The Composite Design Pattern

EECS3311 M: Software Design

YORK u T

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

- ___
—

SSONDE

|

Motivating Problem (1)

e Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
o Individual pieces of equipment (hard drives, cd-rom drives)

Each equipment has properties : e.g., power consumption and cost.

o Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that

contain cards.
* Design a system that will allow us to easily build systems and

calculate their total cost and power consumption.

e

Motivating Problem (2) Lassonpe
Design for tree structures with whole-part hierarchies.

CABINET

ASSIS

CH
YWER_SUPPLY

CARD HARD_DRIVE DVD-CDROM

CHASSIS

Challenge : There are base and recursive modelling artifacts.
3.0f.20

/|

Multiple Inheritance: LASSONDE
Combining Abstractions (1)

A class may have two more parent classes.

COMPARABLE

MI: Combining Abstractions (2.1) Lassonpe

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,

move, parent window, descendant windows, add child window
2.0f20

/|

MI: Combining Abstractions (2)

=

A: Separating Graphical features and Hierarchical features

class RECTANGLE
feature Queries
width, height: REAL
Xpos, ypos: REAL
feature - Cc s
make (w, h: REAL)
change_width

class TREE[G]
feature Queries
parent: TREE[G]
descendants: LIST[TREE[G]]
feature - Co

1ds

. add_child (c: TREE[G])
change_height end
move
end
class WINDOW test_window: BOOLEAN
. . local wil, w2, w3, w4: WINDOW
inherit do
RECTANGLE
create wl.make(8, 6) ; create w2.make(4, 3)
TREE [WINDOW
feature create w3.make(l, 1) ; create w4.make(l, 1)
2dd (w: WINDOW) w2.add(w4) ; wl.add(w2) ; wl.add(w3)
end : Result := wl.descendants.count = 2
end

fof20

MI: Name Clashes LassonDE

foo @ oo

In class c, feature foo inherited from ancestor class A clashes
with feature foo inherited from ancestor class B.

SSONDE

|

MI: Resolving Name Clashes

foo Fos

rename foo as fog rename foo as zoo

class C o.foo | o.fog | o.zo0
inherit
A rename foo as fog end o: A v . i
B rename foo as zoo end O: B V/ X X
o C X v v

/|

Solution: The Composite Pattern LassonDE
» |Design |: Categorize into base artifacts or recursive artifacts.

Programming ‘:

Build a tree structure representing the whole-part hierarchy .
Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

= | Polymorphism |: leafs and nodes are “substitutable”.

= | Dynamic Binding |: Different versions of the same

operation is applied on individual objects and composites.
e.g., Given |e: EQUIPMENT |:
o |e.price|may return the unit price of a bIsx DRIVE.

o may sum prices of a ceas1s’ containing equipments.
e

Composite Architecture: Design (1.1) LassonDE

price: VALUE
add(child: EQUIPMENT)
children: LIST[EQUIPMENT]

children: LIST [...]

COMPOSITE_
EQUIPMENT

Composite Architecture: Design (1.2)

SSONDE

|

The client uses
abstract class
EQUIPMENT to
manipulate objects
in the composition. etc.
price: VALUE
add(child: EQUIPMENT)
chlldren LIST[EQUIPMENT]

children: LIST[...]
EQUIPMENT

A leaf has no children,.—>

and leaf nodes.

+
COMPOSITE_
EQUIPMENT

Note that the leaf also
inherits features like
children and add that
don’ t necessarily make
all that sense for a leaf
node.

May implement default behavior for add(child)

CHASSIS

Class EQUIPMENT defines an interface for all
objects in the composition: both the composite

Class

COMPOSITE ‘s
role is (a)
implement leaf
related ops
such as price
and (b) to
define

component

behaviour such

as storing a
child.

/|

Composite Architecture: Design (1.3) LassonDE

Q: Any flaw of this first design?
A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]
o add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD _DRIVE) that do
not apply to such features.

.

Composite Architecture: Design (2.1) LassonDE

children: LIST[...]

-+
COMPOSITE_
EQUIPMENT

@ CHASSIS

SSONDE

|

Composite Architecture: Design (2.2)

Put the tree behavior
such as adding a child
and list of children

here where it is needed

Put the price &
power consumption l

behavior here
e o children: LIST[...]
) EQUIPMENT

/L\ &
COMPOSITE_
(DI BIRN= EQUIPMENT

____/
CABINET é@ BUS

/|

R
Implementing the Composite Pattern (1) ﬂ,géé

deferred class
EQUIPMENT
feature
name: STRING
price: REAL

end

class
CARD
inherit
EQUIPMENT

STRING; p: REAL)

feature
make (n:
do
name := n
price = Pl ce “J an attctr =
end
end
e

SSONDE

|

Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST[T]

add (c: T)
do
children.extend (c) —- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

Implementing the Composite Pattern (2.2)

/|

SSONDE

|

class
COMPOSITE EQUIPMENT
inherit
EQUIPMENT
COMPOSITE
create
make
feature
make (n: STRING)
do name := n ; create children.make end
price : REAL price i Juers;
—— Sum
do
across
children as cursor
loop
Result :=
end
end
end

[EQUIPMENT]

a query

the n

Result + cursor.item.price -—- dynamic binding

e

/|

SSONDE

|

Testing the Composite Pattern

test_composite_equipment: BOOLEAN
local
card, drive: EQUIPMENT
cabinet: CABINET —-—- h
chassis: CHASSIS —-
bus: BUS —— ! ds
do
create {CARD} card.make("16Mbs Token Ring", 200)
create {DISK_DRIVE} drive.make("500 GB harddrive", 500)
create bus.make("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make ("PC Cabinet")

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

e

Index (1)

LASSONDE
i

Motivating Problem (1)
Motivating Problem (2)
Multiple Inheritance:

Combining Abstractions (1)

MI: Combining Abstractions (2.1)

MI: Combining Abstractions (2)

ML Name Clashes

MI: Resolving Name Clashes
Solution: The Composite Pattern
Composite Architecture: Design (1.1)
Composite Architecture: Design (1.2)
Composite Architecture: Design (1.3)
Composite Architecture: Design (2.1)

Composite Architecture: Design (2.2)

Index (2) _;ASSONDE
Implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

Implementing the Composite Pattern (2.2)

Testing the Composite Pattern

	Motivating Problem (1)
	Motivating Problem (2)
	Multiple Inheritance: Combining Abstractions (1)
	MI: Combining Abstractions (2.1)
	MI: Combining Abstractions (2)
	MI: Name Clashes
	MI: Resolving Name Clashes
	Solution: The Composite Pattern
	Composite Architecture: Design (1.1)
	Composite Architecture: Design (1.2)
	Composite Architecture: Design (1.3)
	Composite Architecture: Design (2.1)
	Composite Architecture: Design (2.2)
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Testing the Composite Pattern

