Types: Reference vs. Expanded
Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 M: Software Design

YO R K ' Winter 2019
UNIVERSITE CHEN-WEI WANG
UNIVERSITY

Expanded Class: Modelling e

¢ We may want to have objects which are:
o Integral parts of some other objects
o Not shared among objects
e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

20f43

Expanded Class: Programming (2) LASSONDE
class KEYBOARD ... end class CPU ... end
class MONITOR ... end class NETWORK ... end

class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end

Alternatively:

expanded class KEYBOARD ... end
expanded class CPU ... end
expanded class MONITOR ... end
class NETWORK ... end

class WORKSTATION
k: KEYBOARD
c: CPU
m: MONITOR
n: NETWORK

30f43

Expanded Class: Programming (3) LASSONDE
1 | test_expanded: BOOLEAN
2 local
expanded class 3 ebl, eb2: B
B 4 do
feature 5 Result := ebl.i = 0 and eb2.i = 0
change_1 (ni: INTEGER) 6 check Result end
do 7 Result := ebl = eb2
i := ni 8 check Result end
end 9 eb2.change_1i (15)
feature 10 Result := ebl.i = 0 and eb2.i = 15
i: INTEGER 11 check Result end
end 12 Result := ebl /= eb2
13 check Result end
14 end

¢ L5: object of expanded type is automatically initialized.
¢ L9 & L10: no sharing among objects of expanded type.
e L7 & L12: = between expanded objects compare their contents.

4 of 43

Reference vs. Expanded (1) o

ooooooooooooooooo

Every entity must be declared to be of a certain type (based on
a class).

e Every type is either referenced or expanded.

In reference types:

o y denotes a reference to some object
o x := y attaches x to same object as does y
o x = ycompares references

In expanded types:

o y denotes some object (of expanded type)
o x := y copies contents of y into x
o x = ycompares contents

[x ~ vl
5of 43

Reference vs. Expanded (2) o

ooooooooooooooooo

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author || expanded-typed author

“The Red and the Black” “Life of Rossini”

1830 1823 “The Red and the Black”

341 307 1830 1823
reference

“Life of Rossini”

reference 341 307

“Stendhall” “Stendhall”

“Henri Beyle” “Henri Beyle”
1783 1783

1842 1842

“Stendhall”
“Henri Beyle”
1783
1842

6 of 43

Copying Objects LASSONDE

ooooooooooooooooo

Say variables c1 and c¢2 are both declared of type C. [c1, c2: ¢]
e There is only one attribute a declared in class C.
e cl.aand c2.a may be of either:

o expanded type or

o reference type

C
S =
cl
C
=
c2
7 of 43

Copying Objects: Reference Copy LASSONDE

ooooooooooooooooo

Reference Copy cl i= c2

o Copy the address stored in variable c2 and store itin c1.
= Both c1 and c2 point to the same object.
= Updates performed via c1 also visible to c2.

—

[aliasing]

k

cl

\

c2

80f43

LASSONDE

ooooooooooooooooo

Copying Objects: Shallow Copy

Shallow COpy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

——
-
-

c3

c2 1IIHIl;

_—

9 of 43
Copying Objects: Deep Copy LASSONDE
Deep Copy [c1 := c2.deep twin]
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:
Base Case: a is expanded (e.g., INTEGER). = c3.a := c2.a.

Recursive Case: a is referenced. = c3.a := c2.a.deep_twin
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object.
= cl.aand c2.a are not pointing to the same object.

= No aliasing occurs at any levels.

53

=)
c2

Copying Objects LASSONDE
a
O v 1 1 o1
= Initial situation: name | “Almaviva’
landlord —:l
loved_one _1 03
02 “Figaro” “Susanna”
= Result of:
bi=a]
04 ‘Almaviva”
c .= a.twin @_,
d := a.deep_twin @ name | “Almaviva’ 05
landlord —:l
loved_one _1 o7
o6 “Figaro” “Susanna”

110f43

LASSONDE

ooooooooooooooooo

Example: Collection Objects (1)

¢ In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):
At runtime, that variable stores the address of an object of that
type (as opposed to storing the object in its entirety).

