
Abstractions via Mathematical Models

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Creating a mathematical abstraction for alternative

implementations
2. Two design principles: Information Hiding and Single Choice
3. Review of the basic discrete math (self-guided)

2 of 19

Motivating Problem: Complete Contracts

● Recall what we learned in the Complete Contracts lecture:
○ In post-condition , for each attribute , specify the relationship

between its pre-state value and its post-state value.
○ Use the old keyword to refer to post-state values of expressions.
○ For a composite-structured attribute (e.g., arrays, linked-lists,

hash-tables, etc.), we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● Let’s now revisit this technique by specifying a LIFO stack .

3 of 19

Motivating Problem: LIFO Stack (1)

● Let’s consider three different implementation strategies:

Stack Feature
Array Linked List

Strategy 1 Strategy 2 Strategy 3

count imp.count

top imp[imp.count] imp.first imp.last

push(g) imp.force(g, imp.count + 1) imp.put front(g) imp.extend(g)

pop
imp.list.remove tail (1) list.start imp.finish

list.remove imp.remove

● Given that all strategies are meant for implementing the same
ADT , will they have identical contracts?

4 of 19

Motivating Problem: LIFO Stack (2.1)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
imp: ARRAY[G]

feature -- Initialization
make do create imp.make_empty ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.remove_tail(1)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

5 of 19

Motivating Problem: LIFO Stack (2.2)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.put_front(g)
ensure
changed: imp.first ∼ g
unchanged: across 2 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item - 1] end
end

pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item + 1] end
end

6 of 19

Motivating Problem: LIFO Stack (2.3)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.extend(g)
ensure
changed: imp.last ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

7 of 19

Design Principles:
Information Hiding & Single Choice

● Information Hiding (IH):
○ Hide supplier’s design decisions that are likely to change.
○ Violation of IH means that your design’s public API is unstable.
○ Change of supplier’s secrets should not affect clients relying upon

the existing API.

● Single Choice Principle (SCP):
○ When a change is needed, there should be a single place (or a

minimal number of places) where you need to make that change.
○ Violation of SCP means that your design contains redundancies.

8 of 19

Motivating Problem: LIFO Stack (3)
● Postconditions of all 3 versions of stack are complete .

i.e., Not only the new item is pushed/popped , but also the
remaining part of the stack is unchanged .

● But they violate the principle of information hiding :
Changing the secret , internal workings of data structures
should not affect any existing clients.

● How so?
The private attribute imp is referenced in the postconditions ,
exposing the implementation strategy not relevant to clients:
● Top of stack may be imp[count] , imp.first , or imp.last .

● Remaining part of stack may be across 1 |..| count - 1 or

across 2 |..| count .

⇒ Changing the implementation strategy from one to another will
also change the contracts for all features .

⇒ This also violates the Single Choice Principle .
9 of 19

Math Models: Command vs Query
○ Use MATHMODELS library to create math objects (SET, REL, SEQ).
○ State-changing commands: Implement an Abstraction Function

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]

do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

end

○ Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT

model: SEQ[G]

feature -- Commands
push (g: G)
ensure model ∼ (old model.deep_twin).appended(g) end

10 of 19

Implementing an Abstraction Function (1)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
imp: ARRAY[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make from array (imp)
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make empty ensure model.count = 0 end
push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.remove tail(1)

ensure popped: model ∼ (old model.deep twin).front end
end

11 of 19

Abstracting ADTs as Math Models (1)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] imp: ARRAY[G]

abstraction
function

abstraction
function

convert the current array
into a math sequence

convert the current array
into a math sequence

imp.force(g, imp.count + 1)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 1 Abstraction function : Convert the implementation
array to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

12 of 19

Implementing an Abstraction Function (2)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.prepend(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[count - i.item + 1]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.put front(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.start ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

13 of 19

Abstracting ADTs as Math Models (2)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction
function

abstraction
function

convert the current liked list
into a math sequence

convert the current linked list
into a math sequence

imp.put_front(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 2 Abstraction function : Convert the implementation
list (first item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

14 of 19

Implementing an Abstraction Function (3)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.append(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.extend(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.finish ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

15 of 19

Abstracting ADTs as Math Models (3)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction
function

abstraction
function

convert the current liked list
into a math sequence

convert the current linked list
into a math sequence

imp.extend(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 3 Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

16 of 19

Solution: Abstracting ADTs as Math Models
● Writing contracts in terms of implementation attributes (arrays,

LL’s, hash tables, etc.) violates information hiding principle.
● Instead:
○ For each ADT, create an abstraction via a mathematical model .

e.g., Abstract a LIFO STACK as a mathematical sequence .
○ For each ADT, define an abstraction function (i.e., a query)

whose return type is a kind of mathematical model .
e.g., Convert implementation array to mathematical sequence

○ Write contracts in terms of the abstract math model .
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.

○ Upon changing the implementation:
● No change on what the abstraction is, hence no change on contracts.
● Only change how the abstraction is constructed, hence changes on

the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
⇒ The Single Choice Principle is obeyed.

17 of 19

Beyond this lecture . . .

● Familiarize yourself with the features of class SEQ.

18 of 19

Index (1)

Learning Objectives

Motivating Problem: Complete Contracts

Motivating Problem: LIFO Stack (1)

Motivating Problem: LIFO Stack (2.1)

Motivating Problem: LIFO Stack (2.2)

Motivating Problem: LIFO Stack (2.3)
Design Principles:
Information Hiding & Single Choice

Motivating Problem: LIFO Stack (3)

Math Models: Command vs Query

Implementing an Abstraction Function (1)
19 of 19

Index (2)
Abstracting ADTs as Math Models (1)

Implementing an Abstraction Function (2)

Abstracting ADTs as Math Models (2)

Implementing an Abstraction Function (3)

Abstracting ADTs as Math Models (3)

Solution: Abstracting ADTs as Math Models

Beyond this lecture . . .

20 of 19

	Learning Objectives
	Motivating Problem: Complete Contracts
	Motivating Problem: LIFO Stack (1)
	Motivating Problem: LIFO Stack (2.1)
	Motivating Problem: LIFO Stack (2.2)
	Motivating Problem: LIFO Stack (2.3)
	Design Principles: Information Hiding & Single Choice
	Motivating Problem: LIFO Stack (3)
	Math Models: Command vs Query
	Implementing an Abstraction Function (1)
	Abstracting ADTs as Math Models (1)
	Implementing an Abstraction Function (2)
	Abstracting ADTs as Math Models (2)
	Implementing an Abstraction Function (3)
	Abstracting ADTs as Math Models (3)
	Solution: Abstracting ADTs as Math Models
	Beyond this lecture …

