Modularity
Abstract Data Types (ADTSs)

EECS3311 A & E: Software Design

YORK u e

UNIVERSITE CHEN-WFI WANG
UNIVERSITY

http://www.eecs.yorku.ca/~jackie

Learning Objectives LASSONDE

Upon completing this lecture, you are expected to understand:
1. Criterion of Modularity , Modular Design

2. Abstract Data Types (ADTs)

Modularity (1): Childhood Activity

et ae o

=9.6 mm
h=32m 350
=0.4 x
2 mm
2 xP-0.2mm mm
=15.8 mm
(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.ord and https://www.wish.com

https://commons.wikimedia.org
https://www.wish.com

Modularity (2): Daily Construction
I)

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Source: https://usermanual .wiki/

https://usermanual.wiki/

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUSs).

Superl0
Rear Fan DIMM DDR2 Cphip 24-pin ATX
Connector Memory Slots (x2) Power Connector

Addr_0 \
CPU Fan CPU Socket Ny Floppy Connector
@_» Clock_In Connector (LGAT775) \ IDE Connector (x1)
L 16-Bit 4-pin . Chasis Fan
= Add B ATX Connector o - X Connector
oy ress Bus N . SATA
Switch_1 By, Connectors (x4)
—

ResetWDT
Control Addr_15

Data_0|

Panel Header
USB Headers
Southbridge
(without heatsink)
Northbridge Chipset
CMOS Battery

PCI Slots (x2)

/0 Panel
8-Bit Connectors

Data Bus

Serial [—»[Recv Data_7| Integrated Ethernet
Port |<e—{xmit chip
Road PCI Express x16

Slot

Write— | Control Front Audio
Power Supply —|Pwr.
PEY ChipSelect 0l— [Lines PCI Express x1 Header
Gnd ChipSelect 11— Slot Integrated HD-Audio
I codec chip

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: www.embeddedlinux.org.cnland https://en.wikipedia.orq

www.embeddedlinux.org.cn
https://en.wikipedia.org

-
—

Modularity (4): System Development

LASSONDE

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.

(* DECLARATION *)
Fommmm oo + (+ Function block body in FBD language *)
| nIMITS_ | HIGH_ALARM
| ALARM -
HYSTERESIS
REAL-- |H QH|--BOOL X) [o
REAL--|X Q|--BOOL |
XIN2
REAL--|L QL | --BOOL }
REAL-- |EPS | |
mmmm———— + EPS | 4= +
M e |
FUNCTION_BLOCK LIMITS_ALARM | |--0
VAR_INPUT " ‘QH=1(TRUE) LOW_ALARM = |
H : REAL; (+ High limit)] \ - N +
X i REAL; (iable value) H{EPSZ2) | NC(No change)\ HYSTERESTS |
L : REAL;) HEPS| - | XINL e L
RenL, :) GHEO(FASLE) \ o o
AR
VAR_OUTPUT LeePg] QL=0(FALSE)| XIN2
Qi : BOOL; (» High flag x) L@ps2l | NC(Nochange) |
Q : BOOL; (* Alarm output «) \
OL : BOOL; (x Low flag *) L PO +
END_VAR Que1(TRUE)
v

END_FUNCTION_BLOCK

(INTERFACE) SPECIFICATION

| (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3

https://plcopen.org/iec-61131-3

Modularity (5): Software Design

\n,

LASSONDE

Software systems are composed of well-specified classes.

SORTED_MAP_ADT [K, V]*

feature - model
model: FUNIK. V]
sorted_keys: ARRAY [K]

feature - commands
extend (key: K; val: V
reauire s (key)

remove (key: K)
require has (key)

feature - qu
item(key K
has (key 0 BooLEAN

invariant
Wi €1, model.count)
sorted._keysi] < sorted_keys[i+1]

model.count

sorted_keys.count

Vk € model domain : k € sorted_keys

ITERATION_CURSOR [G]* sorted-collctions
item*: G

forth

after*: BOOLEAN

SORTED_ADT [K, V]*

feature -- model
model: SEQ [KV_PAIRK.V]]

feature - command:
etend (a e TUPLE [key: K value: V)
require —has (a_item.key)
remove (a_key: K)
require has (a_key)

implementation as_armay: ARRAY[KV_PAIR[K,V]]

invariant
Vi & (1, model.count):
modelfi]key < model[i+1] key

Vi € (1, model.count)
as_armay(i] ~ modeli]

implementation

implementaiion

SORTED,
BSTK.V

implementation

I

Design Principle: Modularity LASSONDE

e Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.
2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
e The UNIX principle: Each command does one thing and does it well.
¢ In objected-oriented design (OOD), each class serves as a module.
3. Congquer original problem by assembling sub-solutions.
e In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.
e A modular design satisfies the criterion of modularity and is:
o Maintainable: fix issues by changing the relevant modules only.
o Extensible: introduce new functionalities by adding new modules.
o Reusable: a module may be used in different compositions

. OPposite of modularity: A superman module doing everything.