¢ Assume the following variables of the same type:

local
imp : ARRAY [STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force ("Tom", 3)

120f43

Example: Collection Objects (2) LASSONDE

ooooooooooooooooo

¢ Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

imp

imp[1] imp[2] imp[3]

STRING STRING STRING
value value value

22

old imp

13 0f43

LASSONDE

ooooooooooooooooo

Reference Copy of Collection Object

T

1 ‘ old-imp := imp ‘
2 |Result := old _imp = imp -- Result = true

3 | imp[2] := "Jim"

4 |Result :=

5 across 1 |..| imp.count as j

6 all imp [j.item] ~ old_imp [j.item]

7 end Result = true

Before Executing L3 After Executing L3

uldiﬂ/

STRING STRING

B e | ek
[value]

“Jim”

ARRAY[STRING]

PR

old_imp

STRING

P
STRING STRING STRING

14 0f 43

Shallow Copy of Collection Object (1) LASSONDE

ooooooooooooooooo

T
‘ old-imp := imp.twin
Result := old _imp = imp
imp[2] := "Jim"
Result :=

across 1 |..| imp.count as j

NOoO O~ WN =

end Re t = false

—— Result

= false

all imp [7. J.tem] ~ old imp [j.item]

Before Executing L3

ARRAY[STRING]

/ PEENEN

STRING

m “Alan”

STRING

m “Mark”

STRING

old_imp ‘

\»

ARRAY[STRING]

After Executing L3

ARRAY[\STRING]

L=

STRING STRING STRING

m “Alan” value a value

old_imp ‘

ARRAY[STRING]

150f43

Shallow Copy of Collection Object (2) LASSONDE

ooooooooooooooooo

T
‘ old-imp := imp.twin
imp[2] .append ("*xxx")
Result :=
across 1 |..| imp.count as j

NOoO O WN =

end = true

Result := old imp = imp —- Result

= false

all imp [j J.tem] ~ old_imp [j.item]

Before Executing L3

ARRAY[STRING]

STRING STRING STRING
“Alan” “Mark” “Tom”

old mp

ARRAY[STRING]

After Executing L3

/ ARRAY[STRING]
= / \ \
STRING STRING STRING
value |[RVAE] valu m “Tom”

y

old_imp /‘

ARRAY[STRING]

16 of 43

Deep Copy of Collection Object (1) LASSONDE
T 1
1 ‘ old-imp := imp.deep-twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count as j
6 all imp [j.item] ~ old_imp [j.item] end —-- Result = false
Before Executing L3 After Executing L3
ARRAVm STRING
e
// \ imp
STRING STRING STRING STRING
1d_imp old_imp
17 of 43
Deep Copy of Collection Object (2) LASSONDE
T 1
1 ‘ old-imp := imp.deep_twin ‘
2 |Result := old _imp = imp Result = false
3 | imp[2].append ("x*x")
4 |Result :=
5 across 1 |..| imp.count as j
6 all imp [j.item] ~ old_imp [j.item] end Result = false
Before Executing L3 After Executing L3
/ e

sl

mp
STRING STRING STRING

STRING STRING STRING
- B ver QR rom

ARRAY[STRING]

ARRAY[STRING]

18 of 43

LASSONDE

ooooooooooooooooo

How are contracts checked at runtime?
¢ All contracts are specified as Boolean expressions.
¢ Right before a feature call (e.g., | acc.withdraw(10) ‘):

o The current state of is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.

o Cache values, via| : =], of old expressions in the post-condition .

e.g., ’ old balance = balance — a ‘

e.g.,| old accountsfi].id

e.g., ’ (old accounts|i]).id ‘

[old_balance := balance]

[old_accounts_i_id := accounts]i].id]

[old_accounts_i := accounts]i]]

[old_accounts := accounts]

e.g., | (old accounts)[i].id ‘

eg. [old_current := Current]
¢ Right after the feature call:
o The current state of is called its post-state.
o Evaluate invariant using current values of attributes and queries.
o Evaluate post-condition using both current values and

