## Program Correctness

OOSC2 Chapter 11

EECS3311 M: Software Design

## YORK <br> UN IVERSITE U N I VERS I T Y <br> U

Chen-Wei Wang

## Weak vs. Strong Assertions

- Describe each assertion as a set of satisfying value.
$x>3$ has satisfying values $\{x \mid x>3\}=\{4,5,6,7, \ldots\}$
$x>4$ has satisfying values $\{x \mid x>4\}=\{5,6,7, \ldots\}$
- An assertion $p$ is stronger than an assertion $q$ if $p$ 's set of satisfying values is a subset of $q$ 's set of satisfying values.
- Logically speaking, $p$ being stronger than $q$ (or, $q$ being weaker than $p$ ) means $p \Rightarrow q$.
- e.g., $x>4 \Rightarrow x>3$
- What's the weakest assertion?
[True]
- What's the strongest assertion?

```
[ FALSE]
```

- In Design by Contract :
- A weaker invariant has more acceptable object states e.g., balance $>0$ vs. balance $>100$ as an invariant for ACCOUNT
- A weaker precondition has more acceptable input values
- A weaker postcondition has more acceptable output values

Motivating Examples (1)
Is this feature correct?

```
class FOO
    i: INTEGER
    increment_by_9
        require
        i>3
        do
        i := i + 9
        ensure
        i> 13
        end
end
```

Q: Is $i>3$ is too weak or too strong?
A: Too weak
$\because$ assertion $i>3$ allows value 4 which would fail postcondition.
3 of 45

## Motivating Examples (2)



Is this feature correct?

```
class \(F O O\)
    i: INTEGER
    increment_by_9
        require
            i > 5
        \(1>\)
        do \(i=i+9\)
        ensure
            \(i>13\)
        end
end
```

Q: Is $i>5$ too weak or too strong?
A: Maybe too strong
$\because$ assertion $i>5$ disallows 5 which would not fail postcondition. Whether 5 should be allowed depends on the requirements.

- Correctness is a relative notion:
consistency of implementation with respect to specification.
$\Rightarrow$ This assumes there is a specification!
- We introduce a formal and systematic way for formalizing a program $\mathbf{S}$ and its specification (pre-condition $Q$ and post-condition $\boldsymbol{R}$ ) as a Boolean predicate: $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$
- e.g., $\{i>3\}$ i : $=i+9\{i>13\}$
- e.g., $\{i>5\}$ i := i + $9\{i>13\}$
- If $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$ can be proved True, then the $\mathbf{S}$ is correct. e.g., $\{i>5\}$ i $:=i+9\{i>13\}$ can be proved TruE.
- If $\{\boldsymbol{Q}\} \mathbf{S}\{\boldsymbol{R}\}$ cannot be proved True, then the $\mathbf{S}$ is incorrect. e.g., $\{i>3\}$ i $:=$ i $+9\{i>13\} \underline{\text { cannot be proved True. }}$

5 of 45

## Hoare Logic

- Consider a program $\mathbf{S}$ with precondition $Q$ and postcondition $\boldsymbol{R}$.
- $\{Q\} S\{R\}$ is a correctness predicate for program $\mathbf{S}$
- $\{\boldsymbol{Q}\} S\{\boldsymbol{S}\}$ is TrUE if program $\mathbf{S}$ starts executing in a state satisfying the precondition $Q$, and then:
(a) The program S terminates.
(b) Given that program $\mathbf{S}$ terminates, then it terminates in a state satisfying the postcondition $\boldsymbol{R}$.
- Separation of concerns
(a) requires a proof of termination.
(b) requires a proof of partial correctness.

Proofs of (a) + (b) imply total correctness.

## Hoare Logic and Software Correctness

Consider the contract view of a feature $f$ (whose body of implementation is $\mathbf{S}$ ) as a Hoare Triple:

$$
\{\boldsymbol{Q}\} \mathrm{S}\{\boldsymbol{R}\}
$$

$Q$ is the precondition of $f$.
$S$ is the implementation of $f$.
$R$ is the postcondition of $f$.

