
Abstract Data types (ADTs)
Cohesion Principle
Single Choice Principle
Open-Closed Principle
Design Document
Justified Design Decisions

Code Reuse via Inheritance
Substitutibility
Polymorphism (esp. Polymorphic Collections)
Type Casting
Static Typing, Dynamic Binding
Unit Testing

Syntax: Implementation vs. Specification
agent expression, across constructs

expanded types, export status
Runtime Contract Checking

Debugger

Axioms, Lemmas, Theorems
Equational Proofs

Proof by Contradiction (witness)

Design Eiffel

OOP Logic

Architecture: Client-Supplier Relation
Architecture: Inheritance Relation

Program to Interface,
Not to Implementation
Modularity: Classes

Design Patterns
(Iterator, Singleton, State, Template,

Composite, Visitor, Strategy,
Observer, Event-Driven Design)

Anti-Patterns

Design by Contract (DbC):
 Class Invariant, Pre-/Post-condition

Information Hiding Principle
Eiffel Testing Framework (ETF)

Abstraction (via Mathematical Models)
Regression Testing
Acceptance Testing

Void Safety
Generics

Multiple Inheritance
Sub-Contracting

Architectural Design Diagrams Specification: Predicates
Contracts of Loops: Invariant & Variant

Program Correctness
Weakest Precondition (WP)

Hoare Triples
Specification: Higher-Order Functions

