
Design-by-Contract (DbC)
Readings: OOSC2 Chapters 6, 7, 8, 11

EECS3311 A & E: Software Design
Fall 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Design by Contract (DbC): Motivation & Terminology

2. Supporting DbC (Java vs. Eiffel):
Preconditions, Postconditions, Class Invariants

3. Runtime Assertion Checking of Contracts

2 of 72

Part 1

Design by Contract (DbC): Motivation & Terminology

3 of 72

Motivation: Catching Defects – When?
● To minimize development costs , minimize software defects.
● Software Development Cycle:

Requirements → Design → Implementation → Release
Q. Design or Implementation Phase?
Catch defects as early as possible .

∵ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.

● Discovering defects after release costs up to 30 times more
than catching them in the design phase.

● Choice of design language for your project is therefore of
paramount importance.

Source: IBM Report
4 of 72

ftp://ftp.software.ibm.com/software/rational/info/do-more/RAW14109USEN.pdf

What this Course Is About (1)

Abstract Data types (ADTs)
Cohesion Principle
Single Choice Principle
Open-Closed Principle
Design Document
Justified Design Decisions

Code Reuse via Inheritance
Substitutibility
Polymorphism (esp. Polymorphic Collections)
Type Casting
Static Typing, Dynamic Binding
Unit Testing

Syntax: Implementation vs. Specification
agent expression, across constructs

expanded types, export status
Runtime Contract Checking

Debugger

Axioms, Lemmas, Theorems
Equational Proofs

Proof by Contradiction (witness)

Design Eiffel

OOP Logic

Architecture: Client-Supplier Relation
Architecture: Inheritance Relation

Program to Interface,
Not to Implementation
Modularity: Classes

Design Patterns
(Iterator, Singleton, State, Template,

Composite, Visitor, Strategy,
Observer, Event-Driven Design)

Anti-Patterns

Design by Contract (DbC):
 Class Invariant, Pre-/Post-condition

Information Hiding Principle
Eiffel Testing Framework (ETF)

Abstraction (via Mathematical Models)
Regression Testing
Acceptance Testing

Void Safety
Generics

Multiple Inheritance
Sub-Contracting

Architectural Design Diagrams Specification: Predicates
Contracts of Loops: Invariant & Variant

Program Correctness
Weakest Precondition (WP)

Hoare Triples
Specification: Higher-Order Functions

5 of 72

What this Course Is About (2)

● Focus is design
○ Architecture: (many) inter-related modules
○ Specification: precise (functional) interface of each module

● For this course, having a prototypical, working implementation
for your design suffices.

● A later refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
∴ Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

6 of 72

Terminology: Contract, Client, Supplier
● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.

○ The client is required to follow certain instructions to obtain the
service (e.g., supplier assumes that client powers on, closes
door, and heats something that is not explosive).

○ If instructions are followed, the client would expect that the
service does what is guaranteed (e.g., a lunch box is heated).

○ The client does not care how the supplier implements it.
● What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions

SUPPLIER assume instructions followed provide a service
● There is a contract between two parties, violated if:

○ The instructions are not followed. [Client’s fault]
○ Instructions followed, but service not satisfactory. [Supplier’s fault]

7 of 72

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */

} }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();]

m.heat(obj);

} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [MicrowaveUser]
○ Supplier: type of context object (or call target) m [Microwave]

8 of 72

Client, Supplier, Contract in OOP (2)
class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */ } }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);

} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture
● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.

● If any of these fails, there is a contract violation.
● m.on or m.locked is false ⇒ MicrowaveUser’s fault.
● obj is an explosive ⇒ MicrowaveUser’s fault.

A fault from the client is identified ⇒ Method call will not start.
● Method executed but obj not properly heated ⇒ Microwave’s fault

9 of 72

What is a Good Design?
● A “good” design should explicitly and unambiguously describe

the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .

● When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
○ Instructions to clients should not be unreasonable.

e.g., asking them to assemble internal parts of a microwave
○ Working conditions for suppliers should not be unconditional .

e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!

○ You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.

e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]

○ Upon contract violation, there should be the fault of only one side.
○ This design process is called Design by Contract (DbC) .

10 of 72

Part 2.1

Supporting DbC in Java:
Problem & 1st Attempt (No Contracts)

11 of 72

A Simple Problem: Bank Accounts
Provide an object-oriented solution to the following problem:

REQ1 : Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

REQ2 : We may withdraw an integer amount from an account.

