○ BIRTHDAY
○ BIRTHDAY BOOK
○ TEST BIRTHDAY
○ TEST BIRTHDAY BOOK
○ TEST LIBRARY
○ BAD BIRTHDAY VIOLATING DAY SET
○ BIRTHDAY BOOK VIOLATING NAME ADDED TO END

Draw a design diagram showing the architectural relations
among the above classes.

25 of 26

Index (1)

Learning Objectives

Why a Design Diagram?
Classes:
Detailed View vs. Compact View (1)
Classes:
Detailed View vs. Compact View (2)

Contracts: Mathematical vs. Programming

Classes: Generic vs. Non-Generic

Deferred vs. Effective

Classes: Deferred vs. Effective

Features: Deferred, Effective, Redefined (1)

26 of 26

Index (2)
Features: Deferred, Effective, Redefined (2)

Features: Deferred, Effective, Redefined (3)

Classes: Deferred vs. Effective (2.1)

Classes: Deferred vs. Effective (2.2)

Class Relations: Inheritance (1)

Class Relations: Inheritance (2)

Class Relations: Client-Supplier (1)

Class Relations: Client-Supplier (2.1)

Class Relations: Client-Supplier (2.2.1)

Class Relations: Client-Supplier (2.2.2)

Class Relations: Client-Supplier (3.1)
27 of 26

Index (3)
Class Relations: Client-Supplier (3.2.1)

Class Relations: Client-Supplier (3.2.2)

Clusters: Grouping Classes

Beyond this lecture

28 of 26

	Learning Objectives
	Why a Design Diagram?
	Classes: Detailed View vs. Compact View (1)
	Classes: Detailed View vs. Compact View (2)
	Contracts: Mathematical vs. Programming
	Classes: Generic vs. Non-Generic
	Deferred vs. Effective
	Classes: Deferred vs. Effective
	Features: Deferred, Effective, Redefined (1)
	Features: Deferred, Effective, Redefined (2)
	Features: Deferred, Effective, Redefined (3)
	Classes: Deferred vs. Effective (2.1)
	Classes: Deferred vs. Effective (2.2)
	Class Relations: Inheritance (1)
	Class Relations: Inheritance (2)
	Class Relations: Client-Supplier (1)
	Class Relations: Client-Supplier (2.1)
	Class Relations: Client-Supplier (2.2.1)
	Class Relations: Client-Supplier (2.2.2)
	Class Relations: Client-Supplier (3.1)
	Class Relations: Client-Supplier (3.2.1)
	Class Relations: Client-Supplier (3.2.2)
	Clusters: Grouping Classes
	Beyond this lecture

