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Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Creating a mathematical abstraction for alternative

implementations
2. Two design principles: Information Hiding and Single Choice
3. Review of the basic discrete math (self-guided)
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Motivating Problem: Complete Contracts

● Recall what we learned in the Complete Contracts lecture:
○ In post-condition , for each attribute , specify the relationship

between its pre-state value and its post-state value.
○ Use the old keyword to refer to post-state values of expressions.
○ For a composite-structured attribute (e.g., arrays, linked-lists,

hash-tables, etc.), we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● Let’s now revisit this technique by specifying a LIFO stack .
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Motivating Problem: LIFO Stack (1)

● Let’s consider three different implementation strategies:

Stack Feature
Array Linked List

Strategy 1 Strategy 2 Strategy 3

count imp.count

top imp[imp.count] imp.first imp.last

push(g) imp.force(g, imp.count + 1) imp.put front(g) imp.extend(g)

pop
imp.list.remove tail (1) list.start imp.finish

list.remove imp.remove

● Given that all strategies are meant for implementing the same
ADT , will they have identical contracts?
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Motivating Problem: LIFO Stack (2.1)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
imp: ARRAY[G]

feature -- Initialization
make do create imp.make_empty ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.remove_tail(1)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end
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Motivating Problem: LIFO Stack (2.2)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.put_front(g)
ensure
changed: imp.first ∼ g
unchanged: across 2 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item - 1] end
end

pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item + 1] end
end
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Motivating Problem: LIFO Stack (2.3)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.extend(g)
ensure
changed: imp.last ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end
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Design Principles:
Information Hiding & Single Choice

● Information Hiding (IH):
○ Hide supplier’s design decisions that are likely to change.
○ Violation of IH means that your design’s public API is unstable.
○ Change of supplier’s secrets should not affect clients relying upon

the existing API.

● Single Choice Principle (SCP):
○ When a change is needed, there should be a single place (or a

minimal number of places) where you need to make that change.
○ Violation of SCP means that your design contains redundancies.
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Motivating Problem: LIFO Stack (3)
● Postconditions of all 3 versions of stack are complete .

i.e., Not only the new item is pushed/popped , but also the
remaining part of the stack is unchanged .

● But they violate the principle of information hiding :
Changing the secret , internal workings of data structures
should not affect any existing clients.

● How so?
The private attribute imp is referenced in the postconditions ,
exposing the implementation strategy not relevant to clients:
● Top of stack may be imp[count] , imp.first , or imp.last .

● Remaining part of stack may be across 1 |..| count - 1 or

across 2 |..| count .

⇒ Changing the implementation strategy from one to another will
also change the contracts for all features .

⇒ This also violates the Single Choice Principle .
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Math Models: Command vs Query
○ Use MATHMODELS library to create math objects (SET, REL, SEQ).
○ State-changing commands: Implement an Abstraction Function

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]

do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

end

○ Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT

model: SEQ[G]

feature -- Commands
push (g: G)
ensure model ∼ (old model.deep_twin).appended(g) end

10 of 19



Implementing an Abstraction Function (1)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
imp: ARRAY[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make from array (imp)
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make empty ensure model.count = 0 end
push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.remove tail(1)

ensure popped: model ∼ (old model.deep twin).front end
end

11 of 19



Abstracting ADTs as Math Models (1)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] imp: ARRAY[G]

abstraction 
function

abstraction 
function

convert the current array 
into a math sequence

convert the current array 
into a math sequence

imp.force(g, imp.count + 1)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 1 Abstraction function : Convert the implementation
array to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)
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Implementing an Abstraction Function (2)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.prepend(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[count - i.item + 1]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.put front(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.start ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

13 of 19



Abstracting ADTs as Math Models (2)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction 
function

abstraction 
function

convert the current liked list 
into a math sequence

convert the current linked list 
into a math sequence

imp.put_front(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 2 Abstraction function : Convert the implementation
list (first item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)
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Implementing an Abstraction Function (3)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.append(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.extend(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.finish ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end
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Abstracting ADTs as Math Models (3)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction 
function

abstraction 
function

convert the current liked list 
into a math sequence

convert the current linked list 
into a math sequence

imp.extend(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 3 Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)
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Solution: Abstracting ADTs as Math Models
● Writing contracts in terms of implementation attributes (arrays,

LL’s, hash tables, etc.) violates information hiding principle.
● Instead:
○ For each ADT, create an abstraction via a mathematical model .

e.g., Abstract a LIFO STACK as a mathematical sequence .
○ For each ADT, define an abstraction function (i.e., a query)

whose return type is a kind of mathematical model .
e.g., Convert implementation array to mathematical sequence

○ Write contracts in terms of the abstract math model .
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.

○ Upon changing the implementation:
● No change on what the abstraction is, hence no change on contracts.
● Only change how the abstraction is constructed, hence changes on

the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
⇒ The Single Choice Principle is obeyed.
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Beyond this lecture . . .

● Familiarize yourself with the features of class SEQ.
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