REQ3 : Each bank stores a list of accounts.

REQ4 : Given a bank, we may add a new account in it.

REQ5 : Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

REQ6 : Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on REQ1 and REQ2 in Java.
This may not be as easy as you might think!

12 of 72

Playing the Various Versions in Java

● Download the Java project archive (a zip file) here:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/codes/DbCIntro.zip

● Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://youtu.be/h-rgdQZg2qY

● Follow this tutorial to learn how to enable assertions in Eclipse:
https://youtu.be/OEgRV4a5Dzg

13 of 72

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://youtu.be/h-rgdQZg2qY
https://youtu.be/OEgRV4a5Dzg

V1: An Account Class
1 public class AccountV1 {
2 private String owner;
3 private int balance;
4 public String getOwner() { return owner; }
5 public int getBalance() { return balance; }
6 public AccountV1(String owner, int balance) {
7 this.owner = owner; this.balance = balance;
8 }
9 public void withdraw(int amount) {

10 this.balance = this.balance - amount;
11 }
12 public String toString() {
13 return owner + "’s current balance is: " + balance;
14 }
15 }

● Is this a good design? Recall REQ1 : Each account is
associated with . . . an integer balance that is always positive .

● This requirement is not reflected in the above Java code.
14 of 72

V1: Why Not a Good Design? (1)
public class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Alan with balance -10:");

AccountV1 alan = new AccountV1("Alan", -10) ;

System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

● Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). ⇒ Violation of REQ1

● Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of
AccountV1 does not require that! ⇒ A lack of defined contract

15 of 72

V1: Why Not a Good Design? (2)
public class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Mark with balance 100:");

AccountV1 mark = new AccountV1("Mark", 100);
System.out.println(mark);
System.out.println("Withdraw -1000000 from Mark’s account:");

mark. withdraw(-1000000) ;

System.out.println(mark);

Create an account for Mark with balance 100:
Mark’s current balance is: 100
Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

● Mark’s account state is always valid (i.e., 100 and 1000100).
● Withdraw amount is never negative! ⇒ Violation of REQ2
● Again a lack of contract between BankAppV1 and AccountV1.
16 of 72

V1: Why Not a Good Design? (3)
public class BankAppV1 {

public static void main(String[] args) {
System.out.println("Create an account for Tom with balance 100:");

AccountV1 tom = new AccountV1("Tom", 100);
System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");

tom. withdraw(150) ;

System.out.println(tom);

Create an account for Tom with balance 100:
Tom’s current balance is: 100
Withdraw 150 from Tom’s account:
Tom’s current balance is: -50

● Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid . ⇒ Violation of REQ1

● Again a lack of contract between BankAppV1 and AccountV1.
17 of 72

Part 2.2

Supporting DbC in Java:
2nd Attempt (Method Preconditions)

18 of 72

V1: How Should We Improve it? (1)

Preconditions of a method specify the precise circumstances
under which that method can be executed.
○ Precond. of divide(int x, int y)? [y != 0]
○ Precond. of binSearch(int x, int[] xs)? [xs is sorted]
○ Precond. of topoSort(Graph g)? [g is a DAG]

19 of 72

V1: How Should We Improve it? (2)

● The best we can do in Java is to encode the logical negations
of preconditions as exceptions:
○ divide(int x, int y)

throws DivisionByZeroException when y == 0.
○ binSearch(int x, int[] xs)

throws ArrayNotSortedException when xs is not sorted.
○ topoSort(Graph g)

throws NotDAGException when g is not directed and acyclic.

● Design your method by specifying the preconditions (i.e.,
service conditions for valid inputs) it requires, not the
exceptions (i.e., error conditions for invalid inputs) for it to fail.

● Create V2 by adding exceptional conditions (an
approximation of preconditions) to the constructor and
withdraw method of the Account class.

20 of 72

V2: Preconditions ≈ Exceptions

1 public class AccountV2 {
2 public AccountV2(String owner, int balance) throws
3 BalanceNegativeException
4 {

5 if(balance < 0) { /* negated precondition */
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }
8 }
9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */
12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */
14 throw new WithdrawAmountTooLargeException(); }
15 else { this.balance = this.balance - amount; }
16 }

21 of 72

V2: Why Better than V1? (1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Alan with balance -10:");
4 try {

5 AccountV2 alan = new AccountV2("Alan", -10) ;

6 System.out.println(alan);
7 }

8 catch (BalanceNegativeException bne) {

9 System.out.println("Illegal negative account balance.");
10 }

Create an account for Alan with balance -10:
Illegal negative account balance.

