Abstractions via Mathematical Models

EECS3311 A & E: Software Design
' Fall 2020

YORK

v CHEN-WEI WANG
\

cic
z|z
mim
D |
wlwn
==
<Im

LASSONDE

ooooooooooooooooo

Learning Objectives

Upon completing this lecture, you are expected to understand:

1. Creating a mathematical abstraction for alternative
implementations

2. Two design principles: Information Hiding and Single Choice
3. Review of the basic discrete math (self-guided)

2 of 19)

LASSONDE

ooooooooooooooooo

Motivating Problem: Complete Contracts

¢ Recall what we learned in the Complete Contracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.

o Use the old keyword to refer to posi-state values of expressions.

o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etc.), we should specify that after the update:

1. The intended change is present; and
2. The rest of the structure is unchanged .

¢ Let’s now revisit this technique by specifying a L/IFO stack.

3 of 19)

LASSONDE

ooooooooooooooooo

Motivating Problem: LIFO Stack (1)

¢ Let’s consider three different implementation strategies:

Array Linked List
Stack Feature
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_front(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .
list.remove imp.remove

¢ Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?

Motivating Problem: LIFO Stack (2.1) LASSONDE Motivating Problem: LIFO Stack (2.3) LASSONDE
class LIFO STACK[G] create make class LIFO STACK[G] create make
feature {NONE } Strategy 1: array feature {NONE } Strate 3: 11
imp: ARRAY|[G] imp: LINKED_LIST[G]
feature - Initialization feature - Initialization
make do create imp.make_empty ensure imp.count = 0 end make do create imp.make ensure imp.count = 0 end
feature Cor nds feature Co ds
push(g: G) push(g: G)
do imp.force(g, imp.count + 1) do imp.extend(g)
ensure ensure
changed: imp[count] ~ g changed: imp.last ~ g
unchanged: across 1 |..| count — 1 as 1 all unchanged: across 1 |..| count — 1 as 1 all
impl[i.item] ~ (old imp.deep_twin) [i.item] end imp[i.item] ~ (old imp.deep_twin) [i.item] end
end end
pop pop
do imp.remove_ tail(l) do imp.finish ; imp.remove
ensure ensure
changed: count = old count - 1 changed: count = old count - 1
unchanged: across 1 |..| count as i all unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end imp[i.item] ~ (old imp.deep_twin) [i.item] end
end end

Motivating Problem: LIFO Stack (2.2) e Design Principles: e

class LIFO_STACK(G] create make Information Hiding & Single Choice
feature {NONE } Strategy 2: 1 st first item as top
imp: LINKED_LIST[G]
feature —— Initialization
make do create _me make ensure imp.count = 0 end . L.
feature -~ Commands e Information Hiding (IH):
S (igmp C;)u o Front (o) o Hide supplier's design decisions that are likely to change.
ensure o Violation of IH means that your design’s public APl is unstable.
changed: imp.first ~ g o Change of supplier’s secrets should not affect clients relying upon
unchanged: across 2 |..| count as i all the existing API.
imp[i.item] ~ (old imp.deep_twin) [i.item - 1] end
end e Single Choice Principle (SCP):
pop . .
do imp.start ; imp.remove o When a change is needed, there should be a single place (or a
ensure minimal number of places) where you need to make that change.
changed: count = old count - 1 , o Violation of SCP means that your design contains redundancies.
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item + 1] end
end
Bof 19

Motivating Problem: LIFO Stack (3) o T Implementing an Abstraction Function (1)
e Postconditions of all 3 versions of stack are complete .

i.e., Not only the new item is pushed/popped, but also the class LIFO_STACK[G -> attached ANY] create make
L. i feature {(NONE} - Implementation Strategy I
remaining part of the stack is unchanged. imp: ARRAY[G]
e But they violate the principle of information hiding : feature —- Ab fon function of the st
Changing th t, internal workings of data struct model: SEOIC]
anging the secret, internal wor INgs Or data structures do create Result.make_from.array (imp)
should not affect any existing clients. ensure
° HOW SO? counts: imp.count = Result.count
The private attribute imp is referenced in the postconditions , contentsi across 1 |..| Resulf.count as i all
.) .] esult([i.item] ~ imp[i.item]
exposing the implementation strategy not relevant to clients: end
o Top of stack may be’ imp [count] ‘ ’ imp.first ‘ or’ imp.last ‘ feature - Co s
. make do create imp.make_empty ensure model.count = 0 end
e Remaining part of stack may be’across 1 |..| count - 1‘or push (g: G) do imp.force(g, imp.count + 1)
’across 2 |..| count ‘ ensure pushed: model ~ (old model.deep_-twin) .appended(g) end

pop do imp.remove_tail (1)

|
= Changing the implementation strategy from one to another will }

ensure popped: model ~ (old model.deep_-twin).front end ‘
also change the contracts for all features . ‘

= This also violates the Single Choice Principle .

