

Weak vs. Strong Assertions

[TRUE]

- Describe each assertion as *a set of satisfying value*.
 - x > 3 has satisfying values $\{x \mid x > 3\} = \{4, 5, 6, 7, \dots\}$
 - x > 4 has satisfying values $\{x \mid x > 4\} = \{5, 6, 7, ...\}$
- An assertion p is stronger than an assertion q if p's set of satisfying values is a subset of q's set of satisfying values.
 - Logically speaking, *p* being stronger than *q* (or, *q* being weaker than *p*) means $p \Rightarrow q$.
 - e.g., $x > 4 \Rightarrow x > 3$
- What's the weakest assertion?
- What's the strongest assertion?
- In Design by Contract :
 - A <u>weaker</u> invariant has more acceptable object states
 e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT
 - e.g., valance > 0 vs. valance > 100 as an invaliant for ACCOUN
 - A <u>weaker</u> precondition has more acceptable input values
 - A <u>weaker</u> *postcondition* has more acceptable output values

Motivating Examples (2)

Is this feature correct?

class FOO	
i: INTEGER	
increment_by_9	
require	
i > 5	İ
do	
i := i + 9	
ensure	
<i>i</i> > 13	
end	
end	

- **Q**: Is i > 5 too weak or too strong?
- A: Maybe too strong
- : assertion i > 5 disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.
- 4 of 45

Software Correctness

• Correctness is a *relative* notion:

consistency of *implementation* with respect to *specification*.

- \Rightarrow This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program **S** and its *specification* (pre-condition *Q* and

post-condition \mathbf{R}) as a *Boolean predicate* : $\{\mathbf{Q}\} \in \{\mathbf{R}\}$

- e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$
- e.g., $\{i > 5\}$ i := i + 9 $\{i > 13\}$
- If $\{Q\} \in \{R\}$ <u>can</u> be proved **TRUE**, then the **S** is <u>correct</u>.
- e. \underline{g} , $\{i > 5\}$ i := i + 9 $\{i > 13\}$ can be proved TRUE.
- If $\{Q\} \in \{R\}$ cannot be proved **TRUE**, then the **S** is incorrect. e.g., $\{i > 3\}$ i := i + 9 $\{i > 13\}$ cannot be proved TRUE.
 - e.g., $\{l > 3\}$ i := i + 9 $\{l > 13\}$ <u>cannot</u> be proved IRUE

5 of 45

Hoare Logic and Software Correctness

Consider the <u>contract view</u> of a feature f (whose body of implementation is **S**) as a Hoare Triple :

{ Q } S { R }	
Q is the precondition of f.	
s is the implementation of f.	
R is the <i>postcondition</i> of <i>f</i> .	
 {true} s {R} 	
All input values are valid	[Most-user friendly]
• { <i>false</i> } S { <i>R</i> }	
All input values are invalid	[Most useless for clients]
◦ { Q } S { true }	
All output values are valid [Most risky f	or clients; Easiest for suppliers]
 {Q} S {false} 	
All output values are invalid	[Most challenging coding task]
 {true} S {true} 	
All inputs/outputs are valid (No contract	ts) [Least informative]
/ 01 45	

Hoare Logic

- Consider a program S with precondition Q and postcondition R.
 - {**Q**} s {**R**} is a *correctness predicate* for program **S**
 - {**Q**} S {**R**} is TRUE if program **S** starts executing in a state satisfying the precondition **Q**, and then:

(a) The program S terminates.

(b) Given that program S terminates, then it terminates in a state satisfying the postcondition *R*.

- Separation of concerns
 - (a) requires a proof of *termination*.
 - (b) requires a proof of *partial correctness*.

Proofs of (a) + (b) imply *total correctness*.