L6: When attempting to call the constructor AccountV2 with a
negative balance -10, a BalanceNegativeException (i.e.,
precondition violation) occurs, preventing further operations upon

this invalid object .
22 of 72

V2: Why Better than V1? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Mark with balance 100:");
4 try {

5 AccountV2 mark = new AccountV2("Mark", 100);
6 System.out.println(mark);
7 System.out.println("Withdraw -1000000 from Mark’s account:");

8 mark. withdraw(-1000000) ;

9 System.out.println(mark);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }

14 catch (WithdrawAmountNegativeException wane) {

15 System.out.println("Illegal negative withdraw amount.");
16 }
17 catch (WithdrawAmountTooLargeException wane) {
18 System.out.println("Illegal too large withdraw amount.");
19 }

23 of 72

V2: Why Better than V1? (2.2)
Console Output:

Create an account for Mark with balance 100:
Mark’s current balance is: 100
Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

● L8: When attempting to call method withdraw with a negative
amount -1000000, a WithdrawAmountNegativeException

(i.e., precondition violation) occurs, preventing the withdrawal
from proceeding.

● We should observe that adding preconditions to the supplier
BankV2’s code forces the client BankAppV2’s code to get
complicated by the try-catch statements.

● Adding clear contract (preconditions in this case) to the design
should not be at the cost of complicating the client’s code!!

24 of 72

V2: Why Better than V1? (3.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Tom with balance 100:");
4 try {

5 AccountV2 tom = new AccountV2("Tom", 100);
6 System.out.println(tom);
7 System.out.println("Withdraw 150 from Tom’s account:");

8 tom. withdraw(150) ;

9 System.out.println(tom);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }
14 catch (WithdrawAmountNegativeException wane) {
15 System.out.println("Illegal negative withdraw amount.");
16 }

17 catch (WithdrawAmountTooLargeException wane) {

18 System.out.println("Illegal too large withdraw amount.");
19 }

25 of 72

V2: Why Better than V1? (3.2)
Console Output:

Create an account for Tom with balance 100:
Tom’s current balance is: 100
Withdraw 150 from Tom’s account:
Illegal too large withdraw amount.

● L8: When attempting to call method withdraw with a positive
but too large amount 150, a
WithdrawAmountTooLargeException (i.e., precondition
violation) occurs, preventing the withdrawal from proceeding.

● We should observe that due to the added preconditions to the
supplier BankV2’s code, the client BankAppV2’s code is forced
to repeat the long list of the try-catch statements.

● Indeed, adding clear contract (preconditions in this case)
should not be at the cost of complicating the client’s code!!

26 of 72

V2: Why Still Not a Good Design? (1)
1 public class AccountV2 {
2 public AccountV2(String owner, int balance) throws
3 BalanceNegativeException
4 {

5 if(balance < 0) { /* negated precondition */
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }
8 }
9 public void withdraw(int amount) throws

10 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

11 if(amount < 0) { /* negated precondition */
12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated precondition */
14 throw new WithdrawAmountTooLargeException(); }
15 else { this.balance = this.balance - amount; }
16 }

● Are all the exception conditions (¬ preconditions) appropriate?
● What if amount == balance when calling withdraw?
27 of 72

V2: Why Still Not a Good Design? (2.1)
1 public class BankAppV2 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jim with balance 100:");
4 try {

5 AccountV2 jim = new AccountV2("Jim", 100);
6 System.out.println(jim);
7 System.out.println("Withdraw 100 from Jim’s account:");

8 jim. withdraw(100) ;

9 System.out.println(jim);
10 }
11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance.");
13 }
14 catch (WithdrawAmountNegativeException wane) {
15 System.out.println("Illegal negative withdraw amount.");
16 }
17 catch (WithdrawAmountTooLargeException wane) {
18 System.out.println("Illegal too large withdraw amount.");
19 }

28 of 72

V2: Why Still Not a Good Design? (2.2)

Create an account for Jim with balance 100:
Jim’s current balance is: 100
Withdraw 100 from Jim’s account:
Jim’s current balance is: 0

L9: When attempting to call method withdraw with an amount
100 (i.e., equal to Jim’s current balance) that would result in a
zero balance (clearly a violation of REQ1), there should have
been a precondition violation.