- $\{$ true $\}$ S $\{R\}$

All input values are valid [ Most-user friendly ]

- $\{$ false $\}$ S $\{R\}$

All input values are invalid [ Most useless for clients ]

- $\{Q\}$ S $\{$ true $\}$

All output values are valid [ Most risky for clients; Easiest for suppliers ]

- $\{Q\}$ S \{false\}
All output values are invalid [ Most challenging coding task ]
- \{true\} S \{true\}

7 of 45 All inputs/outputs are valid (No contracts) [ Least informative ]

## Proof of Hoare Triple using wp

$$
\{\boldsymbol{Q}\} \mathrm{s}\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

- $w p(S, R)$ is the weakest precondition for $S$ to establish $\boldsymbol{R}$.
- $S$ can be:
- Assignments (x := y)
- Alternations (if ... then ... else ... end)
- Sequential compositions $\left(S_{1} ; S_{2}\right)$
- Loops (from ... until ... loop ... end)
- We will learn how to calculate the $w p$ for the above programming constructs.

Given $\{? ?\} n:=n+9\{n>13\}$ :

- $n>4$ is the weakest precondition (wp) for the given implementation ( $\mathrm{n}:=\mathrm{n}+9$ ) to start and establish the postcondition ( $n>13$ ).
- Any precondition that is equal to or stronger than the wp ( $n>4$ ) will result in a correct program.
e.g., $\{n>5\} n:=n+9\{n>13\}$ can be proved TRUE.
- Any precondition that is weaker than the $w p(n>4)$ will result in an incorrect program.
e.g., $\{n>3\} n:=n+9\{n>13\}$ cannot be proved TRUE.

Counterexample: $n=4$ satisfies precondition $n>3$ but the output $n=13$ fails postcondition $n>13$.

9 of 45
$R[x:=e]$ means to substitute all free occurrences of variable $x$ in postcondition $R$ by expression $e$.

## Denoting New and Old Values

In the postcondition, for a program variable $x$ :

- We write $x_{0}$ to denote its pre-state (old) value.
- We write $X$ to denote its post-state (new) value. Implicitly, in the precondition, all program variables have their pre-state values.
e.g., $\left\{b_{0}>a\right\}$ b $:=\mathrm{b}-\mathrm{a}\left\{b=b_{0}-a\right\}$
- Notice that:
- We may choose to write " $b$ " rather than " $b_{0}$ " in preconditions $\because$ All variables are pre-state values in preconditions
- We don't write " $b_{0}$ " in program
$\because$ there might be multiple intermediate values of a variable due to sequential composition

Recall:

$$
\{\boldsymbol{Q}\} S\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

How do we prove $\{\boldsymbol{Q}\} \times:=e\{\boldsymbol{R}\} ?$

$$
\{\boldsymbol{Q}\} \times:=e\{\boldsymbol{R}\} \Longleftrightarrow \boldsymbol{Q} \Rightarrow \underbrace{\boldsymbol{R}[x:=e]}_{w p(\mathrm{x}:=\mathrm{e}, \boldsymbol{R})}
$$

## What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to

 establish the postcondition $x>x_{0}$ ?$$
\{? ?\} \mathrm{x}:=\mathrm{x}+1\left\{x>x_{0}\right\}
$$

For the above Hoare triple to be TRUE, it must be that $? ? \Rightarrow w p\left(\mathrm{x}:=\mathrm{x}+1, x>x_{0}\right)$.

$$
\begin{aligned}
& \text { wp }\left(\mathrm{x}:=\mathrm{x}+1, x>x_{0}\right) \\
= & \{\text { Rule of wp:Assignments }\} \\
& x>x_{0}\left[x:=x_{0}+1\right] \\
= & \left\{\text { Replacing } x \text { by } x_{0}+1\right\} \\
& x_{0}+1>x_{0} \\
= & \{1>0 \text { always true }\} \\
& \text { True }
\end{aligned}
$$

Any precondition is OK. False is valid but not useful.
13 of 45 $\square$

## wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to establish the postcondition $x>x_{0}$ ?

$$
\{? ?\} \mathrm{x}:=\mathrm{x}+1\{x=23\}
$$

For the above Hoare triple to be TRUE, it must be that
?? $\Rightarrow w p(\mathrm{x}:=\mathrm{x}+1, x=23)$.

$$
w p(\mathrm{x}:=\mathrm{x}+1, x=23)
$$

$=\{$ Rule of wp: Assignments $\}$

$$
x=23\left[x:=x_{0}+1\right]
$$

$=\left\{\right.$ Replacing $x$ by $\left.x_{0}+1\right\}$

$$
x_{0}+1=23
$$

$=\{$ arithmetic $\}$

$$
x_{0}=22
$$

Any precondition weaker than $x=22$ is not OK.
$w p\left(\right.$ if $B$ then $S_{1}$ else $S_{2}$ end, $\left.R\right)=\left(\begin{array}{l}B \Rightarrow w p\left(S_{1}, \boldsymbol{R}\right) \\ \wedge \\ \neg B \Rightarrow w p\left(S_{2}, R\right)\end{array}\right)$
The wp of an alternation is such that all branches are able to establish the postcondition $R$.