Proof of Hoare Triple using wp

$\{\mathbf{Q}\} \le \{\mathbf{R}\} \equiv \mathbf{Q} \Rightarrow wp(\mathbf{S}, \mathbf{R})$

- wp(S, R) is the weakest precondition for S to establish R
- S can be:
 - Assignments (x := y)
 - Alternations (if ... then ... else ... end)
 - Sequential compositions (S_1 ; S_2)
 - \circ Loops (from \dots until \dots loop \dots end)
- We will learn how to calculate the *wp* for the above programming constructs.

Hoare Logic A Simple Example

Given $\{??\}n := n + 9\{n > 13\}$:

- n > 4 is the *weakest precondition (wp)* for the given implementation (n := n + 9) to start and establish the postcondition (n > 13).
- Any precondition that is *equal to or stronger than* the *wp* (*n* > 4) will result in a correct program.

e.g., $\{n > 5\}n := n + 9\{n > 13\}$ can be proved **TRUE**.

 Any precondition that is *weaker than* the *wp* (*n* > 4) will result in an incorrect program.

e.g., $\{n > 3\}n := n + 9\{n > 13\}$ <u>cannot</u> be proved **TRUE**.

Counterexample: n = 4 satisfies precondition n > 3 but the output n = 13 fails postcondition n > 13.

9 of 45

Denoting New and Old Values

In the *postcondition*, for a program variable *x*:

- We write x_0 to denote its *pre-state (old)* value.
- We write x to denote its *post-state (new)* value.
 Implicitly, in the *precondition*, all program variables have their *pre-state* values.

e.g., $\{b_0 > a\}$ b := b - a $\{b = b_0 - a\}$

- Notice that:
 - We may choose to write "b" rather than " b_0 " in preconditions \therefore All variables are pre-state values in preconditions
 - We don't write "*b*₀" in program
 - : there might be *multiple intermediate values* of a variable due to sequential composition

LASSONDE

 $wp(x := e, \mathbf{R}) = \mathbf{R}[x := e]$

R[x := e] means to substitute all *free occurrences* of variable x in postcondition *R* by expression *e*.

wp Rule: Assignments (2)

11 of 45

$$\{\mathbf{Q}\} \le \{\mathbf{R}\} \equiv \mathbf{Q} \Rightarrow wp(\mathbf{S}, \mathbf{R})$$

How do we prove $\{Q\} \times := e \{R\}$?

$$\{\mathbf{Q}\} \times := e \{\mathbf{R}\} \iff \mathbf{Q} \Rightarrow \underbrace{\mathbf{R}[x := e]}_{wp(x := e, \mathbf{R})}$$

wp Rule: Assignments (3) Exercise

LASSONDE

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

 $\{??\} \times := \times + 1 \{x > x_0\}$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x > x_0).$

 $wp(x := x + 1, x > x_0)$

- = {Rule of wp: Assignments}
 x > x_0[x := x_0 + 1]
- $= \{ Replacing \ x \ by \ x_0 + 1 \} \\ x_0 + 1 > x_0$
- = {1 > 0 always true} *True*

Any precondition is OK.

False is valid but not useful.

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to establish the postcondition $x > x_0$?

 $\{??\} \times := \times + 1 \{x = 23\}$

For the above Hoare triple to be **TRUE**, it must be that $?? \Rightarrow wp(x := x + 1, x = 23)$.

$$wp(x := x + 1, x = 23)$$

$$= \{Rule of Wp: Assignments\}$$

$$x = 23[x := x_0 + 1]$$

$$= \{Replacing x by x_0 + 1\}$$

$$x_0 + 1 = 23$$

$$= \{arithmetic\}$$

$$x_0 = 22$$

Any precondition weaker than x = 22 is not OK.