Supplier AccountV2’s exception condition balance < amount

has a missing case :
● Calling withdraw with amount == balance will also result in an

invalid account state (i.e., the resulting account balance is zero).
● ∴ L13 of AccountV2 should be balance <= amount.

29 of 72

Part 2.3

Supporting DbC in Java:
3rd Attempt (Class Invariants)

30 of 72

V2: How Should We Improve it?
● Even without fixing this insufficient precondition, we could

have avoided the above scenario by checking at the end of
each method that the resulting account is valid .
⇒We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

● Invariants of a class specify the precise conditions which all
instances/objects of that class must satisfy.
○ Inv. of CSMajoarStudent? [gpa >= 4.5]
○ Inv. of BinarySearchTree? [in-order trav. → sorted key seq.]

● The best we can do in Java is encode invariants as assertions:
○ CSMajorStudent: assert this.gpa >= 4.5
○ BinarySearchTree: assert this.inOrder() is sorted
○ Unlike exceptions, assertions are not in the class/method API.

● Create V3 by adding assertions to the end of constructor and
withdraw method of the Account class.

31 of 72

V3: Class Invariants ≈ Assertions

1 public class AccountV3 {
2 public AccountV3(String owner, int balance) throws
3 BalanceNegativeException
4 {
5 if(balance < 0) { /* negated precondition */
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }

8 assert this.getBalance() > 0 : "Invariant: positive balance";

9 }
10 public void withdraw(int amount) throws
11 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {
12 if(amount < 0) { /* negated precondition */
13 throw new WithdrawAmountNegativeException(); }
14 else if (balance < amount) { /* negated precondition */
15 throw new WithdrawAmountTooLargeException(); }
16 else { this.balance = this.balance - amount; }

17 assert this.getBalance() > 0 : "Invariant: positive balance";

18 }

32 of 72

V3: Why Better than V2?
1 public class BankAppV3 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jim with balance 100:");

4 try { AccountV3 jim = new AccountV3("Jim", 100);
5 System.out.println(jim);
6 System.out.println("Withdraw 100 from Jim’s account:");

7 jim. withdraw(100) ;

8 System.out.println(jim); }
9 /* catch statements same as this previous slide:

10 * V2: Why Still Not a Good Design? (2.1) */

Create an account for Jim with balance 100:
Jim’s current balance is: 100
Withdraw 100 from Jim’s account:
Exception in thread "main"

java.lang.AssertionError: Invariant: positive balance

L8: Upon completion of jim.withdraw(100), Jim has a zero
balance, an assertion failure (i.e., invariant violation) occurs,
preventing further operations on this invalid account object .

33 of 72

V3: Why Still Not a Good Design?
Let’s recall what we have added to the method withdraw:

○ From V2 : exceptions encoding negated preconditions
○ From V3 : assertions encoding the class invariants

1 public class AccountV3 {
2 public void withdraw(int amount) throws
3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 if(amount < 0) { /* negated precondition */
5 throw new WithdrawAmountNegativeException(); }

6 else if (balance < amount) { /* negated precondition */
7 throw new WithdrawAmountTooLargeException(); }
8 else { this.balance = this.balance - amount; }

9 assert this.getBalance() > 0 : "Invariant: positive balance"; }

However, there is no contract in withdraw which specifies:
○ Obligations of supplier (AccountV3) if preconditions are met.
○ Benefits of client (BankAppV3) after meeting preconditions.
⇒We illustrate how problematic this can be by creating V4 ,
where deliberately mistakenly implement withdraw.

34 of 72

Part 2.4

Supporting DbC in Java:
4th Attempt (Faulty Implementation)

35 of 72

V4: withdraw implemented incorrectly? (1)
1 public class AccountV4 {
2 public void withdraw(int amount) throws
3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException
4 { if(amount < 0) { /* negated precondition */
5 throw new WithdrawAmountNegativeException(); }
6 else if (balance < amount) { /* negated precondition */
7 throw new WithdrawAmountTooLargeException(); }
8 else { /* WRONT IMPLEMENTATION */

9 this.balance = this.balance + amount; }

10 assert this.getBalance() > 0 :
11 owner + "Invariant: positive balance"; }

○ Apparently the implementation at L11 is wrong.
○ Adding a positive amount to a valid (positive) account balance

would not result in an invalid (negative) one.
⇒ The class invariant will not catch this flaw.

○ When something goes wrong, a good design (with an appropriate
contract) should report it via a contract violation .

