
Abstractions via Mathematical Models

EECS3311 M: Software Design
Winter 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Problem: Complete Contracts

● Recall what we learned in the Complete Contracts lecture:
○ In post-condition , for each attribute , specify the relationship

between its pre-state value and its post-state value.
○ Use the old keyword to refer to post-state values of expressions.
○ For a composite-structured attribute (e.g., arrays, linked-lists,

hash-tables, etc.), we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● Let’s now revisit this technique by specifying a LIFO stack .

2 of 37

Motivating Problem: LIFO Stack (1)

● Let’s consider three different implementation strategies:

Stack Feature
Array Linked List

Strategy 1 Strategy 2 Strategy 3

count imp.count

top imp[imp.count] imp.first imp.last

push(g) imp.force(g, imp.count + 1) imp.put front(g) imp.extend(g)

pop
imp.list.remove tail (1) list.start imp.finish

list.remove imp.remove

● Given that all strategies are meant for implementing the same
ADT , will they have identical contracts?

3 of 37

Motivating Problem: LIFO Stack (2.1)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 1: array
imp: ARRAY[G]

feature -- Initialization
make do create imp.make_empty ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.remove_tail(1)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

4 of 37

Motivating Problem: LIFO Stack (2.2)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 2: linked-list first item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.put_front(g)
ensure
changed: imp.first ∼ g
unchanged: across 2 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item - 1] end
end

pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item + 1] end
end

5 of 37

Motivating Problem: LIFO Stack (2.3)
class LIFO_STACK[G] create make
feature {NONE} -- Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]

feature -- Initialization
make do create imp.make ensure imp.count = 0 end

feature -- Commands
push(g: G)
do imp.extend(g)
ensure
changed: imp.last ∼ g
unchanged: across 1 |..| count - 1 as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all

imp[i.item] ∼ (old imp.deep_twin)[i.item] end
end

6 of 37

Motivating Problem: LIFO Stack (3)
● Postconditions of all 3 versions of stack are complete .

i.e., Not only the new item is pushed/popped , but also the
remaining part of the stack is unchanged .

● But they violate the principle of information hiding :
Changing the secret , internal workings of data structures
should not affect any existing clients.

● How so?
The private attribute imp is referenced in the postconditions ,
exposing the implementation strategy not relevant to clients:
● Top of stack may be imp[count] , imp.first , or imp.last .

● Remaining part of stack may be across 1 |..| count - 1 or

across 2 |..| count .

⇒ Changing the implementation strategy from one to another will
also change the contracts for all features .

⇒ This also violates the Single Choice Principle .
7 of 37

Math Models: Command vs Query
○ Use MATHMODELS library to create math objects (SET, REL, SEQ).
○ State-changing commands: Implement an Abstraction Function

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT

model: SEQ[G]

do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

end

○ Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make
feature -- Abstraction function of the stack ADT

model: SEQ[G]

feature -- Commands
push (g: G)
ensure model ∼ (old model.deep_twin).appended(g) end

8 of 37

Implementing an Abstraction Function (1)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
imp: ARRAY[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make from array (imp)
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make empty ensure model.count = 0 end
push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.remove tail(1)

ensure popped: model ∼ (old model.deep twin).front end
end

9 of 37

Abstracting ADTs as Math Models (1)

old model: SEQ[G] model: SEQ[G]

old imp: ARRAY[G] imp: ARRAY[G]

abstraction
function

abstraction
function

convert the current array
into a math sequence

convert the current array
into a math sequence

imp.force(g, imp.count + 1)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 1 Abstraction function : Convert the implementation
array to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

10 of 37

Implementing an Abstraction Function (2)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.prepend(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[count - i.item + 1]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.put front(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.start ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

11 of 37

Abstracting ADTs as Math Models (2)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction
function

abstraction
function

convert the current liked list
into a math sequence

convert the current linked list
into a math sequence

imp.put_front(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 2 Abstraction function : Convert the implementation
list (first item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

12 of 37

Implementing an Abstraction Function (3)

class LIFO_STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]

feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_empty

across imp as cursor loop Result.append(cursor.item) end
ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all

Result[i.item] ∼ imp[i.item]
end

feature -- Commands

make do create imp.make ensure model.count = 0 end
push (g: G) do imp.extend(g)

ensure pushed: model ∼ (old model.deep twin).appended(g) end
pop do imp.finish ; imp.remove

ensure popped: model ∼ (old model.deep twin).front end
end

13 of 37

Abstracting ADTs as Math Models (3)

old model: SEQ[G] model: SEQ[G]

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]

abstraction
function

abstraction
function

convert the current liked list
into a math sequence

convert the current linked list
into a math sequence

imp.extend(g)

model ~ (old model.deep_twin).appended(g)

public (client’s view)

private/hidden (implementor’s view)

‘push(g: G)’ feature of LIFO_STACK ADT

● Strategy 3 Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.

