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Expanded Class: Modelling
● We may want to have objects which are:○ Integral parts of some other objects○ Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.
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Expanded Class: Programming (2)
class KEYBOARD . . . end class CPU . . . end

class MONITOR . . . end class NETWORK . . . end

class WORKSTATION

k: expanded KEYBOARD

c: expanded CPU

m: expanded MONITOR

n: NETWORK

end

Alternatively:
expanded class KEYBOARD . . . end

expanded class CPU . . . end

expanded class MONITOR . . . end

class NETWORK . . . end

class WORKSTATION

k: KEYBOARD

c: CPU

m: MONITOR

n: NETWORK

end
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Expanded Class: Programming (3)

expanded class

B

feature

change_i (ni: INTEGER)
do

i := ni

end

feature

i: INTEGER

end

1 test_expanded: BOOLEAN

2 local

3 eb1, eb2: B

4 do

5 Result := eb1.i = 0 and eb2.i = 0
6 check Result end

7 Result := eb1 = eb2

8 check Result end

9 eb2.change_i (15)
10 Result := eb1.i = 0 and eb2.i = 15
11 check Result end

12 Result := eb1 /= eb2

13 check Result end

14 end

● L5: object of expanded type is automatically initialized.
● L9 & L10: no sharing among objects of expanded type.
● L7 & L12: = between expanded objects compare their contents.
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Reference vs. Expanded (1)

● Every entity must be declared to be of a certain type (based on
a class).

● Every type is either referenced or expanded .
● In reference types:○ y denotes a reference to some object○ x := y attaches x to same object as does y○ x = y compares references
● In expanded types:○ y denotes some object (of expanded type)○ x := y copies contents of y into x○ x = y compares contents [x ∼ y]
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Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author expanded-typed author
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Copying Objects
Say variables c1 and c2 are both declared of type C. [ c1, c2: C ]● There is only one attribute a declared in class C.● c1.a and c2.a may be of either:○ expanded type or○ reference type

a

C

c1

a

C

c2

c1.a

c2.a
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Copying Objects: Reference Copy
Reference Copy c1 := c2○ Copy the address stored in variable c2 and store it in c1.⇒ Both c1 and c2 point to the same object.⇒ Updates performed via c1 also visible to c2. [ aliasing ]

a

C

c1

a

C

c2

c1.a

c2.a
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Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin○ Create a temporary, behind-the-scene object c3 of type C.○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a○ Make a reference copy of c3: c1 := c3⇒ c1 and c2 are not pointing to the same object. [ c1 /= c2 ]⇒ c1.a and c2.a are pointing to the same object.⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a
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Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin○ Create a temporary, behind-the-scene object c3 of type C.○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is expanded (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin○ Make a reference copy of c3: c1 := c3⇒ c1 and c2 are not pointing to the same object.⇒ c1.a and c2.a are not pointing to the same object.⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin
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Copying Objects
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Shallow and deep cloning 

!  Initial situation: 

!  Result of: 

b := a 

c := a.twin 

d := a.deep_twin 

“Almaviva” name 
landlord 

loved_one 

a 
O1 

“Figaro” 
O2 

“Susanna” 
O3 

b 

“Almaviva” O4 

c 

“Almaviva” name 
landlord 

loved_one 

O5 

“Figaro” 
O6 

“Susanna” 
O7 

d 
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Example: Collection Objects (1)

● In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED LIST, etc.):

At runtime, that variable stores the address of an object of that
type (as opposed to storing the object in its entirety).

● Assume the following variables of the same type:
. . .
local

imp : ARRAY[STRING]
old_imp: ARRAY[STRING]

do

create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Tom", 3)
. . .
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Example: Collection Objects (2)
● Variables imp and old imp store address(es) of some array(s).● Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

imp[1] imp[2] imp[3]

imp

old_imp

??
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Reference Copy of Collection Object

1 old imp := imp

2 Result := old_imp = imp -- Result = true
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value “Jim”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value
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Shallow Copy of Collection Object (1)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item]
7 end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Jim”

STRING

value
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Shallow Copy of Collection Object (2)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Mark***”
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Deep Copy of Collection Object (1)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Jim”

STRING

value
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Deep Copy of Collection Object (2)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count as j

6 all imp [j.item] ∼ old_imp [j.item] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Mark***”

