
Program Correctness
OOSC2 Chapter 11

EECS3311 M: Software Design
Winter 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Weak vs. Strong Assertions
● Describe each assertion as a set of satisfying value.

x > 3 has satisfying values { x ∣ x > 3 } = { 4,5,6,7, . . . }
x > 4 has satisfying values { x ∣ x > 4 } = { 5,6,7, . . . }

● An assertion p is stronger than an assertion q if p’s set of
satisfying values is a subset of q’s set of satisfying values.
○ Logically speaking, p being stronger than q (or, q being weaker

than p) means p⇒ q.
○ e.g., x > 4⇒ x > 3

● What’s the weakest assertion? [TRUE]
● What’s the strongest assertion? [FALSE]
● In Design by Contract :

○ A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

○ A weaker precondition has more acceptable input values

○ A weaker postcondition has more acceptable output values
2 of 45

Motivating Examples (1)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require

i > 3
do
i := i + 9

ensure
i > 13

end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
∵ assertion i > 3 allows value 4 which would fail postcondition.

3 of 45

Motivating Examples (2)
Is this feature correct?
class FOO
i: INTEGER
increment_by_9
require

i > 5
do
i := i + 9

ensure
i > 13

end
end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong
∵ assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
4 of 45

Software Correctness

● Correctness is a relative notion:

consistency of implementation with respect to specification.
⇒ This assumes there is a specification!

● We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : {Q} S {R}

○ e.g., {i > 3} i := i + 9 {i > 13}
○ e.g., {i > 5} i := i + 9 {i > 13}
○ If {Q} S {R} can be proved TRUE, then the S is correct.

e.g., {i > 5} i := i + 9 {i > 13} can be proved TRUE.
○ If {Q} S {R} cannot be proved TRUE, then the S is incorrect.

e.g., {i > 3} i := i + 9 {i > 13} cannot be proved TRUE.

5 of 45

Hoare Logic

● Consider a program S with precondition Q and postcondition R.
○ {Q} S {R} is a correctness predicate for program S
○ {Q} S {R} is TRUE if program S starts executing in a state

satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

● Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

6 of 45

Hoare Logic and Software Correctness
Consider the contract view of a feature f (whose body of
implementation is S) as a Hoare Triple :

{Q} S {R}

Q is the precondition of f .
S is the implementation of f .
R is the postcondition of f .
○ {true} S {R}

All input values are valid [Most-user friendly]
○ {false} S {R}

All input values are invalid [Most useless for clients]
○ {Q} S {true}

All output values are valid [Most risky for clients; Easiest for suppliers]
○ {Q} S {false}

All output values are invalid [Most challenging coding task]
○ {true} S {true}

All inputs/outputs are valid (No contracts) [Least informative]
7 of 45

Proof of Hoare Triple using wp

{Q} S {R} ≡ Q⇒ wp(S,R)

● wp(S,R) is the weakest precondition for S to establish R .
● S can be:

○ Assignments (x := y)
○ Alternations (if . . . then . . . else . . . end)
○ Sequential compositions (S1 ; S2)
○ Loops (from . . . until . . . loop . . . end)

● We will learn how to calculate the wp for the above
programming constructs.

8 of 45

Hoare Logic A Simple Example

Given {??}n ∶= n + 9{n > 13}:

● n > 4 is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

● Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.
e.g., {n > 5}n ∶= n + 9{n > 13} can be proved TRUE.

● Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n > 3}n ∶= n + 9{n > 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n > 13.

9 of 45

Denoting New and Old Values

In the postcondition , for a program variable x :
○ We write x0 to denote its pre-state (old) value.
○ We write x to denote its post-state (new) value.

Implicitly, in the precondition , all program variables have their
pre-state values.

e.g., {b0 > a} b := b - a {b = b0 − a}
● Notice that:

○ We may choose to write “b” rather than “b0” in preconditions
∵ All variables are pre-state values in preconditions

○ We don’t write “b0” in program
∵ there might be multiple intermediate values of a variable due to
sequential composition

10 of 45

wp Rule: Assignments (1)

wp(x := e, R) = R[x ∶= e]

R[x ∶= e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

11 of 45

wp Rule: Assignments (2)

Recall:
{Q} S {R} ≡ Q⇒ wp(S,R)

How do we prove {Q} x := e {R}?