36 of 72

V4: withdraw implemented incorrectly? (2)
1 public class BankAppV4 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV4 jeremy = new AccountV4("Jeremy", 100);
5 System.out.println(jeremy);
6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }
9 /* catch statements same as this previous slide:

10 * V2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. ⇒ Violation of REQ2

37 of 72

Part 2.5

Supporting DbC in Java:
5th Attempt (Method Postconditions)

38 of 72

V4: How Should We Improve it?
● Postconditions of a method specify the precise conditions

which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

○ Postcondition of double divide(int x, int y)?
[Result × y == x]

○ Postcondition of boolean binSearch(int x, int[] xs)?
[x ∈ xs ⇐⇒ Result]

● The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.

But again, unlike exceptions, these assertions will not be part of
the class/method API.

● Create V5 by adding assertions to the end of withdraw
method of the Account class.

39 of 72

V5: Postconditions ≈ Assertions
1 public class AccountV5 {
2 public void withdraw(int amount) throws
3 WithdrawAmountNegativeException, WithdrawAmountTooLargeException {

4 int oldBalance = this.balance;

5 if(amount < 0) { /* negated precondition */
6 throw new WithdrawAmountNegativeException(); }
7 else if (balance < amount) { /* negated precondition */
8 throw new WithdrawAmountTooLargeException(); }
9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 assert this.getBalance() == oldBalance - amount :

12 "Postcondition: balance deducted"; }

A postcondition typically relates the pre-execution value and
the post-execution value of each relevant attribute
(e.g.,balance in the case of withdraw).
⇒ Extra code (L4) to capture the pre-execution value of balance for
the comparison at L11.

40 of 72

V5: Why Better than V4?
1 public class BankAppV5 {

2 public static void main(String[] args) {
3 System.out.println("Create an account for Jeremy with balance 100:");

4 try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
5 System.out.println(jeremy);
6 System.out.println("Withdraw 50 from Jeremy’s account:");

7 jeremy. withdraw(50) ;

8 System.out.println(jeremy); }
9 /* catch statements same as this previous slide:

10 * V2: Why Still Not a Good Design? (2.1) */

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw(50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object .

41 of 72

Part 2.6

Supporting DbC:
Java vs. Eiffel

42 of 72

Evolving from V1 to V5
Improvements Made Design Flaws

V1 – Complete lack of Contract

V2 Added exceptions as
method preconditions

Preconditions not strong enough (i.e., with missing
cases) may result in an invalid account state.

V3 Added assertions as
class invariants –

V4
Deliberately changed
withdraw’s implementa-
tion to be incorrect.

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

V5 Added assertions as
method postconditions –

● In Versions 2, 3, 4, 5, preconditions approximated as exceptions.
/ These are not preconditions, but their logical negation .
/ Client BankApp’s code complicated by repeating the list of try-catch statements.

● In Versions 3, 4, 5, class invariants and postconditions approximated as assertions.
/ Unlike exceptions, these assertions will not appear in the API of withdraw.
Potential clients of this method cannot know : 1) what their benefits are; and 2) what
their suppliers’ obligations are.
/ For postconditions, extra code needed to capture pre-execution values of attributes.

43 of 72

V5: Contract between Client and Supplier

benefits obligations
BankAppV5.main balance deduction amount non-negative

(CLIENT) positive balance amount not too large
BankV5.withdraw amount non-negative balance deduction

(SUPPLIER) amount not too large positive balance

benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

44 of 72

DbC in Java
DbC is possible in Java, but not appropriate for your learning:

● Preconditions of a method:
Supplier
● Encode their logical negations as exceptions.
● In the beginning of that method, a list of if-statements for throwing

the appropriate exceptions.
Client
● A list of try-catch-statements for handling exceptions.

● Postconditions of a method:
Supplier
● Encoded as a list of assertions, placed at the end of that method.

Client
● All such assertions do not appear in the API of that method.

● Invariants of a class:
Supplier
● Encoded as a list of assertions, placed at the end of every method.

Client
● All such assertions do not appear in the API of that class.

