Program Correctness
OO0SC2 Chapter 11

EECS3311 M: Software Design

YORK u Her=re

UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

http://www.eecs.yorku.ca/~jackie

/|

Weak vs. Strong Assertions o

Describe each assertion as a set of satisfying value.
x >3 has satisfying values { x | x>3}={4,56,7,... }
x >4 has satisfying values { x | x >4 }={5,6,7,... }
An assertion p is stronger than an assertion q|if | p’'s set of
satisfying values is a subset of ¢’s set of satisfying values.
o Logically speaking, p being stronger than q (or, g being weaker
than p) means p = q.
oceg,x>4=x>3
What'’s the weakest assertion? [TRUE]
What'’s the strongest assertion? [FALSE]

In Design by Contract :

o A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

o A weaker precondition has more acceptable input values

o A weaker postcondition has more acceptable output values
20145

|

Motivating Examples (1)

SSONDE

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
-~ assertion i/ > 3 allows value 4 which would fail postcondition.

3.0f45

Motivating Examples (2) LassoNDE

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 5 too weak or too strong?

A: Maybe too strong
- assertion i > 5 disallows 5 which would not fail postcondition.
Whether 5 should be allowed depends on the requirements.

e

/|

Software Correctness v

e Correctness is a relative notion:

consistency of implementation with respect to specification.
= This assumes there is a specification!

* We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s { R}

oeg.,{i>3}1 := i+ 9{i>13}
oeg,{i>5}i := 1 + 9{i>13}

o If| {@} s {R} | can be proved TRUE, then the S is correct.

eg.,{i>5}i := i + 9 {i>13} can be proved TRUE.
o If| {@Q} s {R} | cannot be proved TRUE, then the S is incorrect.
e.g.,{i>3}1i := i + 9 {i>13} cannot be proved TRUE.

Hoare Logic LassoNDE

¢ Consider a program S with precondition Q and postcondition R.

o {@} s {R}is a correctness predicate for program S

o {@} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .
(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

fofds

/|

Hoare Logic and Software Correctness o

Consider the contract view of a feature f (whose body of

implementation is S) as a | Hoare Triple |

{Q} s {R}
Qis the precondition of f.
S is the implementation of f.
R is the postcondition of f.

{true} s {R}

o

All input values are valid [Most-user friendly]
o {false} s {R}
All input values are invalid [Most useless for clients]

(e}

{Q} s {true}
All output values are valid [Most risky for clients; Easiest for suppliers]
{Q} s {false}

[e]

All output values are invalid [Most challenging coding task]
o {true} s {true}
All inputs/outputs are valid (No contracts) [Least informative]

e

Proof of Hoare Triple using wp LassoNDE

{@} s {R} = Q= wp(S,R)

e wp(S,R) isthe weakest precondition for S to establish R .

e Scan be:
o Assignments (x := vy)
o Alternations (if ... then ... else ... end)
o Sequential compositions (S1 ; Sp)
o Loops (from ... until ... loop ... end)

¢ We will learn how to calculate the wp for the above
programming constructs.

e

/|

Hoare Logic A Simple Example Lassonpe

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.

e.g., {n>5}n:=n+9{n>13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.

e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

Aofds

/|

|

Denoting New and Old Values

SSONDE

In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.
o We write to denote its posi-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.
eg.,{bp>atb := b - a{b=by—-a}
¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
-+ All variables are pre-state values in preconditions

o We don’t write “by” in program
-- there might be multiple intermediate values of a variable due to
sequential composition

10.0t.45

/|

wp Rule: Assighments (1) LassoNDE

wp(x := e, R)=R[x:=¢]

R[x := e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

/|

wp Rule: Assighments (2) LassoNDE

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} x := e {R}?

{@} x := e{R} < Q= R[x:=¢]
R—
wp(x := e,R)

/|

wp Rule: Assignments (3) Exercise LassonDE

What is the weakest precondition for a program x := x + 11to
establish the postcondition x > xp?

{M}x := x + 1{x>x}

For the above Hoare triple to be TRUE, it must be that
M=>wp(x := x + 1, X>Xp).

wp(x := x + 1,X>Xp)

= {Rule of wp: Assignments}
X > Xo[X:=Xx0+1]

= {Replacing X by Xo+1}

Xo+1>Xp
= {1>0 always true}
True
Any precondition is OK. False is valid but not useful.