{Q} x := e {R} ⇐⇒ Q⇒ R[x ∶= e]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wp(x := e,R)

12 of 45

wp Rule: Assignments (3) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x > x0}

For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x > x0).

wp(x := x + 1, x > x0)

= {Rule of wp: Assignments}
x > x0[x ∶= x0 + 1]

= {Replacing x by x0 + 1}
x0 + 1 > x0

= {1 > 0 always true}
True

Any precondition is OK. False is valid but not useful.
13 of 45

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x = 23}

For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x = 23).

wp(x := x + 1, x = 23)
= {Rule of wp: Assignments}

x = 23[x ∶= x0 + 1]
= {Replacing x by x0 + 1}

x0 + 1 = 23
= {arithmetic}

x0 = 22

Any precondition weaker than x = 22 is not OK.
14 of 45

wp Rule: Alternations (1)

wp(if B then S1 else S2 end, R) =

⎛
⎜
⎜
⎝

B ⇒ wp(S1, R)

∧

¬ B ⇒ wp(S2, R)

⎞
⎟
⎟
⎠

The wp of an alternation is such that all branches are able to
establish the postcondition R.

15 of 45

wp Rule: Alternations (2)
Recall: {Q} S {R} ≡ Q⇒ wp(S,R)

How do we prove that {Q} if B then S1 else S2 end {R}?
{Q}
if B then
{Q ∧ B } S1 {R}

else
{Q ∧ ¬ B } S2 {R}

end
{R}

{Q} if B then S1 else S2 end {R}

⇐⇒

⎛
⎜
⎜
⎝

{ Q ∧ B } S1 { R }

∧

{ Q ∧ ¬ B } S2 { R }

⎞
⎟
⎟
⎠

⇐⇒

⎛
⎜
⎜
⎝

(Q ∧ B)⇒ wp(S1, R)

∧

(Q ∧ ¬ B)⇒ wp(S2, R)

⎞
⎟
⎟
⎠

16 of 45

wp Rule: Alternations (3) Exercise
Is this program correct?

{x > 0 ∧ y > 0}
if x > y then
bigger := x ; smaller := y

else
bigger := y ; smaller := x

end
{bigger ≥ smaller}

⎛
⎜
⎝

{(x > 0 ∧ y > 0) ∧ (x > y)}
bigger := x ; smaller := y

{bigger ≥ smaller}

⎞
⎟
⎠

∧

⎛
⎜
⎝

{(x > 0 ∧ y > 0) ∧ ¬(x > y)}
bigger := y ; smaller := x

{bigger ≥ smaller}

⎞
⎟
⎠

17 of 45

wp Rule: Sequential Composition (1)

wp(S1 ; S2, R) = wp(S1, wp(S2, R))

The wp of a sequential composition is such that the first phase

establishes the wp for the second phase to establish the
postcondition R.

18 of 45

wp Rule: Sequential Composition (2)

Recall:
{Q} S {R} ≡ Q⇒ wp(S,R)

How do we prove {Q} S1 ; S2 {R}?

{Q} S1 ; S2 {R} ⇐⇒ Q⇒ wp(S1, wp(S2, R))

´¹¹¹¸¹¹¹¶
wp(S1 ; S2,R)

19 of 45

wp Rule: Sequential Composition (3) Exercise
Is { True } tmp := x; x := y; y := tmp { x > y } correct?
If and only if True⇒ wp(tmp := x ; x := y ; y := tmp, x > y)

wp(tmp := x ; x := y ; y := tmp , x > y)
= {wp rule for seq. comp.}

wp(tmp := x, wp(x := y ; y := tmp , x > y))
= {wp rule for seq. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp, x > y)))

= {wp rule for assignment}
wp(tmp := x, wp(x := y, x > tmp))

= {wp rule for assignment}
wp(tmp := x, y > tmp)

= {wp rule for assignment}
y > x

∵ True⇒ y > x does not hold in general.
∴ The above program is not correct.

20 of 45

Loops

● A loop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers

● Loops are needed and powerful
● But loops very hard to get right:

○ Infinite loops [termination]
○ “off-by-one” error [partial correctness]
○ Improper handling of borderline cases [partial correctness]
○ Not establishing the desired condition [partial correctness]

21 of 45

Loops: Binary Search

4 implementations for
binary search: published,
but wrong!

See page 381 in Object Oriented
Software Construction

22 of 45

Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from

Sinit
until

B
loop

Sbody
end
{R}

{Q}
Sinit
while(¬ B) {

Sbody
}
{R}

● In case of C/Java, ¬B denotes the stay condition.

● In case of Eiffel, B denotes the exit condition.
There is native, syntactic support for checking/proving the
total correctness of loops.

23 of 45

Contracts for Loops: Syntax

from
Sinit

invariant
invariant_tag: I -- Boolean expression for partial correctness

until
B

loop
Sbody

variant
variant_tag: V -- Integer expression for termination

end

24 of 45

Contracts for Loops
● Use of loop invariants (LI) and loop variants (LV).