Math Models: Command vs Query o T Abstracting ADTs as Math Models (1)

‘push(g: G)’ feature of LIFO_STACK ADT

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Implementation
imp: LINKED_LIST[G]
feature - Abstraction function of the stack ADT
abstraction | convert the current array convert the current array | abstraction
model: SEQ[G] function into a math sequence into a math sequence function

do create Result.make_empty
across Imp as cursor loop Result.append(cursor.item) end
end

old imp: ARRAY[G] imp: ARRAY[G]
imp.force(g, imp.count + 1)

private/hidden (implementor’s view)

o Side-effect-free queries: Write Complete Contracts

J

class LIFO_STACK[G -> attached ANY] create make
feature —— 2 on on of the stack ADT * | Strategy 1| Abstraction function : Convert the implementation
oode: A array to its corresponding model sequence.

push (g: G) e Contract forthe|put (g: G) |feature remains the same:

~ 1 . in) . .
ensure model (0old model.deep_twin) .appended(g) end ’ model ~ (old model.deep twin) .appended (g) ‘

10 of 19 12 of 19

Implementing an Abstraction Function (2) L’éésésom

class LIFO_STACK[G —-> attached ANY] create make
feature {NONE} —— -
imp: LINKED_LIST[G]
feature Abstraction
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

tion of the

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result([i.item] ~ imp[count - i.item + 1]
end
feature - C ds
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.start ; imp.remove

‘ ensure popped: model ~ (old model.deep-twin).front end ‘

’end

13 of 19

Abstracting ADTs as Math Models (2) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction | convert the current liked list
Sfunction into a math sequence

convert the current linked list | abstraction

into a math sequence Sfunction
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

. Strategy 2| Abstraction function : Convert the /mp/ementat/on

list (first item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

’ model ~ (old model.deep_twin) .appended(qg) ‘
14 of 19]

imp.put_front(g)

Implementing an Abstraction Function (3) L’éésésom

class LIFO_STACK[G —> attached ANY] create make
feature {NONE} - t
imp: LINKED_ LIST[G]
feature Abstraction
model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

ategy 3 (last as top)

ck ADI

tion of the

sta

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.finish ; imp.remove

‘ ensure popped: model ~ (old model.deep-twin).front end ‘

’end

15 of 19

Abstracting ADTs as Math Models (3) L’égsésom

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

abstraction | convert the current liked list
Sfunction into a math sequence

convert the current linked list | abstraction

into a math sequence function
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
prlvate/hldden (implementor’s view)

Strategy 3| Abstraction function : Convert the /mplementat/on
list (last item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:
’ model ~ (old model.deep_twin) .appended(qg) ‘

imp.extend(g)

Solution: Abstracting ADTs as Math Models . 5sonoe

¢ Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

¢ Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LIFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
e Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence

= The Single Choice Principle is obeyed.

Beyond this lecture ...

LSSoNDE

e Familiarize yourself with the features of class SEQ.

18 of 19

Index (1) :AssoNDE

|[Learning Objectives|

[Motivating Problem: Complete Contracts|
[Motivating Problem: LIFO Stack (1)|
[Motivating Problem: LIFO Stack (2.1)|
[Motivating Problem: LIFO Stack (2.2)|

[Motivating Problem: LIFO Stack (2.3)|

Design Principles:
Information Hiding & Single Choice|

[Motivating Problem: LIFO Stack (3)|
[Math Models: Command vs Query]|

[Implementing an Abstraction Function (1)|

19 of 19

Index (2) LassoNDE
stracting s as Math Models (1

[Implementing an Abstraction Function (2)|
|Abstracting ADTs as Math Models (2)|
[Implementing an Abstraction Function (3)|
|Abstracting ADTs as Math Models (3)|
|Solution: Abstracting ADTs as Math Models|
|[Beyond this lecture .. .|