100143 “cached” values of attributes and queries.
[

(old Current).accounts[i].id ‘

LASSONDE

ooooooooooooooooo

When are contracts complete?

e In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.

e.g., INTEGER, BOOLEAN are simple-structured.
Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across]
20 of 43

Account LASSONDE
class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Attributes is_equal (other: ACCOUNT): BOOLEAN
owner: STRIN do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Cc s and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end

210f43

Bank Y SSONDE

class BANK

create make

feature
accounts: ARRAY[ACCOUNT
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT

require - the input name exists
existing: across accounts as acc some acc.item.owner ~ n end
—-— not (across accounts as acc all acc.item.owner /~ n end)
do ...
ensure Result.owner ~ n
end
add (n: STRING)
require —- the 1ir

non_existing: across accounts as acc all acc.item.owner /~ n end

+

not (55\51055 accounts as acc some acc. it ro~ n C’Ilii)

local new_account: ACCOUNT
do

create new_account.make (n)

accounts.force (new_account, accounts.upper + 1)
end

endt a3

Roadmap of lllustrations e

We examine 5 different versions of a command

deposit_on (n: STRING; a: INTEGER)

VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

3 of 43

E——

Object Structure for lllustration e

We will test each version by starting with the same runtime object
structure:

BANK 0 1
b.accounts
accounts

ACCOUNT

ACCOUNT
“Bill” “Steve”

balance

24 of 43

Version 1: e
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_v1l (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

do
from i := accounts.lower
until i1 > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n) .balance = old account_of (n).balance + a
end
end

25 0f 43

Test of Version 1 o

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t1l: correct imp and incomplete contract")
create b.make

b.add ("Bill")

b.add ("Steve")

—— deposit 100 dc

b.deposit_on-vl ("Steve", 100)

Result
b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance = 100
check Result end
end
end
26 of 43

Test of Version 1: Result o

APPLICATION

Note: * indicates a violation test case

[—
PASSED (1 out of 1)
violationl ¢ | e
Boolean 1 1
All Cases

1 1
| State |Contract Violation] TestName |
TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract

27 of 43

L\

Version 2: :
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

SSCNDE

HooL

accounts[accounts.lower].deposit (a
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
account_of (n) .balance = old account_of (n).balance + a
end
end

Current postconditions lack a check that accounts other than n

are unchanged.
28 of 43

Test of Version 2 LASSONDE Version 3: LASSONDE
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)

(00L OF ENGINEERING

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

1 1 . .

3:a BANK require across accounts as acc some acc.item.owner ~ n end
d . local i: INTEGER

o

do
comment ("t2: wrong imp and incomplete contract")

create b.make
b.add ("Bill")
b.add ("Steve")

al

accounts ccounts.lower].deposit
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:

account_of(n) .balance = old account_of(n) .balance + a

D
)
)

ot

deposi lars Stev
b.deposit_on-v2 ("Steve", 100)

Result :=
b.account_of ("Bill") .balance = 0 others.unchanged :
and b.account_of ("Steve").balance = 100 across old accounts as cursor
check Result end all cursor.item.owner /~ n implies
end cursor.item ~ account_of (cursor.item.owner)
end end
end
end

29 of 43 3tof43

Test of Version 2: Result LASSONDE Test of Version 3 LASSONDE

STHOOL OF ENGINEERING. STHOOL OF ENGINEERING.

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref copy: BOOLEAN

APPLICATION local
b: BANK
Note: * indicates a violation test case do
I comment. ("t3: wrong imp and complete contract with ref copy”)
FAILED (1 failed & 1 passed out of 2) create b.make
b.add ("3il1)
Violation) e b.add ("Steve")
Boolean 1 2
All Cases 1 2 —-— deposit
State Contract Violatio b.deposi
TEST_BANK Result :=
PASSED NONE t1: test deposit_on with correct imp and incomplete contract b.account_of ("Bill").balance = 0
FAILED [Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract and b.account_of ("Steve").balance = 100
check Result end
end
end
30 of 43 320f 43