○ Invariants: Boolean expressions for partial correctness.
● Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
● Established before the very first iteration.
● Maintained TRUE after each iteration.

○ Variants: Integer expressions for termination

● Denotes the number of iterations remaining
● Decreased at the end of each subsequent iteration
● Maintained non-negative at the end of each iteration.
● As soon as value of LV reaches zero, meaning that no more iterations

remaining, the loop must exit.
● Remember:

total correctness = partial correctness + termination
25 of 45

Contracts for Loops: Runtime Checks (1)

Loop
Invariant
Violation

Sinit
not I

I
B

not B

Sbody

V � 0� 0

Loop
Variant

Violation

V < 0< 0

26 of 45

Contracts for Loops: Runtime Checks (2)
1 test
2 local
3 i: INTEGER
4 do
5 from
6 i := 1
7 invariant
8 1 <= i and i <= 6
9 until

10 i > 5
11 loop
12 io.put_string ("iteration " + i.out + "%N")
13 i := i + 1
14 variant
15 6 - i
16 end
17 end

L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation.
L10: Change to i > 0 to bypass the body of loop.
L15: Change to 5 - i for a Loop Variant Violation.

27 of 45

Contracts for Loops: Visualization

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
28 of 45

Contracts for Loops: Example 1.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j ≤ i ● Result ≥ a[j]
across a.lower |..| i as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

29 of 45

Contracts for Loops: Example 1.2
Consider the feature call find max(⟨⟨20, 10, 40, 30⟩⟩) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j ≤ i ● Result ≥ a[j]
● Loop Variant : a.upper − i + 1

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 × – –

Loop invariant violation at the end of the 2nd iteration:

∀j ∣ a.lower ≤ j ≤ 3 ● 20 ≥ a[j]

evaluates to false ∵ 20 /≥ a[3] = 40
30 of 45

Contracts for Loops: Example 2.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

31 of 45

Contracts for Loops: Example 2.2
Consider the feature call find max(⟨⟨20, 10, 40, 30⟩⟩) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
● Loop Variant : a.upper − i

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 2

2nd 3 20 ✓ × 1

3rd 4 40 ✓ × 0

4th 5 40 ✓ ✓ -1

Loop variant violation at the end of the 2nd iteration
∵ a.upper − i = 4 − 5 evaluates to non-zero.

32 of 45

Contracts for Loops: Example 3.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

33 of 45

Contracts for Loops: Example 3.2
Consider the feature call find max(⟨⟨20, 10, 40, 30⟩⟩) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
● Loop Variant : a.upper − i + 1
● Postcondition : ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 ✓ × 2

3rd 4 40 ✓ × 1

4th 5 40 ✓ ✓ 0

34 of 45

Contracts for Loops: Exercise
class DICTIONARY[V, K]
feature {NONE} -- Implementations
values: ARRAY[K]
keys: ARRAY[K]

feature -- Abstraction Function
model: FUN[K, V]

feature -- Queries
get_keys(v: V): ITERABLE[K]
local i: INTEGER; ks: LINKED_LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant ??

until i > keys.upper
do if values[i] ∼ v then ks.extend(keys[i]) end
end
Result := ks.new_cursor

ensure
result valid: ∀k ∣ k ∈ Result ● model.item(k) ∼ v
no missing keys: ∀k ∣ k ∈ model.domain ● model.item(k) ∼ v ⇒ k ∈ Result

end

35 of 45

Proving Correctness of Loops (1)
{Q} from

Sinit
invariant

I
until

B
loop

Sbody
variant

V
end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.
● At the end of Sbody , if not yet to exit, LI I is maintained.
● If ready to exit and LI I maintained, postcondition R is established.

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.
● Given LI I, and not yet to exit, Sbody decrements LV V .

36 of 45

Proving Correctness of Loops (2)

{Q} from Sinit invariant I until B loop Sbody variant V end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.

{Q} Sinit {I}
● At the end of Sbody , if not yet to exit, LI I is maintained.

{I ∧ ¬B} Sbody {I}
● If ready to exit and LI I maintained, postcondition R is established.

I ∧ B ⇒ R

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.

{I ∧ ¬B} Sbody {V ≥ 0}
● Given LI I, and not yet to exit, Sbody decrements LV V .

{I ∧ ¬B} Sbody {V < V0}

37 of 45

Proving Correctness of Loops: Exercise (1.1)
Prove that the following program is correct:
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

end
end

38 of 45

Proving Correctness of Loops: Exercise (1.2)
Prove that each of the following Hoare Triples is TRUE.