wp Rule: Alternations (2) Recall: $\{Q\} \le \{R\} \equiv Q \Rightarrow wp(S, R)$ How do we prove that $\{Q\}$ if B then S_1 else S_2 end $\{R\}$? $\{Q\}$ if B then $\{Q\land B\} \ S_1 \ \{R\}$ else $\{Q\land -B\} \ S_2 \ \{R\}$ end $\{R\}$

$$\{Q\} \text{ if } B \text{ then } S_1 \text{ else } S_2 \text{ end } \{R\}$$

$$\iff \begin{pmatrix} \{Q \land B\} \} S_1 \{R\} \\ \land \\ \{Q \land \neg B\} \} S_2 \{R\} \end{pmatrix} \iff \begin{pmatrix} (Q \land B) \Rightarrow wp(S_1, R) \\ \land \\ (Q \land \neg B) \Rightarrow wp(S_2, R) \end{pmatrix}$$

16 of 45

15 of 45

$$wp(if \ B \ then \ S_1 \ else \ S_2 \ end, \ R) = \begin{pmatrix} B \Rightarrow wp(S_1, \ R) \\ \land \\ \neg B \Rightarrow wp(S_2, \ R) \end{pmatrix}$$

wp Rule: Alternations (1)

The *wp* of an alternation is such that *all branches* are able to establish the postcondition R.

wp Rule: Alternations (3) Exercise

Is this program correct?

wp Rule: Sequential Composition (2)

Recall:

19 of 45

$$\{Q\} \in \{R\} \equiv Q \Rightarrow wp(S, R)$$

How do we prove $\{Q\} S_1$; $S_2 \{R\}$?

$$\{\mathbf{Q}\} S_1 ; S_2 \{\mathbf{R}\} \iff \mathbf{Q} \Rightarrow \underbrace{wp(S_1, wp(S_2, \mathbf{R}))}_{wp(S_1; S_2, \mathbf{R})}$$

wp Rule: Sequential Composition (1)

 $wp(S_1 ; S_2, \mathbf{R}) = wp(S_1, wp(S_2, \mathbf{R}))$

The *wp* of a sequential composition is such that the first phase establishes the *wp* for the second phase to establish the postcondition R.

- = {wp rule for assignment}
 y > x
- \therefore *True* \Rightarrow *y* > *x* does not hold in general.
- \therefore The above program is not correct.

18 of 45

- A loop is a way to compute a certain result by successive approximations.
 - e.g. computing the maximum value of an array of integers
- Loops are needed and powerful
- But loops very hard to get right:
 - Infinite loops
 - "off-by-one" error
 - Improper handling of borderline cases
 - Not establishing the desired condition
- [termination] partial correctness

LASSONDE

- [partial correctness]
- [partial correctness]

Correctness of Loops

How do we prove that the following loops are correct?

- In case of C/Java, $|\neg B|$ denotes the *stay condition*.
- In case of Eiffel, *B* denotes the *exit condition*. There is native, syntactic support for checking/proving the total correctness of loops.

Contracts for Loops

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Runtime Checks (1) LASSONDE S_{init} not / Invariant Violation В $V \ge 0$ not **B** S_{body}

V < 0

Variant Violation

Contracts for Loops: Example 1.1

Contracts for Loops: Example 2.1

<pre>find_max (a: ARRAY [INTEGER]): INTEGER local i: INTEGER</pre>
do
from
<pre>i := a.lower ; Result := a[i]</pre>
invariant
$loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]$
across a.lower (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i := i + 1
variant
loop_variant: a.upper - i
end
ensure
correct_result: ∀j a.lower≤j≤a.upper • Result≥a [j]
across a.lower a.upper as j all Result >= a [j.item]
end
end
31 of 45

Contracts for Loops: Example 1.2

LASSONDE

Consider the feature call find_max($\langle (20, 10, 40, 30) \rangle$), given:

- Loop Invariant: $\forall j \mid a.lower \leq j \leq i$ Result $\geq a[j]$
- Loop Variant: a.upper i + 1

AFTER ITERATION	i	Result	LI	EXIT (<i>i</i> > <i>a.upper</i>)?	LV
Initialization	1	20	\checkmark	×	_
1st	2	20	\checkmark	×	3
2nd	3	20	×	_	_