13.0t.45

/|

wp Rule: Assignments (4) Exercise LassonDE
What is the weakest precondition for a program x := x + 1to

establish the postcondition x > xp?
{77} x := x + 1{x=23}

For the above Hoare triple to be TRUE, it must be that
M?=>wp(x := x + 1, x=23).

wp(x := x + 1, x=23)

= {Rule of wp: Assignments}
X=23[X:=X0+1]

= {Replacing X by Xp+1}
Xo+1=23

= {arithmetic}
Xp = 22

Any precondition weaker than x = 22 is not OK.

e

/|

wp Rule: Alternations (1) LassoNDE

B = Wp(S'I? R)
wp(if B then S; else S, end, R)=| A
- B = wp(S;, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

- ___
—

wp Rule: Alternations (2) LassoNDE
Recall: {@Q} s{R} = Q= wp(S,R)

How do we prove that {Q} if B then S; else S; end {R}?
{2}

if B then
{orn B} S {Rr}

else
{or-B} S {R}
end

{R}

{Q} if B then Si else S; end{R}

{QA B } S {R} (Qn B) = wp(Sy, R
— | A —= | A
{QAr-B } S { R} (Qr-B) = wp(Ss, R)

e

wp Rule: Alternations (3) Exercise

LASSONDE
i

Is this program correct?

{x>0Ay>0}
if x > y then

bigger := x ; smaller :=y
else

bigger := y ; smaller := x
end
{bigger > smaller}

bigger := x ; smaller :

({(x>0Ay>0)A(x>y)}

{bigger > smaller}
A

({(x>0Ay>0)A=(x>y)}

bigger := y ; smaller :

{bigger > smaller}
1Zafd5

wp Rule: Sequential Composition (1) Lassonpe

Wp(S1 7 827 R) = Wp(817 Wp(SQ, R))

The wp of a sequential composition is such that the | first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

/|

wp Rule: Sequential Composition (2) LassonDE

Recall:
{@} s {R} = Q= wp(S,R)

How do we prove {Q} S; ; Sp {R}?

{(@}S ; S2{R} < Q= wp(Sy, wp(Sz. R))

wp(Sy ; Sz, R)

wp Rule: Sequential Composition (3) Exercisjgsom

Is{ True } tmp := x; x := y; y := tmp{ x>y } correct?
Ifand only if True = wp(tmp := x ; x =y ; y := tmp, X>))

Wp(tmp = X ; |X =y ; Yy = tmp
{wp rule for seg. comp.}

wp(tmp := x, wp(x := vy ; [y := tmp| x>y))
{wp rule for seqg. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp,X>)))
{wp rule for assignment}

wp(tmp := x, wp(x := y,>tmp))

{wp rule for assignment}

wp(tmp := x,y>)

{wp rule for assignment}

y>X

, X>Y)

- True = y > x does not hold in general.
.. The above program is not correct.

/|

Loops _iIEASSONDE

e Aloop is a way to compute a certain result by successive
approximations.

e.g. computing the maximum value of an array of integers
e Loops are needed and powerful
e But loops very hard to get right:

o Infinite loops [termination]
o “off-by-one” error [partial correctness |
o Improper handling of borderline cases [partial correctness |
o Not establishing the desired condition [partial correctness |

21atd5

ks

BS2
binary search: published,

BS1
from

but wrong!

-
Loops: Binary Search "'éésésom
4 implementations for

BS4

BS3
See page 381 in Object Oriented

Software Construction

/|

Correctness of Loops LAssoNDE
How do we prove that the following loops are correct?
{0}
fr;"f (o)
init L
until Sinit
B while (- B) {
loop Sbody
Sbody)
end (R
{R}

* In case of C/Java, denotes the stay condition.

* In case of Eiffel, | B| denotes the exit condition.
There is native, syntactic support for checking/proving the
total correctness of loops.

23.0t.45

R
Contracts for Loops: Syntax "'éésésom

ks

from
Sinit

invariant

invariant_tag: | —- Bo

until
B
loop
Sbww
variant
variant_tag: V -- In

end

/|

Contracts for Loops

¢ Use of loop invariants (LI) and loop variants (LV).

o Invariants: expressions for partial correctness.
o Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array

|

SSONDE

LI can be “ Result is maximum of the part of array scanned so far ”.
o Established before the very first iteration.
¢ Maintained TRUE after each iteration.
o Variants: expressions for termination

o Denotes the number of iterations remaining
e Decreased at the end of each subsequent iteration
e Maintained non-negative at the end of each iteration.
e As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.
e Remember:

total correctness = partial correctness + termination
25.0f45

S
Contracts for Loops: Runtime Checks (1) jééo

Invariant

Violation

Loop
Variant
Violation

Contracts for Loops: Runtime Checks (2)