1. Establishment of Loop Invariant:
{ True }

i := a.lower
Result := a[i]

{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] }

2. Maintenance of Loop Invariant:
{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) }

3. Establishment of Postcondition upon Termination:

(∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ i > a.upper
⇒ ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

39 of 45

Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ a.upper − i + 1 ≥ 0 }

5. Loop Variant Keeps Decrementing before Exit:

{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ a.upper − i + 1 < (a.upper − i + 1)0 }

where (a.upper − i + 1)0 ≡ a.upper0 − i0 + 1

40 of 45

Proof Tips (1)

{Q} S {R}⇒ {Q ∧P} S {R}

In order to prove {Q ∧P} S {R}, it is sufficient to prove a version
with a weaker precondition: {Q} S {R}.

Proof:
○ Assume: {Q} S {R}

It’s equivalent to assuming: Q ⇒ wp(S, R) (A1)
○ To prove: {Q ∧P} S {R}

● It’s equivalent to proving: Q ∧ P ⇒ wp(S, R)
● Assume: Q ∧ P, which implies Q
● According to (A1), we have wp(S, R). ∎

41 of 45

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

wp(S, a.lower ≤ i ≤ a.upper ∧ a[i] > 0)

e.g., Before calculating wp(x := a[i], R), augment it as

wp(x := a[i], a.lower ≤ i ≤ a.upper ∧R)

42 of 45

Index (1)
Weak vs. Strong Assertions
Motivating Examples (1)
Motivating Examples (2)
Software Correctness
Hoare Logic
Hoare Logic and Software Correctness
Proof of Hoare Triple using wp
Hoare Logic: A Simple Example
Denoting New and Old Values
wp Rule: Assignments (1)
wp Rule: Assignments (2)
wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise
wp Rule: Alternations (1)

43 of 45

Index (2)
wp Rule: Alternations (2)
wp Rule: Alternations (3) Exercise
wp Rule: Sequential Composition (1)
wp Rule: Sequential Composition (2)
wp Rule: Sequential Composition (3) Exercise
Loops
Loops: Binary Search
Correctness of Loops
Contracts for Loops: Syntax
Contracts for Loops
Contracts for Loops: Runtime Checks (1)
Contracts for Loops: Runtime Checks (2)
Contracts for Loops: Visualization
Contracts for Loops: Example 1.1

44 of 45

Index (3)
Contracts for Loops: Example 1.2
Contracts for Loops: Example 2.1
Contracts for Loops: Example 2.2
Contracts for Loops: Example 3.1
Contracts for Loops: Example 3.2
Contracts for Loops: Exercise
Proving Correctness of Loops (1)
Proving Correctness of Loops (2)
Proving Correctness of Loops: Exercise (1.1)
Proving Correctness of Loops: Exercise (1.2)
Proving Correctness of Loops: Exercise (1.3)
Proof Tips (1)
Proof Tips (2)

45 of 45

	Weak vs. Strong Assertions
	Motivating Examples (1)
	Motivating Examples (2)
	Software Correctness
	Hoare Logic
	Hoare Logic and Software Correctness
	Proof of Hoare Triple using wp
	Hoare Logic: A Simple Example
	Denoting New and Old Values
	wp Rule: Assignments (1)
	wp Rule: Assignments (2)
	wp Rule: Assignments (3) Exercise
	wp Rule: Assignments (4) Exercise
	wp Rule: Alternations (1)
	wp Rule: Alternations (2)
	wp Rule: Alternations (3) Exercise
	wp Rule: Sequential Composition (1)
	wp Rule: Sequential Composition (2)
	wp Rule: Sequential Composition (3) Exercise
	Loops
	Loops: Binary Search
	Correctness of Loops
	Contracts for Loops: Syntax
	Contracts for Loops
	Contracts for Loops: Runtime Checks (1)
	Contracts for Loops: Runtime Checks (2)
	Contracts for Loops: Visualization
	Contracts for Loops: Example 1.1
	Contracts for Loops: Example 1.2
	Contracts for Loops: Example 2.1
	Contracts for Loops: Example 2.2
	Contracts for Loops: Example 3.1
	Contracts for Loops: Example 3.2
	Contracts for Loops: Exercise
	Proving Correctness of Loops (1)
	Proving Correctness of Loops (2)
	Proving Correctness of Loops: Exercise (1.1)
	Proving Correctness of Loops: Exercise (1.2)
	Proving Correctness of Loops: Exercise (1.3)
	Proof Tips (1)
	Proof Tips (2)