● Contract for the put(g: G) feature remains the same:
model ∼ (old model.deep_twin).appended(g)

14 of 37

Solution: Abstracting ADTs as Math Models
● Writing contracts in terms of implementation attributes (arrays,

LL’s, hash tables, etc.) violates information hiding principle.
● Instead:

○ For each ADT, create an abstraction via a mathematical model .
e.g., Abstract a LIFO STACK as a mathematical sequence .

○ For each ADT, define an abstraction function (i.e., a query)
whose return type is a kind of mathematical model .
e.g., Convert implementation array to mathematical sequence

○ Write contracts in terms of the abstract math model .
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.

○ Upon changing the implementation:
● No change on what the abstraction is, hence no change on contracts.
● Only change how the abstraction is constructed, hence changes on

the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
⇒ The Single Choice Principle is obeyed.

15 of 37

Math Review: Set Definitions and Membership
● A set is a collection of objects.

○ Objects in a set are called its elements or members.
○ Order in which elements are arranged does not matter.
○ An element can appear at most once in the set.

● We may define a set using:
○ Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}
○ Set Comprehension: Implicitly specify the condition that all

members satisfy.
e.g., {x ∣ 1 ≤ x ≤ 10 ∧ x is an odd number}

● An empty set (denoted as {} or ∅) has no members.
● We may check if an element is a member of a set:

e.g., 5 ∈ {1,3,5,7,9} [true]
e.g., 4 /∈ {x ∣ x ≤ 1 ≤ 10,x is an odd number} [true]

● The number of elements in a set is called its cardinality .
e.g., ∣∅∣ = 0, ∣{x ∣ x ≤ 1 ≤ 10,x is an odd number}∣ = 5

16 of 37

Math Review: Set Relations

Given two sets S1 and S2:
● S1 is a subset of S2 if every member of S1 is a member of S2.

S1 ⊆ S2 ⇐⇒ (∀x ● x ∈ S1 ⇒ x ∈ S2)

● S1 and S2 are equal iff they are the subset of each other.

S1 = S2 ⇐⇒ S1 ⊆ S2 ∧S2 ⊆ S1

● S1 is a proper subset of S2 if it is a strictly smaller subset.

S1 ⊂ S2 ⇐⇒ S1 ⊆ S2 ∧ ∣S1∣ < ∣S2∣

17 of 37

Math Review: Set Operations

Given two sets S1 and S2:
● Union of S1 and S2 is a set whose members are in either.

S1 ∪S2 = {x ∣ x ∈ S1 ∨ x ∈ S2}

● Intersection of S1 and S2 is a set whose members are in both.

S1 ∩S2 = {x ∣ x ∈ S1 ∧ x ∈ S2}

● Difference of S1 and S2 is a set whose members are in S1 but
not S2.

S1 ∖S2 = {x ∣ x ∈ S1 ∧ x /∈ S2}

18 of 37

Math Review: Power Sets

The power set of a set S is a set of all S’ subsets.

P(S) = {s ∣ s ⊆ S}

The power set contains subsets of cardinalities 0, 1, 2, . . . , ∣S∣.
e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

∅,
{1}, {2}, {3},
{1,2}, {2,3}, {3,1},
{1,2,3}

⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

19 of 37

Math Review: Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross product of theses sets is
a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) ∣ ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}
= { (e1,e2,e3) ∣ e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }

=
{(a,2,$), (a,2,&), (a,4,$), (a,4,&),
(b,2,$), (b,2,&), (b,4,$), (b,4,&)}

20 of 37

Math Models: Relations (1)
● A relation is a collection of mappings, each being an ordered

pair that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}
○ ∅ is an empty relation.
○ S × T is a relation (say r1) that maps from each member of S to

each member in T : {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}
○ {(x ,y) ∶ S × T ∣ x ≠ 1} is a relation (say r2) that maps only some

members in S to every member in T : {(2,a), (2,b), (3,a), (3,b)}.
● Given a relation r :

