
Program Correctness
OOSC2 Chapter 11

EECS3311 M: Software Design
Winter 2019

CHEN-WEI WANG

Weak vs. Strong Assertions
● Describe each assertion as a set of satisfying value.

x > 3 has satisfying values { x � x > 3 } = { 4,5,6,7, . . . }
x > 4 has satisfying values { x � x > 4 } = { 5,6,7, . . . }

● An assertion p is stronger than an assertion q if p’s set of
satisfying values is a subset of q’s set of satisfying values.○ Logically speaking, p being stronger than q (or, q being weaker

than p) means p⇒ q.○ e.g., x > 4⇒ x > 3● What’s the weakest assertion? [TRUE]● What’s the strongest assertion? [FALSE]
● In Design by Contract :
○ A weaker invariant has more acceptable object states

e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT○ A weaker precondition has more acceptable input values
○ A weaker postcondition has more acceptable output values

2 of 45

Motivating Examples (1)

Is this feature correct?
class FOO

i: INTEGER

increment_by_9

require

i > 3

do

i := i + 9

ensure

i > 13

end

end

Q: Is i > 3 is too weak or too strong?
A: Too weak
∵ assertion i > 3 allows value 4 which would fail postcondition.

3 of 45

Motivating Examples (2)
Is this feature correct?
class FOO

i: INTEGER

increment_by_9

require

i > 5

do

i := i + 9

ensure

i > 13

end

end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong∵ assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
4 of 45

Software Correctness

● Correctness is a relative notion:

consistency of implementation with respect to specification.
⇒ This assumes there is a specification!

● We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : {Q} S {R}
○ e.g., {i > 3} i := i + 9 {i > 13}○ e.g., {i > 5} i := i + 9 {i > 13}
○ If {Q} S {R} can be proved TRUE, then the S is correct.

e.g., {i > 5} i := i + 9 {i > 13} can be proved TRUE.
○ If {Q} S {R} cannot be proved TRUE, then the S is incorrect.

e.g., {i > 3} i := i + 9 {i > 13} cannot be proved TRUE.

5 of 45

Hoare Logic

● Consider a program S with precondition Q and postcondition R.
○ {Q} S {R} is a correctness predicate for program S○ {Q} S {R} is TRUE if program S starts executing in a state

satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

● Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

6 of 45

Hoare Logic and Software Correctness
Consider the contract view of a feature f (whose body of
implementation is S) as a Hoare Triple :

{Q} S {R}
Q is the precondition of f .
S is the implementation of f .
R is the postcondition of f .
○ {true} S {R}

All input values are valid [Most-user friendly]○ {false} S {R}
All input values are invalid [Most useless for clients]○ {Q} S {true}
All output values are valid [Most risky for clients; Easiest for suppliers]○ {Q} S {false}
All output values are invalid [Most challenging coding task]○ {true} S {true}
All inputs/outputs are valid (No contracts) [Least informative]

7 of 45

Proof of Hoare Triple using wp

{Q} S {R} ≡ Q⇒ wp(S,R)

● wp(S,R) is the weakest precondition for S to establish R .
● S can be:○ Assignments (x := y)○ Alternations (if . . . then . . . else . . . end)○ Sequential compositions (S1 ; S2)○ Loops (from . . . until . . . loop . . . end)
● We will learn how to calculate the wp for the above

programming constructs.

8 of 45

Hoare Logic A Simple Example

Given {??}n ∶= n + 9{n > 13}:
● n > 4 is the weakest precondition (wp) for the given

implementation (n := n + 9) to start and establish the
postcondition (n > 13).

● Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.
e.g., {n > 5}n ∶= n + 9{n > 13} can be proved TRUE.

● Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n > 3}n ∶= n + 9{n > 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n > 13.

9 of 45

Denoting New and Old Values

In the postcondition , for a program variable x :
○ We write x0 to denote its pre-state (old) value.
○ We write x to denote its post-state (new) value.

Implicitly, in the precondition , all program variables have their
pre-state values.

e.g., {b0 > a} b := b - a {b = b0 − a}
● Notice that:○ We may choose to write “b” rather than “b0” in preconditions∵ All variables are pre-state values in preconditions○ We don’t write “b0” in program∵ there might be multiple intermediate values of a variable due to

sequential composition

10 of 45

wp Rule: Assignments (1)

wp(x := e, R) = R[x ∶= e]
R[x ∶= e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

11 of 45

wp Rule: Assignments (2)

Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove {Q} x := e {R}?