45 of 72

DbC in Eiffel: Supplier
DbC is supported natively in Eiffel for supplier:
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive_balance: nb > 0

do
owner := nn
balance := nb

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non_negative_amount: amount > 0
affordable_amount: amount <= balance -- problematic, why?

do
balance := balance - amount

ensure -- postcondition
balance_deducted: balance = old balance - amount

end
invariant -- class invariant

positive_balance: balance > 0
end

46 of 72

DbC in Eiffel: Contract View of Supplier
Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):
class ACCOUNT
create

make
feature -- Attributes

owner : STRING
balance : INTEGER

feature -- Constructors
make(nn: STRING; nb: INTEGER)

require -- precondition
positive_balance: nb > 0

end
feature -- Commands

withdraw(amount: INTEGER)
require -- precondition

non_negative_amount: amount > 0
affordable_amount: amount <= balance -- problematic, why?

ensure -- postcondition
balance_deducted: balance = old balance - amount

end
invariant -- class invariant

positive_balance: balance > 0
end

47 of 72

DbC in Eiffel: Anatomy of a Class
class SOME_CLASS
create
-- Explicitly list here commands used as constructors

feature -- Attributes
-- Declare attribute here

feature -- Commands
-- Declare commands (mutators) here

feature -- Queries
-- Declare queries (accessors) here

invariant
-- List of tagged boolean expressions for class invariants

end

● Use feature clauses to group attributes, commands, queries.
● Explicitly declare list of commands under create clause, so

that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]

● The class invariant invariant clause may be omitted:
○ There’s no class invariant: any resulting object state is acceptable.
○ The class invariant is equivalent to writing invariant true

48 of 72

DbC in Eiffel: Anatomy of a Command
some_command (x: SOME_TYPE_1; y: SOME_TYPE_2)

-- Description of the command.
require
-- List of tagged boolean expressions for preconditions

local
-- List of local variable declarations

do
-- List of instructions as implementation

ensure
-- List of tagged boolean expressions for postconditions

end

● The precondition require clause may be omitted:
○ There’s no precondition: any starting state is acceptable.
○ The precondition is equivalent to writing require true

● The postcondition ensure clause may be omitted:
○ There’s no postcondition: any resulting state is acceptable.
○ The postcondition is equivalent to writing ensure true

49 of 72

DbC in Eiffel: Anatomy of a Query

some_query (x: SOME_TYPE_1; y: SOME_TYPE_2): SOME_RT
-- Description of the query.

require
-- List of tagged boolean expressions for preconditions

local
-- List of local variable declarations

do
-- List of instructions as implementation
Result := . . .

ensure
-- List of tagged boolean expressions for postconditions

end

● Each query has a predefined variable Result.
● Implicitly, you may think of:

○ First line of the query declares Result: SOME_RT
○ Last line of the query return the value of Result.
⇒ Manipulate Result so that its last value is the desired result.

50 of 72

Part 3

DbC in Eiffel: Runtime Checking

51 of 72

Runtime Monitoring of Contracts (1)
In the specific case of ACCOUNT class with creation procedure
make and command withdraw:

STATE:
balance
owner

Class
Invariant
Violation

call
acc.withdraw(a)

Precondition
Violation

execute
acc.withdraw(a)

Postcondition
Violation

precond_make:
a > 0

execute
create {ACCOUNT} acc.make(a, n)

call
create {ACCOUNT} acc.make(a, n)

account_inv:
balance > 0

not (account_inv)

precond_withdraw:
0 < a and a < balance

not (precond_withdraw)

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner

not (precond_make)

postcond_make:
acc.balance = a and acc.owner = n

not (postcond_make)

not (postcond_withdraw)

52 of 72

Runtime Monitoring of Contracts (2)
In general, class C with creation procedure cp and any feature f:

STATE:
attributes of

class A

Class
Invariant
Violation

call
a.f(…)

Precondition
Violation

execute
a.f(…)

Postcondition
Violation

precond_make:
Pm

call
create {A} a.make(…)

a_inv:
I

not I

precond_f:
Pf

not Pf

not Pm

postcond_make:
Qm

not Qm

not Qf

execute
create {A} a.make(…)

postcond_f:
Qf

53 of 72

Runtime Monitoring of Contracts (3)

● All contracts are specified as Boolean expressions.
● Right before a feature call (e.g., acc.withdraw(10)):

○ The current state of acc is called the pre-state.
○ Evaluate feature withdraw’s pre-condition using current values

of attributes and queries.
○ Cache values (implicitly) of all expressions involving the old

keyword in the post-condition .

e.g., cache the value of old balance via old balance ∶= balance

● Right after the feature call:
○ The current state of acc is called the post-state.
○ Evaluate class ACCOUNT’s invariant using current values of

attributes and queries.
○ Evaluate feature withdraw’s post-condition using both current

and “cached” values of attributes and queries.
54 of 72

Experimenting Contract Violations in Eiffel

● Download the Eiffel project archive (a zip file) here:
https://www.eecs.yorku.ca/˜jackie/teaching/lectures/2020/F/

EECS3311/codes/DbCIntroEiffel.zip

● Unzip and compile the project in Eiffel Studio.
● Follow the in-code comments to re-produce the various

contract violations and understand from the stack trace how
they occur.