○ Domain of r is the set of S members that r maps from.

dom(r) = {s ∶ S ∣ (∃t ● (s, t) ∈ r)}
e.g., dom(r1) = {1,2,3}, dom(r2) = {2,3}

○ Range of r is the set of T members that r maps to.

ran(r) = {t ∶ T ∣ (∃s ● (s, t) ∈ r)}
e.g., ran(r1) = {a,b} = ran(r2)

21 of 37

Math Models: Relations (2)

● We use the power set operator to express the set of all possible
relations on S and T :

P(S × T)

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T)

● Or alternatively, we write:

r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T)
22 of 37

Math Models: Relations (3.1)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}

● r.domain : set of first-elements from r
○ r.domain = { d ∣ (d , r) ∈ r }
○ e.g., r.domain = {a,b,c,d ,e, f}

● r.range : set of second-elements from r
○ r.range = { r ∣ (d , r) ∈ r }
○ e.g., r.range = {1,2,3,4,5,6}

● r.inverse : a relation like r except elements are in reverse order
○ r.inverse = { (r ,d) ∣ (d , r) ∈ r }
○ e.g., r.inverse = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}

23 of 37

Math Models: Relations (3.2)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}

● r.domain restricted(ds) : sub-relation of r with domain ds.
○ r.domain restricted(ds) = { (d , r) ∣ (d , r) ∈ r ∧ d ∈ ds }
○ e.g., r.domain restricted({a, b}) = {(a,1), (b,2), (a,4), (b,5)}

● r.domain subtracted(ds) : sub-relation of r with domain not ds.
○ r.domain subtracted(ds) = { (d , r) ∣ (d , r) ∈ r ∧ d /∈ ds }
○ e.g., r.domain subtracted({a, b}) = {(c,6), (d,1), (e,2), (f,3)}

● r.range restricted(rs) : sub-relation of r with range rs.
○ r.range restricted(rs) = { (d , r) ∣ (d , r) ∈ r ∧ r ∈ rs }
○ e.g., r.range restricted({1, 2}) = {(a,1), (b,2), (d ,1), (e,2)}

● r.range subtracted(ds) : sub-relation of r with range not ds.
○ r.range subtracted(rs) = { (d , r) ∣ (d , r) ∈ r ∧ r /∈ rs }
○ e.g., r.range subtracted({1, 2}) = {(c,3), (a,4), (b,5), (c,6)}

24 of 37

Math Models: Relations (3.3)

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}

● r.overridden(t) : a relation which agrees on r outside domain of
t .domain, and agrees on t within domain of t .domain
○ r.overridden(t) = t ∪ r .domain subtracted(t .domain)
○

r .overridden({(a,3), (c,4)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

)

= {(a,3), (c,4)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}
´¹¹¹¸¹¹¹¶

r .domain subtracted(t .domain
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

{a,c}

)

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}

25 of 37

Math Review: Functions (1)

A function f on sets S and T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T .

∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ f ∧ (s, t2) ∈ f ⇒ t1 = t2

e.g., Say S = {1,2,3} and T = {a,b}, which of the following
relations are also functions?
○ S × T [No]
○ (S × T) − {(x ,y) ∣ (x ,y) ∈ S × T ∧ x = 1} [No]
○ {(1,a), (2,b), (3,a)} [Yes]
○ {(1,a), (2,b)} [Yes]

26 of 37

Math Review: Functions (2)

● We use set comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

{r ∶ S↔ T ∣
(∀s ∶ S; t1 ∶ T ; t2 ∶ T ● (s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)}

● This set (of possible functions) is a subset of the set (of
possible relations): P(S × T) and S↔ T .