Loop invariant violation at the end of the 2nd iteration:

$$\forall j \mid a.lower \leq j \leq 3 \bullet 20 \geq a[j]$$

evaluates to *false* \therefore 20 $\nleq a[3] = 40$

Contracts for Loops: Example 2.2

Consider the feature call find_max($\langle \langle 20, 10, 40, 30 \rangle \rangle$), given:

- Loop Invariant: $\forall j \mid a$.lower $\leq j < i$ Result $\geq a[j]$
- Loop Variant: a.upper i

AFTER ITERATION	i	Result	LI	EXIT (<i>i</i> > <i>a.upper</i>)?	LV
Initialization	1	20	\checkmark	×	_
1st	2	20	\checkmark	×	2
2nd	3	20	\checkmark	×	1
3rd	4	40	\checkmark	×	0
4th	5	40	\checkmark	\checkmark	-1

Loop variant violation at the end of the 2nd iteration \therefore *a.upper* – *i* = 4 – 5 evaluates to *non-zero*.

Contracts for Loops: Example 3.1

<pre>find_max (a: ARRAY [INTEGER]): INTEGER</pre>
local <i>i</i> : INTEGER
do
from
i := a.lower; Result $:= a[i]$
invariant
$loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]$
across a.lower (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
<pre>if a [i] > Result then Result := a [i] end</pre>
i := i + 1
variant
loop_variant: a.upper - i + 1
end
ensure
correct_result: ∀j a.lower≤j≤a.upper • Result≥a[j]
across a.lower a.upper as j all Result >= a [j.item]
end
end
33 of 45

Contracts for Loops: Exercise

LASSONDE

LASSONDE

Contracts for Loops: Example 3.2

LASSONDE

Consider the feature call find_max($\langle (20, 10, 40, 30) \rangle$), given:

- Loop Invariant: $\forall j \mid a$. lower $\leq j < i$ Result $\geq a[j]$
- Loop Variant: a.upper i + 1
- **Postcondition**: $\forall j \mid a.lower \leq j \leq a.upper Result \geq a[j]$

AFTER ITERATION	i	Result	LI	EXIT (<i>i</i> > <i>a.upper</i>)?	LV
Initialization	1	20	\checkmark	×	_
1st	2	20	\checkmark	×	3
2nd	3	20	\checkmark	×	2
3rd	4	40	\checkmark	×	1
4th	5	40	\checkmark	\checkmark	0

Proving Correctness of Loops (1)

- A loop is *partially correct* if:
 - Given precondition **Q**, the initialization step S_{init} establishes **LI** I.
 - At the end of S_{body}, if not yet to exit, LI I is maintained.
 - If ready to exit and *LI I* maintained, postcondition *R* is established.
- A loop *terminates* if:
 - Given *LI I*, and not yet to exit, *S*_{body} maintains *LV V* as non-negative.
- Given *LI I*, and not yet to exit, *S*_{body} decrements *LV V*.

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.2)

Prove that each of the following *Hoare Triples* is TRUE.

1. Establishment of Loop Invariant:

```
{ True }

i := a.lower

Result := a[i]

{ \forall j \mid a.lower \leq j < i \bullet Result \geq a[j] }
```

2. Maintenance of Loop Invariant:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \land \neg(i > a.upper) \end{array} \right\}  if a [i] > Result then Result := a [i] end i := i + 1  \left\{ \begin{array}{l} (\forall j \mid a.lower \leq j < i \bullet Result \geq a[j]) \end{array} \right\}
```

3. Establishment of Postcondition upon Termination:

```
(\forall j \mid a.lower \le j < i \bullet Result \ge a[j]) \land i > a.upper \\ \Rightarrow \forall j \mid a.lower \le j \le a.upper \bullet Result \ge a[j]
```

39 of 45

Proving Correctness of Loops: Exercise (1.1)

Prove that the following program is correct:

38 of 45

