Elementary Programming

EECS1021:
Object Oriented Programming:

YORKIN " imeai™

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Outcomes

|

SSONDE

e Learn ingredients of elementary programming:

o data types [numbers, characters, strings]

o literal values

o constants

o variables

o operators [arithmetic, relational]

(o)

o

expressions
input and output

» Given a problem:

o

o

20135

First, plan how you would solve it mathematically.
Then, Implement your solution by writing a Java program.

Entry Point of Execution: the “main” Methodisov:

For now, all your programming exercises will be defined within the

body of the main method.

public class MyClass {
public static void main(String[] args) {
/#* Your programming solution is defined here
}
}

The main method is treated by Java as the starting point of
executing your program.

Sequential Execution:
The execution starts with the first line in the main method,

proceed line by line, from top to bottom, until there are no more

lines to execute, then it terminates .

e

Development Process

write lines of code

Create a New Java Class Save File ’ Run Terminate Correct

Editor

Expected
Output?

Crash?

Syntax or Type Errors Runtime Exception Logical Error

Fix Code

/|

Compile Time vs. Run Time
¢ These terms refer to two stages of developing your program.

SSONDE

|

e | Compile time |: when editing programs in Eclipse.

o There are two kinds of compile-time errors :

o Syntax errors: your program does not conform to Java’s grammar.
¢ e.g., missing the semicolon, curly braces, or round parentheses
¢ Java syntax is defined in the Java language specification.
o Type errors: your program manipulates data in an inconsistent way
e.g.,["York" » 23] [- multiplication is only for numbers]

e | Run time |is when executing/running the main method.

o Exceptions: your program crashes and terminates abnormally
e €.0., ArithmeticException (€.g.,),
ArrayIndexOutOfBoundException, NullPointerException.
o Logical errors: your program terminates normally but does not
behave as expected

e.g., calculating area of a circle with radius rusing2-7-r
5.0135

https://docs.oracle.com/javase/specs/

Compile Time Errors vs. Run Time Errors Jsou:

At the end of a computer lab test, if your submitted program:
Cannot compile ‘

o

= Your program cannot even be run
= Zero!

What you should do :
Practice writing as many programs as possible.

o | Compiles, but run with exceptions or unexpected outputs.

= Not necessarily zero, but likely low marks!

What you should do :
Truly understand the logic/rationale beyond programs.

fof3g

- ___
—

SSONDE

|

Always Document Your Code
o Each important design or implementation decision should be

carefully documented at the right place of your code.
o Single-Lined Comments: [Eclipse: ctrl + /]

[Eclipse: ctrl + /]

o)
=
c
=
=3
®
1
C
=2
| D
S5
(@)
o
3
3
0]
>
=
@

o0 5 o

o Comments do not affect the runtime behaviour of programs.
o Comments are only interpreted by human developers.

= Useful for revision and extension.
e

- ___

Literals (1) _iIEASSONDE
A literal is a constant value that appears directly in a program.

1. Character Literals
o A single character enclosed within a pair of single quotes
o e.g., ta’, ‘17, YT N (N
o ltis invalid to write an empty character:
2. String Literals
o A (possibly empty) sequence of characters enclosed within a pair

of double quotes
o e.g., *V, all, Y Work! T, VYRS, N T
3. Integer Literals
o A non-empty sequence of numerical digits
o e.g., 0,-123, 123, 23943
4. Floating-Point Literals
o Specified using a combination of an integral part and a fractional
part, separated by a decimal point, or using the scientific notation
o e.g., 0.3334, 12.0, 34.298, 1.23456E+2 (for 1.23456 x 10?),