## wp Rule: Alternations (2)



```
Recall: }{\boldsymbol{Q}}\textrm{S}{\boldsymbol{R}}\equiv\boldsymbol{Q}=>wp(S,R
How do we prove that {Q} if B then S}\mp@subsup{S}{1}{}\mathrm{ else S}\mp@subsup{S}{2}{}\mathrm{ end {R}?
{Q}
    {Q^B} S S {R}
    else
    {Q\wedge\negB} S2 {R}
    end
    {R}
```



Is this program correct?

```
{x>0^y>0}
if x > y then
bigger := x ; smaller := y
else
bigger := y ; smaller := x
end
{bigger }\geq\mathrm{ smaller}
```

$$
\begin{aligned}
& \left(\begin{array}{l}
\{(x>0 \wedge y>0) \wedge(x>y)\} \\
\text { bigger }:=\mathrm{x} ; \text { smaller }:=\mathrm{y} \\
\{\text { bigger } \geq \text { smaller }\}
\end{array}\right. \\
& \wedge
\end{aligned}\left(\begin{array}{c}
\{(x>0 \wedge y>0) \wedge \neg(x>y)\} \\
\text { bigger }:=y ; \text { smaller }:=\mathrm{x} \\
\{\text { bigger } \geq \text { smaller }\}
\end{array}\right) .
$$

17 of 45


$$
w p\left(S_{1} ; S_{2}, R\right)=w p\left(S_{1}, w p\left(S_{2}, R\right)\right)
$$

The wp of a sequential composition is such that the first phase establishes the wp for the second phase to establish the postcondition $R$.

Recall:

$$
\{\boldsymbol{Q}\} \mathrm{S}\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R})
$$

How do we prove $\{Q\} S_{1} ; S_{2}\{R\}$ ?

$$
\{Q\} S_{1} ; S_{2}\{\boldsymbol{R}\} \Longleftrightarrow Q \Rightarrow \underbrace{w p\left(S_{1}, w p\left(S_{2}, \boldsymbol{R}\right)\right)}_{w p\left(S_{1} ; S_{2}, R\right)}
$$

## wp Rule: Sequential Composition (3) Exercisessonos

```
Is \(\{\) True \(\}\) tmp \(:=x ; x:=y ; y:=\operatorname{tmp}\{x>y\}\) correct?
    If and only if True \(\Rightarrow w p(\mathrm{tmp}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}\); \(\mathrm{y}:=\mathrm{tmp}, x>y)\)
                \(w p(\mathrm{tmp}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y} ; \mathrm{y}:=\mathrm{tmp}, x>y)\)
            \(=\{w p\) rule for seq. comp. \(\}\)
                \(w p(\mathrm{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y} ; \mathrm{y}:=\mathrm{tmp}, x>y)\) )
            \(=\{w p\) rule for seq. comp. \(\}\)
            \(w p(\operatorname{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y}, w p(\mathrm{y}:=\operatorname{tmp}, x>\mathrm{y})))\)
            \(=\{w p\) rule for assignment \(\}\)
                \(w p(\mathrm{tmp}:=\mathrm{x}, w p(\mathrm{x}:=\mathrm{y}, \mathrm{x}>t m p))\)
            \(=\{w p\) rule for assignment
                wp(tmp := \(x, y>\operatorname{tmp})\)
            \(=\{w p\) rule for assignment \(\}\)
                \(y>x\)
                            \(\because\) True \(\Rightarrow y>x\) does not hold in general.
                            \(\therefore\) The above program is not correct.
```

- A loop is a way to compute a certain result by successive approximations.
e.g. computing the maximum value of an array of integers
- Loops are needed and powerful
- But loops very hard to get right:
- Infinite loops
- "off-by-one" error
- Improper handling of borderline cases
- Not establishing the desired condition
[ termination] [ partial correctness ]
[ partial correctness ]
[ partial correctness ]


## Loops: Binary Search

4 implementations for binary search: published, but wrong!

[^0]See page 381 in Object Oriented
Software Construction

How do we prove that the following loops are correct?


- In case of $\mathrm{C} /$ Java, $\neg B$ denotes the stay condition.
- In case of Eiffel, $B$ denotes the exit condition.