{Q} x := e {R} ⇐⇒ Q⇒ R[x ∶= e]�����������������������������������
wp(x := e,R)

12 of 45

wp Rule: Assignments (3) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x > x0}
For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x > x0).

wp(x := x + 1, x > x0)= {Rule of wp: Assignments}
x > x0[x ∶= x0 + 1]= {Replacing x by x0 + 1}
x0 + 1 > x0= {1 > 0 always true}
True

Any precondition is OK. False is valid but not useful.
13 of 45

wp Rule: Assignments (4) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x = 23}
For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x = 23).

wp(x := x + 1, x = 23)= {Rule of wp: Assignments}
x = 23[x ∶= x0 + 1]= {Replacing x by x0 + 1}
x0 + 1 = 23= {arithmetic}
x0 = 22

Any precondition weaker than x = 22 is not OK.
14 of 45

wp Rule: Alternations (1)

wp(if B then S1 else S2 end, R) = ����
B ⇒ wp(S1, R)∧¬ B ⇒ wp(S2, R)

����
The wp of an alternation is such that all branches are able to
establish the postcondition R.

15 of 45

wp Rule: Alternations (2)
Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove that {Q} if B then S1 else S2 end {R}?
{Q}
if B then{Q ∧ B } S1 {R}
else{Q ∧ ¬ B } S2 {R}
end{R}

{Q} if B then S1 else S2 end {R}
⇐⇒ ����

{ Q ∧ B } S1 { R }∧{ Q ∧ ¬ B } S2 { R }
���� ⇐⇒

����
(Q ∧ B)⇒ wp(S1, R)∧(Q ∧ ¬ B)⇒ wp(S2, R)

����
16 of 45

wp Rule: Alternations (3) Exercise
Is this program correct?
{x > 0 ∧ y > 0}
if x > y then

bigger := x ; smaller := y

else

bigger := y ; smaller := x

end{bigger ≥ smaller}
���
{(x > 0 ∧ y > 0) ∧ (x > y)}

bigger := x ; smaller := y{bigger ≥ smaller}
���

∧
���
{(x > 0 ∧ y > 0) ∧ ¬(x > y)}

bigger := y ; smaller := x{bigger ≥ smaller}
���

17 of 45

wp Rule: Sequential Composition (1)

wp(S1 ; S2, R) = wp(S1, wp(S2, R))
The wp of a sequential composition is such that the first phase

establishes the wp for the second phase to establish the
postcondition R.

18 of 45

wp Rule: Sequential Composition (2)

Recall: {Q} S {R} ≡ Q⇒ wp(S,R)
How do we prove {Q} S1 ; S2 {R}?

{Q} S1 ; S2 {R} ⇐⇒ Q⇒ wp(S1, wp(S2, R))���
wp(S1 ; S2,R)

19 of 45

wp Rule: Sequential Composition (3) Exercise
Is { True } tmp := x; x := y; y := tmp { x > y } correct?
If and only if True⇒ wp(tmp := x ; x := y ; y := tmp, x > y)

wp(tmp := x ; x := y ; y := tmp , x > y)= {wp rule for seq. comp.}
wp(tmp := x, wp(x := y ; y := tmp , x > y))= {wp rule for seq. comp.}
wp(tmp := x, wp(x := y, wp(y := tmp, x > y)))

= {wp rule for assignment}
wp(tmp := x, wp(x := y, x > tmp))= {wp rule for assignment}
wp(tmp := x, y > tmp)

= {wp rule for assignment}
y > x

∵ True⇒ y > x does not hold in general.∴ The above program is not correct.
20 of 45

Loops

● A loop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers

● Loops are needed and powerful
● But loops very hard to get right:
○ Infinite loops [termination]○ “off-by-one” error [partial correctness]○ Improper handling of borderline cases [partial correctness]○ Not establishing the desired condition [partial correctness]

21 of 45

Loops: Binary Search

4 implementations for
binary search: published,
but wrong!

See page 381 in Object Oriented
Software Construction

22 of 45

Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from

Sinit
until

B
loop

Sbody
end

{R}

{Q}
Sinit
while(¬ B) {

Sbody
}

{R}

● In case of C/Java, ¬B denotes the stay condition.
● In case of Eiffel, B denotes the exit condition.

There is native, syntactic support for checking/proving the
total correctness of loops.