55 of 72

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntroEiffel.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntroEiffel.zip

DbC in Eiffel: Precondition Violation (1.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
alan: ACCOUNT

do
-- A precondition violation with tag "positive_balance"
create {ACCOUNT} alan.make ("Alan", -10)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance").

56 of 72

DbC in Eiffel: Precondition Violation (1.2)

57 of 72

DbC in Eiffel: Precondition Violation (2.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
mark: ACCOUNT

do
create {ACCOUNT} mark.make ("Mark", 100)
-- A precondition violation with tag "non_negative_amount"
mark.withdraw(-1000000)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non negative amount").

58 of 72

DbC in Eiffel: Precondition Violation (2.2)

59 of 72

DbC in Eiffel: Precondition Violation (3.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
tom: ACCOUNT

do
create {ACCOUNT} tom.make ("Tom", 100)
-- A precondition violation with tag "affordable_amount"
tom.withdraw(150)

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable amount").

60 of 72

DbC in Eiffel: Precondition Violation (3.2)

61 of 72

DbC in Eiffel: Class Invariant Violation (4.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit
ARGUMENTS

create
make

feature -- Initialization
make
-- Run application.

local
jim: ACCOUNT

do
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)
-- A class invariant violation with tag "positive_balance"

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

62 of 72

DbC in Eiffel: Class Invariant Violation (4.2)

63 of 72

DbC in Eiffel: Postcondition Violation (5.1)
The client need not handle all possible contract violations:
class BANK_APP
inherit ARGUMENTS
create make
feature -- Initialization
make
-- Run application.

local
jeremy: ACCOUNT

do
-- Faulty implementation of withdraw in ACCOUNT:
-- balance := balance + amount
create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)
-- A postcondition violation with tag "balance_deducted"

end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
"balance deducted").

64 of 72

DbC in Eiffel: Postcondition Violation (5.2)

65 of 72

Beyond this lecture...
1. Review your Lab0 tutorial about how DbC is supported in Eiffel.
2. Explore in Eclipse how contract checks are manually-coded :

https://www.eecs.yorku.ca/˜jackie/teaching/lectures/

2020/F/EECS3311/codes/DbCIntro.zip

3. Recall the 4th requirement of the bank problem (see here):

REQ4 : Given a bank, we may add a new account in it.
Design the header of this add method, implement it, and
encode proper pre-condition and post-condition for it.
Q. What postcondition can you think of? Does it require any
skill from EECS1090? What attribute value(s) do you need to
manually store in the pre-state?

4. 3 short courses which will help your labs and project:
○ Eiffel Syntax: here.
○ Common Syntax/Type Errors in Eiffel: here.
○ Drawing Design Diagrams: here.

66 of 72

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2020/F/EECS3311/codes/DbCIntro.zip
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.1-Eiffel-vs-Java.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.2-Eiffel-Common-Errors.pdf
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/notes/00.3-Design-Diagrams.pdf

Index (1)

Learning Objectives

Part 1

Motivation: Catching Defects – When?

What this Course Is About (1)

What this Course Is About (2)

Terminology: Contract, Client, Supplier

Client, Supplier, Contract in OOP (1)

Client, Supplier, Contract in OOP (2)

What is a Good Design?

Part 2.1

A Simple Problem: Bank Accounts
67 of 72

Index (2)
Playing with the Various Versions in Java

V1: An Account Class

V1: Why Not a Good Design? (1)

V1: Why Not a Good Design? (2)

V1: Why Not a Good Design? (3)

Part 2.2

V1: How Should We Improve it? (1)

V1: How Should We Improve it? (2)

V2: Preconditions ≈ Exceptions

V2: Why Better than V1? (1)

V2: Why Better than V1? (2.1)
68 of 72

Index (3)
V2: Why Better than V1? (2.2)

V2: Why Better than V1? (3.1)

V2: Why Better than V1? (3.2)

V2: Why Still Not a Good Design? (1)

V2: Why Still Not a Good Design? (2.1)

V2: Why Still Not a Good Design? (2.2)

Part 2.3

V2: How Should We Improve it?