1.23456E-2 (for 1.23456 x 1072)

e

/|

Operations LassonDE
An operation refers to the process of applying an operator to its
operand(s).
1. Numerical Operations [results are numbers]
eg.,1.1 + 0.34
eg., 13 / 4 [quotient: 3]
eg.,13.0 / 4 [precision: 3.25]
eg., 13 % 4 [remainder: 1]
e.g., —45
e.g., -1 % 45
2. Relational Operations [results are true or false]
eg.,3 <= 4 [true]
eg.,5 < 3 [false]
e.g., 56 == 34 [false]
3. String Concatenations [results are strings]

e.g., *‘York’’ + ' '’ 4+ “University’’ isequivalentto
‘‘York University’’

e

-
Java Data Types LassonDE
A (data) type denotes a set of related runtime values.
1. Integer Type

byte | 8bits | -128,...,-1,0,1,...,2" - 1]
short | 16 bits [-2'°, 2'° 1]
int | 32 bits [-23', 2% —1]
long | 64 bits [-2%8, 2% 1]
2. Floating-Point Number Type
float | 32 bits
‘ double | 64 bits

3. Character Type
char: the set of single characters
4. String Type
String: the set of all possible character sequences
Declaring a variable v to be of type T constrains v to store only

those values defined in T.
10.0£35

/|

Assignments LassonDE
An assignment designates a value for a variable, or initializes a
named constant.

That is, an assignment replaces the old value stored in a
placeholder with a new value.
An assignment is done using the assignment operator (=).

An assignment operator has two operands:

e The /eft operand is called the assignment target
which must be a variable name

e The right operand is called the assignment source
which must be an expression whose type is compatible with the
declared type of assignment target

e.g., This is a valid assignment:

String namel = ‘‘Heeyeon’’;
e.g., This is an invalid assignment:
String namel = (1 + 2) % (23 % 5);

e

/|

Named Constants vs. Variables LassonDE

A named constant or a variable:
¢ |Is an identifier that refers to a placeholder

e Must be declared with its type (of stored value) before use:

final double PI = 3. 14159 /* a
double radius; /* an uninitialized va

e Can only store a value that is compatible with its declared type
However, a named constant and a variable are different in that:

¢ A named constant must be initialized, and cannot change its
stored value.

» A variable may change its stored value as needed.

12035

/|

Expressions (1) LassoNDE
An expression is a composition of operations .

An expression may be:

e Type Correct: for each constituent operation, types of the
operands are compatible with the corresponding operator.
eg., (1 + 2) » (23 % 5)

e.g., ‘‘Hello '’ + “‘world’’

e Not Type Correct
e.g., ‘46’’’ % ‘4
e.g., (*‘YORK '’ + ‘‘University’’) * (46 % 4)

o ““YORK’’ and ‘‘University’’ are both strings
. LHS of « is type correct and is of type String

o 46 and 4 are both integers
. RHS of % is type correct and is of type int

o Types of LHS and RHS of « are not compatible
.. Overall the expression (i.e., a multiplication) is not type correct

e

/|

Multiple Executions of Same Print Statementissouw:

Executing the same print statement multiple times may or may
not output different messages to the console.

e.g., Print statements involving literals or named constants only:

final double PI = 3.14; /* a nar
System.out.println("Pi is " + PI); /
System.out.println("Pi is " + PI);

e.g., Print statements involving variables:

",
’

String msg = "Counter value is
int counter = 1; /% an integer va
System.out.println(msg + counter);
System.out.println(msg + counter),
counter = 2; /* re-assi n ~hanges variable’s stored value */
System.out.println(msg + counter)

/|

Case Study 1: Compute the Area of a Circle Jsov

Problem: declare two variables radius and area, initialize
radius as 20, compute the value of area accordingly, and print
out the value of area.

public class ComputeArea {
public static void main(String[] args) {
double radius; /
double area; /=

/ *

ute area +*/

radius * radius » 3.14159;

area

/% Display results x/

System.out.print ("The area of circle with radius ");
System.out.println(radius + " is " + area);

}
}

It would be more flexible if we can let the user specify the inputs
via keyboard!