23 of 45

Contracts for Loops: Syntax

from

Sinit
invariant

invariant_tag: I -- Boolean expression for partial correctness

until

B
loop

Sbody
variant

variant_tag: V -- Integer expression for termination

end

24 of 45

Contracts for Loops
● Use of loop invariants (LI) and loop variants (LV).
○ Invariants: Boolean expressions for partial correctness.
● Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
● Established before the very first iteration.● Maintained TRUE after each iteration.○ Variants: Integer expressions for termination

● Denotes the number of iterations remaining
● Decreased at the end of each subsequent iteration● Maintained non-negative at the end of each iteration.● As soon as value of LV reaches zero, meaning that no more iterations

remaining, the loop must exit.● Remember:
total correctness = partial correctness + termination

25 of 45

Contracts for Loops: Runtime Checks (1)

Loop
Invariant
Violation

Sinit
not I

I
B

not B

Sbody

V � 0� 0

Loop
Variant

Violation

V < 0< 0

26 of 45

Contracts for Loops: Runtime Checks (2)
1 test

2 local

3 i: INTEGER

4 do

5 from

6 i := 1

7 invariant

8 1 <= i and i <= 6

9 until

10 i > 5

11 loop

12 io.put_string ("iteration " + i.out + "%N")

13 i := i + 1

14 variant

15 6 - i

16 end

17 end

L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation.
L10: Change to i > 0 to bypass the body of loop.
L15: Change to 5 - i for a Loop Variant Violation.

27 of 45

Contracts for Loops: Visualization

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
28 of 45

Contracts for Loops: Example 1.1
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: -- ∀j � a.lower ≤ j ≤ i ● Result ≥ a[j]
across a.lower |..| i as j all Result >= a [j.item] end

until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i + 1

end

ensure

correct_result: -- ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

end

29 of 45

Contracts for Loops: Example 1.2
Consider the feature call find max(��20, 10, 40, 30��) , given:
● Loop Invariant : ∀j � a.lower ≤ j ≤ i ● Result ≥ a[j]● Loop Variant : a.upper − i + 1

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 × – –

Loop invariant violation at the end of the 2nd iteration:

∀j � a.lower ≤ j ≤ 3 ● 20 ≥ a[j]
evaluates to false ∵ 20 �≥ a[3] = 40

30 of 45

Contracts for Loops: Example 2.1
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: -- ∀j � a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i
end

ensure

correct_result: -- ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

end

31 of 45

Contracts for Loops: Example 2.2
Consider the feature call find max(��20, 10, 40, 30��) , given:
● Loop Invariant : ∀j � a.lower ≤ j < i ● Result ≥ a[j]● Loop Variant : a.upper − i

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 2

2nd 3 20 ✓ × 1

3rd 4 40 ✓ × 0

4th 5 40 ✓ ✓ -1

Loop variant violation at the end of the 2nd iteration∵ a.upper − i = 4 − 5 evaluates to non-zero.
32 of 45

Contracts for Loops: Example 3.1
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: -- ∀j � a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i + 1

end

ensure

correct_result: -- ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end

end

33 of 45

Contracts for Loops: Example 3.2
Consider the feature call find max(��20, 10, 40, 30��) , given:
● Loop Invariant : ∀j � a.lower ≤ j < i ● Result ≥ a[j]● Loop Variant : a.upper − i + 1● Postcondition : ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 ✓ × 2

3rd 4 40 ✓ × 1

4th 5 40 ✓ ✓ 0

34 of 45

Contracts for Loops: Exercise
class DICTIONARY[V, K]

feature {NONE} -- Implementations

values: ARRAY[K]

keys: ARRAY[K]

feature -- Abstraction Function

model: FUN[K, V]

feature -- Queries

get_keys(v: V): ITERABLE[K]

local i: INTEGER; ks: LINKED_LIST[K]

do

from i := keys.lower ; create ks.make_empty

invariant ??

until i > keys.upper

do if values[i] ∼ v then ks.extend(keys[i]) end

end

Result := ks.new_cursor

ensure

result valid: ∀k � k ∈ Result ● model.item(k) ∼ v
no missing keys: ∀k � k ∈ model.domain ● model.item(k) ∼ v ⇒ k ∈ Result

end

35 of 45

Proving Correctness of Loops (1)
{Q} from

Sinit
invariant

I
until

B
loop

Sbody
variant

V
end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.● At the end of Sbody , if not yet to exit, LI I is maintained.● If ready to exit and LI I maintained, postcondition R is established.○ A loop terminates if:● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.● Given LI I, and not yet to exit, Sbody decrements LV V .