● We abbreviate this set of possible functions as S→ T and use it
to declare a function variable f :

f ∶ S→ T

27 of 37

Math Review: Functions (3.1)
Given a function f ∶ S→ T :
● f is injective (or an injection) if f does not map a member of S

to more than one members of T .

f is injective ⇐⇒
(∀s1 ∶ S;s2 ∶ S; t ∶ T ● (s1, t) ∈ r ∧ (s2, t) ∈ r ⇒ s1 = s2)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

● f is surjective (or a surjection) if f maps to all members of T .

f is surjective ⇐⇒ ran(f) = T

● f is bijective (or a bijection) if f is both injective and surjective.
28 of 37

Math Review: Functions (3.2)

29 of 37

Math Models: Command-Query Separation
Command Query

domain restrict domain restricted
domain restrict by domain restricted by
domain subtract domain subtracted

domain subtract by domain subtracted by

range restrict range restricted
range restrict by range restricted by
range subtract range subtracted

range subtract by range subtracted by

override overridden
override by overridden by

Say r = {(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d ,1), (e,2), (f ,3)}
● Commands modify the context relation objects.

r.domain restrict({a}) changes r to {(a,1), (a,4)}
● Queries return new relations without modifying context objects.

r.domain restricted({a}) returns {(a,1), (a,4)} with r untouched
30 of 37

Math Models: Example Test

test_rel: BOOLEAN
local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]

do
create r.make_from_tuple_array (
<<["a", 1], ["b", 2], ["c", 3],

["a", 4], ["b", 5], ["c", 6],
["d", 1], ["e", 2], ["f", 3]>>)

create ds.make_from_array (<<"a">>)
-- r is not changed by the query ‘domain_subtracted’
t := r.domain subtracted (ds)
Result :=
t /∼ r and not t.domain.has ("a") and r.domain.has ("a")

check Result end
-- r is changed by the command ‘domain_subtract’
r.domain subtract (ds)
Result :=
t ∼ r and not t.domain.has ("a") and not r.domain.has ("a")

end

31 of 37

Case Study: A Birthday Book

● A birthday book stores a collection of entries, where each entry
is a pair of a person’s name and their birthday.

● No two entries stored in the book are allowed to have the same
name.

● Each birthday is characterized by a month and a day.
● A birthday book is first created to contain an empty collection of

entires.
● Given a birthday book, we may:

○ Inquire about the number of entries currently stored in the book
○ Add a new entry by supplying its name and the associated birthday
○ Remove the entry associated with a particular person
○ Find the birthday of a particular person
○ Get a reminder list of names of people who share a given birthday

32 of 37

Birthday Book: Decisions

● Design Decision
○ Classes
○ Client Supplier vs. Inheritance
○ Mathematical Model? [e.g., REL or FUN]
○ Contracts

● Implementation Decision
○ Two linear structures (e.g., arrays, lists) [O(n)]
○ A balanced search tree (e.g., AVL tree) [O(log ⋅ n)]
○ A hash table [O(1)]

● Implement an abstract function that maps implementation to
the math model.

33 of 37

Birthday Book: Design

BIRTHDAY_BOOK
model: FUN[NAME, BIRTHDAY]

 ­­ abstraction function

count: INTEGER

 ­­ number of entries

put(n: NAME; d: BIRTHDAY)

 ensure
 model_operation: model ~ (old model.deep_twin).overriden_by ([n,d])
 ­­ infix symbol for override operator: @<+

remind(d: BIRTHDAY): ARRAY[NAME]

 ensure
 nothing_changed: model ~ (old model.deep_twin)
 same_counts: Result.count = (model.range_restricted_by(d)).count
 same_contents: ∀ name ∈ (model.range_restricted_by(d)).domain: name ∈ Result
 ­­ infix symbol for range restriction: model @> (d)

invariant:
 consistent_book_and_model_counts: count = model.count

NAME
item: STRING

invariant
 item[1] ∈ A..Z

BIRTHDAY
day: INTEGER

month: INTEGER

invariant
 1 ≤ month ≤ 12
 1 ≤ day ≤ 31

model: FUN[NAME, ..]

remind: ARRAY[NAME]

34 of 37

Birthday Book: Implementation

BIRTHDAY_BOOK
model: FUN[NAME, BIRTHDAY]
 ­­ abstraction function
 do
 ­­ promote hashtable to function
 ensure
 same_counts: Result.count = implementation.count
 same_contents: ∀ [name, date] ∈ Result: [name, date] ∈ implementation
 end

put(n: NAME; d: BIRTHDAY)
 do
 ­­ implement using hashtable
 ensure
 model_operation: model ~ (old model.deep_twin) @<+ [n,d]
 end

remind(d: BIRTHDAY): ARRAY[NAME]
 do
 ­­ implement using hashtable
 ensure
 nothing_changed: model ~ (old model.deep_twin)
 same_counts: Result.count = (model @> d).count
 same_contents: ∀ name ∈ (model @> d).domain: name ∈ Result
 end

count: INTEGER ­­ number of names

feature {NONE}
 implementation: HASH_TABLE[BIRTHDAY, NAME]

invariant:
 consistent_book_and_model_counts: count = model.count
 consistent_book_and_imp_counts: count = implementation.count