Test of Version 3: Result

LASSONDE

100L OF ENGINEERING

APPLICATION

Note: * indicates a violation test case

FAILED (2 failed & 1 passed out of 3)

Total
violatiof/ = o | [4
Boolean 1 3
A1l Cases 1 3
Test Name

TEST_BANK

PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy

3 of 43

S—

Version 4:

LASSONDE

(00L OF ENGINEERING

Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)

require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER
do

accounts[accounts.lower].deposit (a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a
others_unchanged :
across old accounts.twin as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)
end
end
end

40145

Test of Version 4 Las

100L OF ENGINEERING

class TEST_BANK JN
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE
local
b: BANK
do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make
b.add ("Bill")
b.add ("Steve")

- L UL account
b.deposit_on-v4
Result :=
b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance = 100
check Result end
end
end
35 of 43

Test of Version 4: Result LASSONDE

STHOOL OF ENGINEERING.

APPLICATION

Note: * indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Case Tyoel __passed | Total
Violation 0 0
Boolean 1 4

ALl Cases 1

4

[PASSED [NONE [t1: test deposit_on with correct imp and incomplete contract |
FAILED Check assertion violated.|[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

36 of 43

g\

Version 5:
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ~ n end
local i: INTEGER

ES30NDE

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others_unchanged :
across old accounts.deep_-twin as cursor
all cursor.item.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)

end
end
370145

Test of Version 5 o

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK
do

comment ("t5: wrong imp and complete contract with deep copy")
create b.make

b.add ("Bill")

b.add ("Steve")

)
b.deposit_on-v5
Result :=

b.account_of ("Bill") .balance = 0
and b.account_of ("Steve").balance =
check Result end
end
end

38 of 43

J

L\

Test of Version 5: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

Cose Typel ———Possed | T]
Violation 0 4
Boolean 1 5

ALl Cases 1

5
PASSED NONE t1: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated.|t4: test deposit_on with wrong imp, complete contract with shallow object copy
FAILED Postcondition V"Lolated] t5: test deposit_on with wrong imp, complete contract with deep object copy

39 of 43

Exercise Y SSONDE

scrooL

e Consider the query account_of (n: STRING) of BANK.

¢ How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts = old accounts‘ [><
o laccoum‘:s = old accounts.twin‘ [X]
o |accounts = old accounts.deep_twin‘ [x]
O | accounts ~ old accounts‘ X
o laccounts ” old accounts.twin‘ ><]
o ’accounts ~ old accounts.deepitwin‘ [\/]

¢ Which equality of the above is appropriate for the
postcondition?

¢ Why is each one of the other equalities not appropriate?

40 of 43

Index (1) Lassonoe

Expanded Class: Modelling
Expanded Class: Programming (2)
Expanded Class: Programming (3)
Reference vs. Expanded (1)
Reference vs. Expanded (2)
Copying Objects

Copying Objects: Reference Copy
Copying Objects: Shallow Copy
Copying Objects: Deep Copy
Example: Copying Objects
Example: Collection Objects (1)
Example: Collection Objects (2)
Reference Copy of Collection Object
Shallow Copy of Collection Object (1)

41 of 43

Index (2) :AssoNDE

Shallow Copy of Collection Object (2)
Deep Copy of Collection Object (1)
Deep Copy of Collection Object (2)
How are contracts checked at runtime?
When are contracts complete?
Account

Bank

Roadmap of lllustrations

Object Structure for lllustration
Version 1:

Incomplete Contracts, Correct Implementation
Test of Version 1

Test of Version 1: Result
Version 2:

Igcgg‘nplete Contracts, Wrong Implementation

Index (3) Lassonoe

Test of Version 2

Test of Version 2: Result
Version 3:

Complete Contracts with Reference Copy
Test of Version 3

Test of Version 3: Result
Version 4:

Complete Contracts with Shallow Object Copy
Test of Version 4

Test of Version 4: Result
Version 5:

Complete Contracts with Deep Object Copy
Test of Version 5
Test of Version 5: Result

Exercise
43 of 43