There is native, syntactic support for checking/proving the total correctness of loops.

23 of 45


## Contracts for Loops

- Use of loop invariants (LI) and loop variants (LV).
- Invariants: Boolean expressions for partial correctness.
- Typically a special case of the postcondition.
e.g., Given postcondition " Result is maximum of the array ":

LI can be " Result is maximum of the part of array scanned so far ".

- Established before the very first iteration.
- Maintained TRUE after each iteration.
- Variants: Integer expressions for termination
- Denotes the number of iterations remaining
- Decreased at the end of each subsequent iteration
- Maintained non-negative at the end of each iteration.
- As soon as value of $L V$ reaches zero, meaning that no more iterations remaining, the loop must exit.
- Remember:
total correctness $=$ partial correctness + termination
25 of 45


Contracts for Loops: Runtime Checks (1)


## Contracts for Loops: Example 1.1

```
```

find_max (a: ARRAY [INTEGER]): INTEGER

```
```

find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
local i: INTEGER
do
do
from
from
i := a.lower ; Result := a[i]
i := a.lower ; Result := a[i]
invariant
invariant
loop_invariant: -- \forallj|a.lower }\leqj\leqi\bullet Result \geqa[j]
loop_invariant: -- \forallj|a.lower }\leqj\leqi\bullet Result \geqa[j]
across a.lower |..| i as j all Result >= a [j.item] end
across a.lower |..| i as j all Result >= a [j.item] end
until
until
i > a.upper
i > a.upper
loop
loop
if a [i] > Result then Result := a [i] end
if a [i] > Result then Result := a [i] end
i := i + 1
i := i + 1
variant
variant
loop_variant: a.upper - i + 1
loop_variant: a.upper - i + 1
end
end
ensure
ensure
correct_result: -- \forallj|a.lower }\leqj\leqa.upper - Result \geqa[j]
correct_result: -- \forallj|a.lower }\leqj\leqa.upper - Result \geqa[j]
correct_result: -- \forallj| a.lower \leqj\leqa.upper \bullet Result \geqa[j]
correct_result: -- \forallj| a.lower \leqj\leqa.upper \bullet Result \geqa[j]
end
end
end
end
29 of 45

```
```

29 of 45

```
```


## Contracts for Loops: Example 1.2

Consider the feature call find_max ( $\langle\langle 20,10,40,30\rangle\rangle)$, given:

- Loop Invariant: $\forall j \mid$ a.lower $\leq j \leq i$ •Result $\geq a[j]$
- Loop Variant: a.upper -i+1

| After ITERATION | i | Result | LI | EXIT ( $i>$ a.upper)? | LV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Initialization | 1 | 20 | $\checkmark$ | $\times$ | - |
| 1st | 2 | 20 | $\checkmark$ | $\times$ | 3 |
| 2nd | 3 | 20 | $\times$ | - | - |

Loop invariant violation at the end of the 2nd iteration:

$$
\forall j \mid \text { a.lower } \leq j \leq 3 \cdot 20 \geq a[j]
$$

evaluates to false $\because 20 \nsupseteq a[3]=40$

## Contracts for Loops: Example 2.1

```
find_max (a: ARRAY [INTEGER]): INTEGER
```

    local \(i:\) INTEGER
    do
        from
            i := a.lower ; Result := a[i]
            invariant
            loop_invariant: \(--\forall j \mid\) a.lower \(\leq j<i \bullet\) Result \(\geq a[j]\)
                across a.lower |..| (i - 1) as j all Result >= a [j.item] end
    until
            i > a.upper
        loop
        if \(a\) [i] > Result then Result := \(a\) [i] end
        i := i + 1
        variant
        loop_variant: a.upper - i
    end
    ensure
        correct_result: \(--\forall j \mid a . l o w e r \leq j \leq a\).upper - Result \(\geq a[j]\)
        across a.lower |..| a.upper as \(j\) all Result \(>=a\) [j.item]
    end
    end
31 of 45

## Contracts for Loops: Example 2.2

Consider the feature call find_max ( $\langle\langle 20,10,40,30\rangle\rangle)$, given:

- Loop Invariant: $\forall j \mid$ a.lower $\leq j<i$ •Result $\geq a[j]$
- Loop Variant: a.upper - i

| AFTER ITERATION | i | Result | LI | EXIT ( $i>$ a.upper)? | LV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Initialization | 1 | 20 | $\checkmark$ | $\times$ | - |
| 1st | 2 | 20 | $\checkmark$ | $\times$ | 2 |
| 2nd | 3 | 20 | $\checkmark$ | $\times$ | 1 |
| 3rd | 4 | 40 | $\checkmark$ | $\times$ | 0 |
| 4th | 5 | 40 | $\checkmark$ | $\checkmark$ | $\mathbf{- 1}$ |

[^1]
## Contracts for Loops: Example 3.1

 LASSONDE```
find_max (a: ARRAY [INTEGER]): INTEGER
    local i: INTEGER
    do
        from
        i := a.lower ; Result := a[i]
        invariant
            loop_invariant: -- \forallj|a.lower \leqj<i\bullet Result \geqa[j]
                across a.lower |..| (i - 1) as j all Result >= a [j.item] end
        until
        i > a.upper
        loop
        if a [i] > Result then Result := a [i] end
        i := i + 1
    variant
        loop_variant: a.upper - i + 1
    end
    ensure
        correct_result: -- }\forallj|\mathrm{ a.lower }\leqj\leqa.upper \bullet Result \geqa[j
        across a.lower |..| a.upper as j all Result >= a [j.item]
    end
end
33 of 45
```


## Contracts for Loops: Exercise

class DICTIONARY[V, K]
feature \{NONE\} -- Implementations
values: ARRAY[K]
keys: ARRAY[K]
feature -- Abstraction Function
model: FUN[K, V]
feature -- Queries
get_keys(v: V) : ITERABLE[K]
local $i:$ INTEGER; $k s:$ LINKED_LIST [K]
do
from $i$ := keys.lower ; create ks.make_empty invariant ??
until i > keys.upper
do if values[i] ~ v then ks.extend(keys[i]) end end
Result := ks.new_cursor
ensure
result_valid: $\forall k \mid k \in$ Result • model.item $(k) \sim v$ no_missing_keys: $\forall k \mid k \in$ model.domain • model.item $(k) \sim v \Rightarrow k \in$ Result end
35 of 45

## Proving Correctness of Loops (1)

$\{Q\}$

> from $S_{\text {init }}$ invariant $/$ until $B$ loop $S_{\text {body }}$ variant
end $\quad\{R\}$

- A loop is partially correct if:
- Given precondition $Q$, the initialization step $S_{\text {init }}$ establishes LI I.
- At the end of $S_{\text {body }}$, if not yet to exit, $L I I$ is maintained.
- If ready to exit and LI I maintained, postcondition $R$ is established.
- A loop terminates if:
- Given $L I I$, and not yet to exit, $S_{\text {body }}$ maintains $L V V$ as non-negative.
- Given $L I I$, and not yet to exit, $S_{\text {body }}$ decrements $L V V$.
$\{Q\}$ from $S_{\text {init }}$ invariant $/$ until $B$ loop $S_{\text {body }}$ variant $V$ end $\{R\}$
- A loop is partially correct if:
- Given precondition $Q$, the initialization step $S_{\text {init }}$ establishes LII.

$$
\{Q\} S_{\text {init }}\{I\}
$$

- At the end of $S_{\text {body }}$, if not yet to exit, $L I /$ is maintained

$$
\{I \wedge \neg B\} S_{\text {body }}\{l\}
$$

- If ready to exit and $L I /$ maintained, postcondition $R$ is established.

$$
I \wedge B \Rightarrow R
$$

- A loop terminates if:
- Given $L I I$, and not yet to exit, $S_{\text {body }}$ maintains $L V V$ as non-negative

$$
\{I \wedge \neg B\} S_{\text {body }}\{V \geq 0\}
$$

- Given $L I I$, and not yet to exit, $S_{\text {body }}$ decrements $L V V$.

$$
\{I \wedge \neg B\} S_{\text {body }}\left\{V<V_{0}\right\}
$$

37 of 45

Proving Correctness of Loops: Exercise (1.1)
ASSONDE
Prove that the following program is correct:

```
find_max (a: ARRAY [INTEGER]): INTEGER
    local i: INTEGER
    do
        from
        i := a.lower ; Result := a[i]
        invariant
        loop_invariant: }\forallj|\mathrm{ a.lower }\leqj<i\bullet Result \geqa[j
        until
            i > a.upper
            loop
            if a [i] > Result then Result := a [i] end
            i := i + 1
            variant
            loop_variant: a.upper - i + 1
    end
    ensure
        correct_result: }\forallj|\mathrm{ a.lower }\leqj\leqa.upper \bullet Result \geqa[j
        end
end
```


## Proving Correctness of Loops: Exercise (1.2)

Prove that each of the following Hoare Triples is True.

1. Establishment of Loop Invariant:
```
{ True }
i := a.lower
Result := a[i]
{ \forallj| a.lower }\leqj<i\bullet\mathrm{ Result }\geqa[j] 
```

2. Maintenance of Loop Invariant:
```
{( }\forallj|\mathrm{ a.lower }\leqj<i\bulletResult \geqa[j])^\neg(i> a.upper) }
    if a [i] > Result then Result := a [i] end
    i := i + 1
{(\forallj|a.lower \leqj<i\bulletResult \geqa[j])}
```

3. Establishment of Postcondition upon Termination:
( $\forall j \mid$ a.lower $\leq j<i$ •Result $\geq a[j]) \wedge i>$ a.upper

$$
\Rightarrow \forall j \mid \text { a.lower } \leq j \leq \text { a.upper } \bullet \text { Result } \geq a[j]
$$

39 of 45

## Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following Hoare Triples is True.
4. Loop Variant Stays Non-Negative Before Exit:

```
{(\forallj| a.lower }\leqj<i\bullet\mathrm{ Result }\geqa[j])\wedge\neg(i> a.upper) 
    if a [i] > Result then Result := a [i] end
    i := i + 1
{ a.upper -i+1\geq0 }
```

5. Loop Variant Keeps Decrementing before Exit:
```
{(\forallj| a.lower }\leqj<i\bulletResult \geqa[j])^\neg(i> a.upper) 
    if a [i] > Result then Result := a [i] end
    i := i + 1
a.upper -i+1<(a.upper - i+1)0}
```

where (a.upper $-i+1)_{0} \equiv$ a.upper $_{0}-i_{0}+1$

$$
\{Q\} S\{R\} \Rightarrow\{Q \wedge P\} S\{R\}
$$

In order to prove $\{Q \wedge P\} S\{R\}$, it is sufficient to prove a version with a weaker precondition: $\{Q\} S\{R\}$.

## Proof:

- Assume: $\{Q\}$ S $\{R\}$

It's equivalent to assuming: $Q \Rightarrow w p(S, R)$

- To prove: $\{Q \wedge P\} S\{R\}$
- It's equivalent to proving: $Q \wedge P \Rightarrow w p(s, R)$
- Assume: $Q \wedge P$, which implies $Q$
- According to (A1), we have $w p(S, R)$. ■

41 of 45


When calculating $w p(s, R)$, if either program $s$ or postcondition $R$ involves array indexing, then $R$ should be augmented accordingly.
e.g., Before calculating $w p(s, a[i]>0)$, augment it as

$$
w p(s, \text { a.lower } \leq i \leq \text { a.upper } \wedge a[i]>0)
$$

e.g., Before calculating $w p(\mathrm{x}:=\mathrm{a}[\mathrm{i}], R)$, augment it as

$$
w p(\mathrm{x}:=\mathrm{a}[\mathrm{i}], \text { a.lower } \leq i \leq \text { a.upper } \wedge R)
$$

Index (1)

## Weak vs. Strong Assertions

Motivating Examples (1)
Motivating Examples (2)
Software Correctness
Hoare Logic
Hoare Logic and Software Correctness
Proof of Hoare Triple using wp
Hoare Logic: A Simple Example
Denoting New and Old Values
wp Rule: Assignments (1)
wp Rule: Assignments (2)
wp Rule: Assignments (3) Exercise
wp Rule: Assignments (4) Exercise
$w_{43 \text { of } 45}$ Rule: Alternations (1)


## Index (3)

## Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1
Contracts for Loops: Example 2.2
Contracts for Loops: Example 3.1
Contracts for Loops: Example 3.2
Contracts for Loops: Exercise
Proving Correctness of Loops (1)
Proving Correctness of Loops (2)
Proving Correctness of Loops: Exercise (1.1)
Proving Correctness of Loops: Exercise (1.2)
Proving Correctness of Loops: Exercise (1.3)
Proof Tips (1)
Proof Tips (2)
45 of 45


[^0]:    from
    $S_{\text {init }}$
    invariant
    invariant_tag: I -- Boolean expression for partial correctness
    until
    B
    loop
    $S_{\text {body }}$
    variant
    variant_tag: V -- Integer expression for termination
    end

[^1]:    Loop variant violation at the end of the 2nd iteration

    - a.upper - i=4-5 evaluates to non-zero.