/|

|

SSONDE
1 | test
2 local
3 i: INTEGER
4 do
5 from
6 i =1
7 invariant
8 1 <=1 and i <= 6
9 until
10 i>5
11 loop
12 io.put_string ("iteration " + i.out + "%N")
13 i:=1+1
14 variant
15 6 - 1
16 end
17 |end

L8: Changeto 1 <= i and i <= 5 for a Loop Invariant Violation.
L10: Changeto i > 0 to bypass the body of loop.
L15: Changeto 5 - i fora Loop Variant Violation.

e

I

R
Contracts for Loops: Visualization 'i%sgsoios
Exit condition

Postcondition

ks

Previous state
Invariant

*.. Bod
"y %

Initialization

Body

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

Contracts for Loops: Example 1.1

/|

SSONDE

|

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: —-- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| i as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

-
Contracts for Loops: Example 1.2 jgsésom
, given:

Consider the feature call ’find,max(((20, 10, 40, 30)))
e Loop Invariant: V|| a.lower <j<i e Result > a[j]
e Loop Variant: a.upper — i + 1

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 v X 3

2nd 3 20 X — -

Loop invariant violation at the end of the 2nd iteration:

Vj | alower < j<[3] e [20]> a[j]

evaluates to false - 20 # a[3] = 40

e

/|

SSONDE

|

Contracts for Loops: Example 2.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: —-- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i :=1+1
variant
loop_variant: a.upper - i
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

/|

Contracts for Loops: Example 2.2 LassonDE

Consider the feature call ’find,max(((20, 10, 40, 30)))

e Loop Invariant: V|| a.lower <j<i e Result > a[j]
e Loop Variant: a.upper — i

, given:

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 N X 2
2nd 3 20 N X 1
3rd 4 40 N X 0

4th 5 40 v v -1

Loop variant violation at the end of the 2nd iteration

- a.upper — i =4 -5 evaluates to non-zero.
d2.0f45

/|

Contracts for Loops: Example 3.1 o

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: —-- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i:=1+1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

/|

Contracts for Loops: Example 3.2 LassonDE

Consider the feature call ’find,max(((20, 10, 40, 30)))
e Loop Invariant: V|| a.lower <j<i e Result > a[j]

e Loop Variant. a.upper — i + 1

» Postcondition : Vj | a.lower < j < a.upper o Result > a[j]

, given:

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st 2 20 v X 3

2nd 3 20 v x 2

3rd 4 40 v X 1

4th 5 40 v v 0

/|

|

Contracts for Loops: Exercise

class DICTIONARY[V, K]

feature {NONE} ——
values: ARRAY[K]
keys: ARRAY [K]

SSONDE

feature Abstraction Function
model: FUN[K, V]
feature - Queries

get_keys(v: V): ITERABLE [K]
local i: INTEGER; ks: LINKED_LIST][K]
do
from i := keys.lower ; create ks.make_empty

invariant

until i > keys.upper

do if values[i] ~ v then ks.extend(keys[i]) end
end
Result := ks.new_cursor

ensure

result_valid: VK|keResult e model.item(k) ~ v
nomissing keys: Vk |k e model.domain e model.item(k) ~ v = k € Result
end

35.0t.45

{0} from
Sinit
invariant
I
until
B
loop
Sbody
variant
4
end {R}

S
Proving Correctness of Loops (1) ﬂ,géé

o Aloopis partially correct if:
e Atthe end of Sy, if NOt yet to exit, LI | is maintained.
o If ready to exit and L/ | maintained, postcondition R is established.

o Aloop terminates if:
e Given L/ I, and not yet to exit, Spoq, maintains LV V as non-negative.
e Given L/ [, and not yet to exit, Spoq, decrements LV V.
e

o Given precondition Q, the initialization step S, establishes LI /.