R
Abstract Data Types (ADTS)

e Given a problem, decompose its solution into modules .

Each module implements an abstract data type (ADT) :

o filters out irrelevant details

o contains a list of declared data and well-specified operations
ADT

Interface |_ request
Data add() :>
Structure remove() result
find()

Supplier’s Obligations:

o Implement all operations

o Choose the “right” data structure (DS)
Client’s Benefits:

o Correct output

o Efficient performance

e The internal details of an implemented ADT should be hidden.

Building ADTs for Reusability

e ADTs are reusable software components
e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
¢ An ADT, once thoroughly tested, can be reused by:
o Suppliers of other ADTs
o Clients of Applications
e As a supplier, you are obliged to:
o Implement given ADTs using other ADTs (e.g., arrays, linked lists,
hash tables, etc.)
o Design algorithms that make use of standard ADTs
e For each ADT that you build, you ought to be clear about:
o The list of supported operations (i.e., interface)

e The interface of an ADT should be more than method signatures and
natural language descriptions:

e How are clients supposed to use these methods? [preconditions]
o What are the services provided by suppliers? [postconditions]
o Time (and sometimes space) complexity of each operation

Why Java Interfaces Unacceptable ADTs (1)

et ae o

Interface List<E>

‘E - the type of elements in this List'

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Implementing Classes:

RoleUnresolvedList, Stack, Vector

AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArrayList, LinkedList, RoleList,

public interface List<E>
extends Collection<E>

'An ordered collection (also known as a sequence).' he user of this interface has precise control over where in the list each element is
inserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of

elements are parameterized as E.
¢ A reasonably intuitive overview of the ADT.

lIava 8 1 1st API

1ot ib

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTS (2)|.ssonoe

Methods described in a natural language can be ambiguous:

E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation)A)

Parameters:

index - index of the element to replace

element - element to be stored at the specified position

Returns:

the element previously at the specified position

Throws:

UnsupportedOperationException - if the set operation is not supported by this list

ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBoundsExceptlon - if the index is out of range (index < @ || index >= slze()))

Why Eiffel Contract Views are ADTs (1)

LASSONDE
class interface ARRAYED_CONTAINER
feature Co
assign_at (i: INTEGER s: STRING)
) £ n i’ to ’s’
require
valid index: 1 <= 1 and 1 <= count
ensure
size_unchanged:
imp.count = (old imp.twin) .count
item_assigned:
imp [1] ~ s
others_unchanged:
across
1 |..| imp.count as j
all
j.item /= i implies imp [j.item] ~ (old imp.twin) [j.item]
end
count: INTEGER
invariant
consistency: imp.count = count
end —— class ARI CON R

I

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

g ARRAYED _CONTAINER R

feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's".

require
valid_inde

ensure
size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[il ~ 5
mhers_unchanged(Vj 11 <j=<imp.count: j#i=>imp[j] ~ (old imp.twin) [i])

feature -- { NONE }
-- Implementation of an arrayed-container
imp: ARRAY[STRING]

invariant
consistency: imp.count = count

~ /

I

Beyond this lecture...

1. Q. Can you think of more real-life examples of leveraging the
power of modularity?

2. Visit the Java API page:
https://docs.oracle.com/ Jjavase/8/docs/api

Visit collection classes which you used in EECS2030 (e.g.,
ArrayList, HashMap) and EECS2011.

Q. Can you identify/justify some example methods which
illustrate that these Java collection classes are not true ADTs
(i.e., ones with well-specified interfaces)?

3. Constrast with the corresponding library classes and features in

EiffelStudio (e.g., ARRAYED_LIST, HASH_TABLE).

Q. Are these Eiffel features better specified w.r.t.
obligations/benefits of clients/suppliers?

https://docs.oracle.com/javase/8/docs/api

Index (1)
[earnlng UBIechvea
oduilarity . 1 00 Clvi
IVIoauIarlfy 125: Dally COI‘IS{I‘UC{IOH
odularity . Computer Architectur

[Moduflarity (4): System Developmeni
IVIoauIarlfy i5$ Software Demgil

esign Frincipie: vioduiari

stract Data lypes S

uliaing S T0r heusabplll
[Why Java Tnterfaces Unacceptable ADTs (1)
[Why Java Tnterfaces Unacceptable ADTs (2)

b ot 18

-
—

Index (2) LASSONDE
y Eifrel Contract views are S
y Eifrel Contract views are S

Beyond this Tecture..]

/ot 18

	Learning Objectives
	Modularity (1): Childhood Activity
	Modularity (2): Daily Construction
	Modularity (3): Computer Architecture
	Modularity (4): System Development
	Modularity (5): Software Design
	Design Principle: Modularity
	Abstract Data Types (ADTs)
	Building ADTs for Reusability
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Beyond this lecture...