*
HASHABLE

BIRTHDAY
day: INTEGER
month: INTEGER

invariant
 1 ≤ month ≤ 12
 1 ≤ day ≤ 31

model: FUN[NAME, ..]

remind: ARRAY[NAME]

NAME
item: STRING

invariant
 item[1] ∈ A..Z

35 of 37

Beyond this lecture . . .

● Familiarize yourself with the features of classes SEQ, REL, FUN,
and SET for the lab test.

● Play with the source code of the Birthday Book example:
https://github.com/yuselg/eiffel/tree/master/snippets/

birthday-book.
● Exercise:

○ Consider an alternative implementation using two linear structures
(e.g., here in Java).

○ Create another LINEAR BIRTHDAY BOOK class and modify the
implementation of abstraction function accordingly.
Do all contracts still pass?

36 of 37

https://github.com/yuselg/eiffel/tree/master/snippets/birthday-book
https://github.com/yuselg/eiffel/tree/master/snippets/birthday-book
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#oop_java

Index (1)
Motivating Problem: Complete Contracts
Motivating Problem: LIFO Stack (1)
Motivating Problem: LIFO Stack (2.1)
Motivating Problem: LIFO Stack (2.2)
Motivating Problem: LIFO Stack (2.3)
Motivating Problem: LIFO Stack (3)
Math Models: Command vs Query
Implementing an Abstraction Function (1)
Abstracting ADTs as Math Models (1)
Implementing an Abstraction Function (2)
Abstracting ADTs as Math Models (2)
Implementing an Abstraction Function (3)
Abstracting ADTs as Math Models (3)
Solution: Abstracting ADTs as Math Models

37 of 37

Index (2)
Math Review: Set Definitions and Membership
Math Review: Set Relations
Math Review: Set Operations
Math Review: Power Sets
Math Review: Set of Tuples
Math Models: Relations (1)
Math Models: Relations (2)
Math Models: Relations (3.1)
Math Models: Relations (3.2)
Math Models: Relations (3.3)
Math Review: Functions (1)
Math Review: Functions (2)
Math Review: Functions (3.1)
Math Review: Functions (3.2)

38 of 37

Index (3)
Math Models: Command-Query Separation

Math Models: Example Test

Case Study: A Birthday Book

Birthday Book: Decisions

Birthday Book: Design

Birthday Book: Implementation

Beyond this lecture . . .

39 of 37

	Motivating Problem: Complete Contracts
	Motivating Problem: LIFO Stack (1)
	Motivating Problem: LIFO Stack (2.1)
	Motivating Problem: LIFO Stack (2.2)
	Motivating Problem: LIFO Stack (2.3)
	Motivating Problem: LIFO Stack (3)
	Math Models: Command vs Query
	Implementing an Abstraction Function (1)
	Abstracting ADTs as Math Models (1)
	Implementing an Abstraction Function (2)
	Abstracting ADTs as Math Models (2)
	Implementing an Abstraction Function (3)
	Abstracting ADTs as Math Models (3)
	Solution: Abstracting ADTs as Math Models
	Math Review: Set Definitions and Membership
	Math Review: Set Relations
	Math Review: Set Operations
	Math Review: Power Sets
	Math Review: Set of Tuples
	Math Models: Relations (1)
	Math Models: Relations (2)
	Math Models: Relations (3.1)
	Math Models: Relations (3.2)
	Math Models: Relations (3.3)
	Math Review: Functions (1)
	Math Review: Functions (2)
	Math Review: Functions (3.1)
	Math Review: Functions (3.2)
	Math Models: Command-Query Separation
	Math Models: Example Test
	Case Study: A Birthday Book
	Birthday Book: Decisions
	Birthday Book: Design
	Birthday Book: Implementation
	Beyond this lecture …

