
Types: Reference vs. Expanded
Copies: Reference vs. Shallow vs. Deep

Writing Complete Postconditions

EECS3311 M: Software Design
Winter 2019

CHEN-WEI WANG

Expanded Class: Modelling
● We may want to have objects which are:○ Integral parts of some other objects○ Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

2 of 43

Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end

class MONITOR . . . end class NETWORK . . . end

class WORKSTATION

k: expanded KEYBOARD

c: expanded CPU

m: expanded MONITOR

n: NETWORK

end

Alternatively:
expanded class KEYBOARD . . . end

expanded class CPU . . . end

expanded class MONITOR . . . end

class NETWORK . . . end

class WORKSTATION

k: KEYBOARD

c: CPU

m: MONITOR

n: NETWORK

end

3 of 43

Expanded Class: Programming (3)

expanded class

B

feature

change_i (ni: INTEGER)
do

i := ni

end

feature

i: INTEGER

end

1 test_expanded: BOOLEAN

2 local

3 eb1, eb2: B

4 do

5 Result := eb1.i = 0 and eb2.i = 0
6 check Result end

7 Result := eb1 = eb2

8 check Result end

9 eb2.change_i (15)
10 Result := eb1.i = 0 and eb2.i = 15
11 check Result end

12 Result := eb1 /= eb2

13 check Result end

14 end

● L5: object of expanded type is automatically initialized.
● L9 & L10: no sharing among objects of expanded type.
● L7 & L12: = between expanded objects compare their contents.
4 of 43

Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on
a class).

● Every type is either referenced or expanded .
● In reference types:○ y denotes a reference to some object○ x := y attaches x to same object as does y○ x = y compares references
● In expanded types:○ y denotes some object (of expanded type)○ x := y copies contents of y into x○ x = y compares contents [x ∼ y]

5 of 43

Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author expanded-typed author

6 of 43

Copying Objects
Say variables c1 and c2 are both declared of type C. [c1, c2: C]● There is only one attribute a declared in class C.● c1.a and c2.a may be of either:○ expanded type or○ reference type

a

C

c1

a

C

c2

c1.a

c2.a

7 of 43

Copying Objects: Reference Copy
Reference Copy c1 := c2○ Copy the address stored in variable c2 and store it in c1.⇒ Both c1 and c2 point to the same object.⇒ Updates performed via c1 also visible to c2. [aliasing]

a

C

c1

a

C

c2

c1.a

c2.a

8 of 43

Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin○ Create a temporary, behind-the-scene object c3 of type C.○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a○ Make a reference copy of c3: c1 := c3⇒ c1 and c2 are not pointing to the same object. [c1 /= c2]⇒ c1.a and c2.a are pointing to the same object.⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

9 of 43

Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin○ Create a temporary, behind-the-scene object c3 of type C.○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is expanded (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin○ Make a reference copy of c3: c1 := c3⇒ c1 and c2 are not pointing to the same object.⇒ c1.a and c2.a are not pointing to the same object.⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin

10 of 43

Copying Objects

EECS, York University Object Oriented Software Construction 15-05-27 16:29 28

Shallow and deep cloning

!  Initial situation:

!  Result of:

b := a

c := a.twin

d := a.deep_twin

“Almaviva” name
landlord

loved_one

a
O1

“Figaro”
O2

“Susanna”
O3

b

“Almaviva” O4

c

“Almaviva” name
landlord

loved_one

O5

“Figaro”
O6

“Susanna”
O7

d

11 of 43

Example: Collection Objects (1)

● In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED LIST, etc.):

At runtime, that variable stores the address of an object of that
type (as opposed to storing the object in its entirety).

● Assume the following variables of the same type:
. . .
local

imp : ARRAY[STRING]
old_imp: ARRAY[STRING]

do

create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Tom", 3)
. . .

12 of 43

Example: Collection Objects (2)
● Variables imp and old imp store address(es) of some array(s).● Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

imp[1] imp[2] imp[3]

imp

old_imp

??

13 of 43

Reference Copy of Collection Object

1 old imp := imp

2 Result := old_imp = imp -- Result = true
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value “Jim”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

14 of 43

Shallow Copy of Collection Object (1)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item]
7 end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Jim”

STRING

value

15 of 43

Shallow Copy of Collection Object (2)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Mark***”

16 of 43

Deep Copy of Collection Object (1)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Jim”

STRING

value

17 of 43

Deep Copy of Collection Object (2)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Mark***”

18 of 43

How are contracts checked at runtime?
● All contracts are specified as Boolean expressions.● Right before a feature call (e.g., acc.withdraw(10)):
○ The current state of acc is called its pre-state.○ Evaluate pre-condition using current values of attributes/queries.○ Cache values, via := , of old expressions in the post-condition .

e.g., old balance = balance − a [old balance ∶= balance]

e.g., old accounts[i].id [old accounts i id ∶= accounts[i].id]

e.g., (old accounts[i]).id [old accounts i ∶= accounts[i]]

e.g., (old accounts)[i].id [old accounts ∶= accounts]

e.g., (old Current).accounts[i].id [old current ∶= Current]● Right after the feature call:○ The current state of acc is called its post-state.○ Evaluate invariant using current values of attributes and queries.○ Evaluate post-condition using both current values and
“cached” values of attributes and queries.