36 of 45

Proving Correctness of Loops (2)

{Q} from Sinit invariant I until B loop Sbody variant V end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.

{Q} Sinit {I}
● At the end of Sbody , if not yet to exit, LI I is maintained.

{I ∧ ¬B} Sbody {I}
● If ready to exit and LI I maintained, postcondition R is established.

I ∧ B⇒ R

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.

{I ∧ ¬B} Sbody {V ≥ 0}
● Given LI I, and not yet to exit, Sbody decrements LV V .

{I ∧ ¬B} Sbody {V < V0}
37 of 45

Proving Correctness of Loops: Exercise (1.1)
Prove that the following program is correct:
find_max (a: ARRAY [INTEGER]): INTEGER

local i: INTEGER

do

from

i := a.lower ; Result := a[i]

invariant

loop_invariant: ∀j � a.lower ≤ j < i ● Result ≥ a[j]
until

i > a.upper

loop

if a [i] > Result then Result := a [i] end

i := i + 1

variant

loop_variant: a.upper - i + 1

end

ensure

correct_result: ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
end

end

38 of 45

Proving Correctness of Loops: Exercise (1.2)
Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:
{ True }
i := a.lower

Result := a[i]{ ∀j � a.lower ≤ j < i ● Result ≥ a[j] }
2. Maintenance of Loop Invariant:
{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }
if a [i] > Result then Result := a [i] end

i := i + 1{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) }
3. Establishment of Postcondition upon Termination:

(∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ i > a.upper⇒ ∀j � a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
39 of 45

Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:
{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }
if a [i] > Result then Result := a [i] end

i := i + 1{ a.upper − i + 1 ≥ 0 }
5. Loop Variant Keeps Decrementing before Exit:
{ (∀j � a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }
if a [i] > Result then Result := a [i] end

i := i + 1{ a.upper − i + 1 < (a.upper − i + 1)0 }
where (a.upper − i + 1)0 ≡ a.upper0 − i0 + 1

40 of 45

Proof Tips (1)

{Q} S {R}⇒ {Q ∧P} S {R}
In order to prove {Q ∧P} S {R}, it is sufficient to prove a version
with a weaker precondition: {Q} S {R}.

Proof:○ Assume: {Q} S {R}
It’s equivalent to assuming: Q ⇒ wp(S, R) (A1)○ To prove: {Q ∧P} S {R}
● It’s equivalent to proving: Q ∧ P ⇒ wp(S, R)
● Assume: Q ∧ P, which implies Q● According to (A1), we have wp(S, R). �

41 of 45

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

wp(S, a.lower ≤ i ≤ a.upper ∧ a[i] > 0)

e.g., Before calculating wp(x := a[i], R), augment it as

wp(x := a[i], a.lower ≤ i ≤ a.upper ∧R)

42 of 45

Index (1)
Weak vs. Strong Assertions
Motivating Examples (1)
Motivating Examples (2)
Software Correctness
Hoare Logic
Hoare Logic and Software Correctness
Proof of Hoare Triple using wp
Hoare Logic: A Simple Example
Denoting New and Old Values
wp Rule: Assignments (1)
wp Rule: Assignments (2)
wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise
wp Rule: Alternations (1)

43 of 45

Index (2)
wp Rule: Alternations (2)
wp Rule: Alternations (3) Exercise
wp Rule: Sequential Composition (1)
wp Rule: Sequential Composition (2)
wp Rule: Sequential Composition (3) Exercise
Loops
Loops: Binary Search
Correctness of Loops
Contracts for Loops: Syntax
Contracts for Loops
Contracts for Loops: Runtime Checks (1)
Contracts for Loops: Runtime Checks (2)
Contracts for Loops: Visualization
Contracts for Loops: Example 1.1

44 of 45

Index (3)
Contracts for Loops: Example 1.2
Contracts for Loops: Example 2.1
Contracts for Loops: Example 2.2
Contracts for Loops: Example 3.1
Contracts for Loops: Example 3.2
Contracts for Loops: Exercise
Proving Correctness of Loops (1)
Proving Correctness of Loops (2)
Proving Correctness of Loops: Exercise (1.1)
Proving Correctness of Loops: Exercise (1.2)
Proving Correctness of Loops: Exercise (1.3)
Proof Tips (1)
Proof Tips (2)

45 of 45