V3: Class Invariants ≈ Assertions

V3: Why Better than V2?

V3: Why Still Not a Good Design?
69 of 72

Index (4)

Part 2.4

V4: withdraw implemented incorrectly? (1)

V4: withdraw implemented incorrectly? (2)

Part 2.5

V4: How Should We Improve it?

V5: Postconditions ≈ Assertions

V5: Why Better than V4?

Part 2.6

Evolving from V1 to V5

V5: Contract between Client and Supplier

DbC in Java
70 of 72

Index (5)
DbC in Eiffel: Supplier

DbC in Eiffel: Contract View of Supplier

DbC in Eiffel: Anatomy of a Class

DbC in Eiffel: Anatomy of a Command

DbC in Eiffel: Anatomy of a Query

Part 3

Runtime Monitoring of Contracts (1)

Runtime Monitoring of Contracts (2)

Runtime Monitoring of Contracts (3)

Experimenting Contract Violations in Eiffel

DbC in Eiffel: Precondition Violation (1.1)
71 of 72

Index (6)
DbC in Eiffel: Precondition Violation (1.2)

DbC in Eiffel: Precondition Violation (2.1)

DbC in Eiffel: Precondition Violation (2.2)

DbC in Eiffel: Precondition Violation (3.1)

DbC in Eiffel: Precondition Violation (3.2)

DbC in Eiffel: Class Invariant Violation (4.1)

DbC in Eiffel: Class Invariant Violation (4.2)

DbC in Eiffel: Postcondition Violation (5.1)

DbC in Eiffel: Postcondition Violation (5.2)

Beyond this lecture...

72 of 72

	Learning Objectives
	Part 1
	Motivation: Catching Defects – When?
	What this Course Is About (1)
	What this Course Is About (2)
	Terminology: Contract, Client, Supplier
	Client, Supplier, Contract in OOP (1)
	Client, Supplier, Contract in OOP (2)
	What is a Good Design?
	Part 2.1
	A Simple Problem: Bank Accounts
	Playing with the Various Versions in Java
	V1: An Account Class
	V1: Why Not a Good Design? (1)
	V1: Why Not a Good Design? (2)
	V1: Why Not a Good Design? (3)
	Part 2.2
	V1: How Should We Improve it? (1)
	V1: How Should We Improve it? (2)
	V2: Preconditions Exceptions
	V2: Why Better than V1? (1)
	V2: Why Better than V1? (2.1)
	V2: Why Better than V1? (2.2)
	V2: Why Better than V1? (3.1)
	V2: Why Better than V1? (3.2)
	V2: Why Still Not a Good Design? (1)
	V2: Why Still Not a Good Design? (2.1)
	V2: Why Still Not a Good Design? (2.2)
	Part 2.3
	V2: How Should We Improve it?
	V3: Class Invariants Assertions
	V3: Why Better than V2?
	V3: Why Still Not a Good Design?
	Part 2.4
	V4: withdraw implemented incorrectly? (1)
	V4: withdraw implemented incorrectly? (2)
	Part 2.5
	V4: How Should We Improve it?
	V5: Postconditions Assertions
	V5: Why Better than V4?
	Part 2.6
	Evolving from V1 to V5
	V5: Contract between Client and Supplier
	DbC in Java
	DbC in Eiffel: Supplier
	DbC in Eiffel: Contract View of Supplier
	DbC in Eiffel: Anatomy of a Class
	DbC in Eiffel: Anatomy of a Command
	DbC in Eiffel: Anatomy of a Query
	Part 3
	Runtime Monitoring of Contracts (1)
	Runtime Monitoring of Contracts (2)
	Runtime Monitoring of Contracts (3)
	Experimenting Contract Violations in Eiffel
	DbC in Eiffel: Precondition Violation (1.1)
	DbC in Eiffel: Precondition Violation (1.2)
	DbC in Eiffel: Precondition Violation (2.1)
	DbC in Eiffel: Precondition Violation (2.2)
	DbC in Eiffel: Precondition Violation (3.1)
	DbC in Eiffel: Precondition Violation (3.2)
	DbC in Eiffel: Class Invariant Violation (4.1)
	DbC in Eiffel: Class Invariant Violation (4.2)
	DbC in Eiffel: Postcondition Violation (5.1)
	DbC in Eiffel: Postcondition Violation (5.2)
	Beyond this lecture...