18 of 43

How are contracts checked at runtime?
● All contracts are specified as Boolean expressions.● Right before a feature call (e.g., acc.withdraw(10) ):
○ The current state of acc is called its pre-state.○ Evaluate pre-condition using current values of attributes/queries.○ Cache values, via := , of old expressions in the post-condition .

e.g., old balance = balance − a [ old balance ∶= balance ]

e.g., old accounts[i].id [ old accounts i id ∶= accounts[i].id ]

e.g., (old accounts[i]).id [ old accounts i ∶= accounts[i] ]

e.g., (old accounts)[i].id [ old accounts ∶= accounts ]

e.g., (old Current).accounts[i].id [ old current ∶= Current ]● Right after the feature call:○ The current state of acc is called its post-state.○ Evaluate invariant using current values of attributes and queries.○ Evaluate post-condition using both current values and
“cached” values of attributes and queries.
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When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .
● The second contract is much harder to specify:○ Reference aliasing [ ref copy vs. shallow copy vs. deep copy ]○ Iterable structure [ use across ]
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Account
class

ACCOUNT

inherit

ANY

redefine is_equal end

create

make

feature -- Attributes

owner: STRING

balance: INTEGER

feature -- Commands

make (n: STRING)
do

owner := n

balance := 0
end

deposit(a: INTEGER)
do

balance := balance + a

ensure

balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN

do

Result :=
owner ∼ other.owner

and balance = other.balance
end

end
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Bank
class BANK

create make

feature

accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end

account_of (n: STRING): ACCOUNT

require -- the input name exists

existing: across accounts as acc some acc.item.owner ∼ n end

-- not (across accounts as acc all acc.item.owner /∼ n end)

do . . .
ensure Result.owner ∼ n

end

add (n: STRING)
require -- the input name does not exist

non_existing: across accounts as acc all acc.item.owner /∼ n end

-- not (across accounts as acc some acc.item.owner ∼ n end)

local new_account: ACCOUNT

do

create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end
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Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)
VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?

1 Correct Incomplete No

2 Wrong Incomplete No

3 Wrong Complete (reference copy) No

4 Wrong Complete (shallow copy) No

5 Wrong Complete (deep copy) Yes
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Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b
accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts
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Version 1:
Incomplete Contracts, Correct Implementation
class BANK

deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

from i := accounts.lower
until i > accounts.upper
loop

if accounts[i].owner ∼ n then accounts[i].deposit(a) end

i := i + 1
end

ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end

end
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Test of Version 1

class TEST_BANK

test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local

b: BANK

do

comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v1 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end
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Test of Version 1: Result
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Version 2:
Incomplete Contracts, Wrong Implementation
class BANK

deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

end

end

Current postconditions lack a check that accounts other than n
are unchanged.
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Test of Version 2

class TEST_BANK

test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local

b: BANK

do

comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v2 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end
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Test of Version 2: Result

30 of 43

Version 3:
Complete Contracts with Reference Copy
class BANK

deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of(n).balance = old account_of(n).balance + a

others unchanged :
across old accounts as cursor

all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end
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Test of Version 3

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local

b: BANK

do

comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v3 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end
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Test of Version 3: Result
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Version 4:
Complete Contracts with Shallow Object Copy
class BANK

deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :
across old accounts.twin as cursor

all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end
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Test of Version 4

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN

local

b: BANK

do

comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v4 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end
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Test of Version 4: Result
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Version 5:
Complete Contracts with Deep Object Copy
class BANK

deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts as acc some acc.item.owner ∼ n end

local i: INTEGER

do

-- same loop as in version 1

-- wrong implementation: also deposit in the first account

accounts[accounts.lower].deposit(a)

ensure

num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
account_of (n).balance = old account_of (n).balance + a

others unchanged :
across old accounts.deep twin as cursor

all cursor.item.owner /∼ n implies

cursor.item ∼ account_of (cursor.item.owner)
end

end

end
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Test of Version 5

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local

b: BANK

do

comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account

b.deposit on v5 ("Steve", 100)

Result :=
b.account_of ("Bill").balance = 0

and b.account_of ("Steve").balance = 100
check Result end

end

end
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Test of Version 5: Result

39 of 43

Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [ × ]○ accounts = old accounts.twin [ × ]○ accounts = old accounts.deep_twin [ × ]○ accounts ˜ old accounts [ × ]○ accounts ˜ old accounts.twin [ × ]○ accounts ˜ old accounts.deep_twin [ ✓ ]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?
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