S
Proving Correctness of Loops (2) ﬂ,géé

{Q} from Sj;; invariant | until B loop Spoy variant V end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step S, establishes LI /.
{Q} Simir {1}

o At the end of Spoqy, if NOt yet to exit, LI [is maintained.
{1 A =B} Soooy {1} |

¢ If ready to exit and L/ | maintained, postcondition R is established.

e Given LI I, and not yet to exit, Spoqy maintains LV V as non-negative

o Aloop terminates if:
{I'A =B} Spoqy {V >0} \

e Given L/ [, and not yet to exit, Spoq, decrements LV V.
] {I'A =B} Sy {V < Vo} \
e

/|

Proving Correctness of Loops: Exercise (1.1}ssono:
Prove that the following program is correct:

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: Vj|a.lower <j<i e Result > a[j]
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i:=1i+1
variant
loop_variant: a.upper — i + 1
end
ensure
correct_result: Vj|a.lower<j< a.upper e Result > a[j]
end
end
38.0t43

Proving Correctness of Loops: Exercise (1.2?%50”05

Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:

{ True }
i := a.lower
Result := afi]

{ Vj|alower<j<i e Result>a[j] }

2. Maintenance of Loop Invariant:

{ (Vj|alower<j<ie Result>a[j])n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1

{ (Vj|alower<j<i e Result>a[j]) }

3. Establishment of Postcondition upon Termination:

(Vj|alower <j<i e Result>a[j])Ai>a.upper
= Vj| a.lower < j < a.upper o Result > a[j]
39.0f45

Proving Correctness of Loops: Exercise (1.3)ssono:

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

{ (Vj|alower <j<i e Result>alj]) n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1

{ a.upper-i+1>0 }

5. Loop Variant Keeps Decrementing before Exit:

{ (Vj|alower<j<ie Result>a[j])n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i :=1i+1

{ a.upper-i+1< (a.upper—i+1)y }

where (a.upper — i+ 1)o = a.uppery — ip + 1

e

S
Proof Tips (1) o

{Q}s{R}={QAP}s{R}

In order to prove {Q A P} s {R}, it is sufficient to prove a version
with a weaker precondition: {Q} s {R}.

Proof:
o Assume: {Q} s {R}

It's equivalent to assuming: @ = wp(s, R) (A1)
o To prove: {QA P} s {R}

o It's equivalent to proving: Q A P = wp(s, R)

e Assume: Q A P, which implies
o According to (A1), we have wp(s, R). =

41afds

S
Proof Tips (2) o

When calculating wp(s, R), if either program s or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(s, a[i] > 0), augment it as

wp(s, a.lower < i < a.upper A ali] >0)

e.g., Before calculating wp(x := aflil, R), augmentit as

wp(x := alil, a.lower <i< a.uppernR)

420145

Index (1) ;ASSONDE

Weak vs. Strong Assertions
Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness
Proof of Hoare Triple using wp

Hoare Logic: A Simple Example
Denoting New and Old Values

wp Rule: Assignments (1)
wp Rule: Assignments (2)
wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise

Wg Rule: Alternations (1)

Index (2) _;HASSONDE
wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise
Loops

Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)
Contracts for Loops: Runtime Checks (2)
Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Index (3) ;ASSONDE

Contracts for Loops: Example 1.2
Contracts for Loops: Example 2.1

Contracts for Loops: Example 2.2
Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)
Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)
Proof Tips (1)
Proof Tips (2)

e

	Weak vs. Strong Assertions
	Motivating Examples (1)
	Motivating Examples (2)
	Software Correctness
	Hoare Logic
	Hoare Logic and Software Correctness
	Proof of Hoare Triple using wp
	Hoare Logic: A Simple Example
	Denoting New and Old Values
	wp Rule: Assignments (1)
	wp Rule: Assignments (2)
	wp Rule: Assignments (3) Exercise
	wp Rule: Assignments (4) Exercise
	wp Rule: Alternations (1)
	wp Rule: Alternations (2)
	wp Rule: Alternations (3) Exercise
	wp Rule: Sequential Composition (1)
	wp Rule: Sequential Composition (2)
	wp Rule: Sequential Composition (3) Exercise
	Loops
	Loops: Binary Search
	Correctness of Loops
	Contracts for Loops: Syntax
	Contracts for Loops
	Contracts for Loops: Runtime Checks (1)
	Contracts for Loops: Runtime Checks (2)
	Contracts for Loops: Visualization
	Contracts for Loops: Example 1.1
	Contracts for Loops: Example 1.2
	Contracts for Loops: Example 2.1
	Contracts for Loops: Example 2.2
	Contracts for Loops: Example 3.1
	Contracts for Loops: Example 3.2
	Contracts for Loops: Exercise
	Proving Correctness of Loops (1)
	Proving Correctness of Loops (2)
	Proving Correctness of Loops: Exercise (1.1)
	Proving Correctness of Loops: Exercise (1.2)
	Proving Correctness of Loops: Exercise (1.3)
	Proof Tips (1)
	Proof Tips (2)