19 of 43

When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .
● The second contract is much harder to specify:○ Reference aliasing [ref copy vs. shallow copy vs. deep copy]○ Iterable structure [use across]
20 of 43

Account
class

ACCOUNT

inherit

ANY

redefine is_equal end

create

make

feature -- Attributes

owner: STRING

balance: INTEGER

feature -- Commands

make (n: STRING)
do

owner := n

balance := 0
end

deposit(a: INTEGER)
do

balance := balance + a

ensure

balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN

do

Result :=
owner ∼ other.owner

and balance = other.balance
end

end

21 of 43

Bank
class BANK

create make

feature

accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end

account_of (n: STRING): ACCOUNT

require -- the input name exists

existing: across accounts as acc some acc.item.owner ∼ n end

-- not (across accounts as acc all acc.item.owner /∼ n end)

do . . .
ensure Result.owner ∼ n

end

add (n: STRING)
require -- the input name does not exist

non_existing: across accounts as acc all acc.item.owner /∼ n end

-- not (across accounts as acc some acc.item.owner ∼ n end)

local new_account: ACCOUNT

do

create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end

end22 of 43

Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)
VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?

1 Correct Incomplete No

2 Wrong Incomplete No

3 Wrong Complete (reference copy) No

4 Wrong Complete (shallow copy) No

5 Wrong Complete (deep copy) Yes

23 of 43

Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b
accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts

24 of 43

Version 1:
Incomplete Contracts, Correct Implementation
class BANK

deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

from i := accounts.lower
until i > accounts.upper
loop

if accounts[i].owner ∼ n then accounts[i].deposit(a) end

i := i + 1
end

ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end

end

25 of 43

Test of Version 1

class TEST_BANK

test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local

b: BANK

do

comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v1 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end

26 of 43

Test of Version 1: Result

27 of 43

Version 2:
Incomplete Contracts, Wrong Implementation
class BANK

deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end

end

Current postconditions lack a check that accounts other than n
are unchanged.

28 of 43

Test of Version 2

class TEST_BANK

test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local

b: BANK

do

comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v2 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end

29 of 43

Test of Version 2: Result

30 of 43

Version 3:
Complete Contracts with Reference Copy
class BANK

deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of(n).balance = old account_of(n).balance + a

others unchanged :
across old accounts as cursor

all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end

31 of 43

Test of Version 3

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local

b: BANK

do

comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v3 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end

32 of 43

Test of Version 3: Result

33 of 43

Version 4:
Complete Contracts with Shallow Object Copy
class BANK

deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :
across old accounts.twin as cursor

all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end

34 of 43

Test of Version 4

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN

local

b: BANK

do

comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v4 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end

35 of 43

Test of Version 4: Result

36 of 43

Version 5:
Complete Contracts with Deep Object Copy
class BANK

deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :
across old accounts.deep twin as cursor

all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end

37 of 43

Test of Version 5

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local

b: BANK

do

comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v5 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end

38 of 43

Test of Version 5: Result

39 of 43

Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [×]○ accounts = old accounts.twin [×]○ accounts = old accounts.deep_twin [×]○ accounts ˜ old accounts [×]○ accounts ˜ old accounts.twin [×]○ accounts ˜ old accounts.deep_twin [✓]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?

40 of 43

Index (1)
Expanded Class: Modelling
Expanded Class: Programming (2)
Expanded Class: Programming (3)
Reference vs. Expanded (1)
Reference vs. Expanded (2)
Copying Objects
Copying Objects: Reference Copy
Copying Objects: Shallow Copy
Copying Objects: Deep Copy
Example: Copying Objects
Example: Collection Objects (1)
Example: Collection Objects (2)
Reference Copy of Collection Object
Shallow Copy of Collection Object (1)

41 of 43

Index (2)
Shallow Copy of Collection Object (2)
Deep Copy of Collection Object (1)
Deep Copy of Collection Object (2)
How are contracts checked at runtime?
When are contracts complete?
Account
Bank
Roadmap of Illustrations
Object Structure for Illustration
Version 1:
Incomplete Contracts, Correct Implementation
Test of Version 1
Test of Version 1: Result
Version 2:
Incomplete Contracts, Wrong Implementation

42 of 43

Index (3)
Test of Version 2
Test of Version 2: Result
Version 3:
Complete Contracts with Reference Copy
Test of Version 3
Test of Version 3: Result
Version 4:
Complete Contracts with Shallow Object Copy
Test of Version 4
Test of Version 4: Result
Version 5:
Complete Contracts with Deep Object Copy
Test of Version 5
Test of Version 5: Result
Exercise

43 of 43