```
find_max (a: ARRAY [INTEGER]): INTEGER
 local i: INTEGER
 do
   from
     i := a.lower ; Result := a[i]
   invariant
     loop_invariant: \forall j \mid a.lower \leq j < i \bullet Result \geq a[j]
   until
     i > a.upper
   100p
     if a [i] > Result then Result := a [i] end
    i := i + 1
   variant
     loop_variant: a.upper - i + 1
   end
 ensure
   correct_result: \forall j \mid a.lower \leq j \leq a.upper \bullet Result \geq a[j]
 end
end
```

Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following *Hoare Triples* is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

```
 \left\{ \begin{array}{l} (\forall j \mid a.lower \le j < i \bullet Result \ge a[j]) \land \neg(i > a.upper) \end{array} \right\}  if a \ [i] > Result then Result := a \ [i] end i \ := \ i \ + \ 1   \left\{ \begin{array}{l} a.upper - i + 1 \ge 0 \end{array} \right\}
```

5. Loop Variant Keeps Decrementing before Exit:

```
{ (\forall j \mid a.lower \le j < i \bullet Result \ge a[j]) \land \neg(i > a.upper) }
if a [i] > Result then Result := a [i] end
i := i + 1
{ a.upper - i + 1 < (a.upper - i + 1)_0 }
```

where $(a.upper - i + 1)_0 \equiv a.upper_0 - i_0 + 1$

Proof Tips (1)

LASSONDE

$$\{Q\} \mathrel{ imes} \{R\} \Rightarrow \{Q \land P\} \mathrel{ imes} \{R\}$$

In order to prove $\{Q \land P\} \le \{R\}$, it is sufficient to prove a version with a *weaker* precondition: $\{Q\} \le \{R\}$.

Proof:

• Assume:
$$\{Q\} \le \{R\}$$

It's equivalent to assuming: $Q \Rightarrow wp(S, R)$ (A1)
• To prove: $\{Q \land P\} \le \{R\}$
• It's equivalent to proving: $Q \land P \Rightarrow wp(S, R)$

- Assume: $Q \land P$, which implies Q
- According to (A1), we have $wp(\overline{S, R})$.

```
41 of 45
```

Index (1)

Weak vs. Strong Assertions Motivating Examples (1) Motivating Examples (2) Software Correctness Hoare Logic Hoare Logic and Software Correctness Proof of Hoare Triple using *wp* Hoare Logic: A Simple Example Denoting New and Old Values *wp* Rule: Assignments (1) *wp* Rule: Assignments (2) *wp* Rule: Assignments (3) Exercise *wp* Rule: Assignments (4) Exercise *wp* Rule: Alternations (1)

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

 $wp(S, a.lower \le i \le a.upper \land a[i] > 0)$

e.g., Before calculating wp(x := a[i], R), augment it as

 $wp(x := a[i], a.lower \le i \le a.upper \land R)$

Index (2)

wp Rule: Alternations (2)wp Rule: Alternations (3) Exercisewp Rule: Sequential Composition (1)wp Rule: Sequential Composition (2)wp Rule: Sequential Composition (3) ExerciseLoopsLoops: Binary SearchCorrectness of LoopsContracts for Loops: SyntaxContracts for Loops: Runtime Checks (1)Contracts for Loops: Runtime Checks (2)Contracts for Loops: VisualizationContracts for Loops: Example 1.1

LASSONDE

Index (3)

Contracts for Loops: Example 1.2 Contracts for Loops: Example 2.1 Contracts for Loops: Example 2.2 Contracts for Loops: Example 3.1 Contracts for Loops: Example 3.2 Contracts for Loops: Exercise Proving Correctness of Loops (1) Proving Correctness of Loops (2) Proving Correctness of Loops: Exercise (1.1) Proving Correctness of Loops: Exercise (1.2) Proving Correctness of Loops: Exercise (1.2) Proving Correctness of Loops: Exercise (1.3) Proof Tips (1) Proof Tips (2)