- ___
—

Input and Output

SSONDE

|

Reading input from the console enables user interaction.

import java.util.Scanner;
public class ComputeAreaWithConsoleInput {

public static void maln(Strlng[J args) {
/* Cre a Scanner object x/
Scanner 1nput = new Scanner(System 1n)

")

double radius

*/

System.out. prlnt("Enter a number for radlus
= input.nextDouble() ;

flnal double PI = 3.14169; /# a 1 co nt romw o/
double area = PI x radius * radius; /+ area= ﬂﬂ */
/% Vv Ie 1t =/
System. out println(
"Area for circle of radius " + radius + " is " + area);

/|

Useful Methods for Scanner LassonDE

e nextint() which reads an integer value from the keyboard
e nextDouble() which reads a double value from the keyboard
e nextLine() which reads a string value from the keyboard

Variables: Common Mistakes (1) LassonDE

Mistake: The same variable is declared more than once.

int counter
int counter

1;
2;

Fix 1: Assign the new value to the same variable.

int counter = 1;
counter = 2;

Fix 2: Declare a new variable (with a different name).

int counter = 1;
int counter2 = 2;

Which fix to adopt depends on what you need!

18.0£.35

|

Variables: Common Mistakes (2)

SSONDE

Mistake: A variable is used before it is declared.

System.out.println("Counter value is " + counter);
int counter = 1;

counter = 2;

System.out.println("Counter value is " + counter);

Fix: Move a variable’s declaration before its very first usage.

int counter = 1;

System.out.println("Counter value is " + counter);
counter = 2;
System.out.println("Counter value is " + counter);

Remember, Java programs are always executed, line by line,
from top to bottom .

19.0£.35

Case Study 2: Display Time

/|

LASSONDE
i

Problem: prompt the user for an integer value of seconds, divide

that value into minutes and remaining seconds, and print the

results. For example, given an input 200, output “200 seconds is 3

minutes and 20 seconds”.

import java.util.Scanner;
public class DisplayTime {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

/* Prompt the user for input #*/

int seconds = input.nextInt();

/

int minutes = seconds / 60; /* minutes
int remainingSeconds = seconds % 60; /x*
System.out.print (seconds + " seconds 1is
System.out.print (" minutes and ");

System.out.println(remainingSeconds + "

System.out.print ("Enter an integer for seconds: ");

*/

seconds */

")

seconds") ;

e

Where May Assignment Sources Come Fro@;4sonos

Intar = src, the assignment source src may come from:
e A literal

’int i = 23; ‘

e A variable

int i =
int j =

* An expression involving literals and variables

int i1
int j

23;
i x 2;

e An input from the user

Scanner input = new Scanner (System.in);
int i = input.nextInt();
int 7 = 1 %« 2;

21035

SSONDE

Numerical Type Conversion: Coercion

ks

o |mplicit and automatic type conversion
o Java automatically converts an integer value to a real number

when necessary (which adds a fractional part).
* 4.5; /* 3 cC rc to 3
+ 2; /* resul

’

double valuel 3
double valuel2 7

o However, does the following work?

=3 % 4.5;

int valuel

e RHS evaluates to 13. 5 due to coercion.
e LHS declares a variable for storing integers (with no fractional parts).
[compile-time error |

.. Not compatible
= Need a way to “truncate” the fractional part!

e

ks

- . -
SSONDE

Numerical Type Conversion: Casting
o Explicit and manual type conversion
o Usage 1: To assign a real number to an integer variable, you need

to use explicit casting (which throws off the fractional part)
int value3 = (int) 3.1415926; ‘
o Usage 2: You may also use explicit casting to force precision
* System.out.println(l / 2); /% 0 */ ‘
When both operands are integers, division evaluates to quotient
* System.out.println(((double) 1) / 2); /* 0.5 =/
System.out.println(1 / ((double) 2)); /x 0.5 =/
System.out.println(((double) 1) / ((double) 2)); /+ 0.5
Either or both of the integers operands are cast to double type
*[system.out .printin((double) 1 / 2); /+ 0.5 < ‘
Casting has higher precedence than arithmetic operation
(L /2)); /0.0 #/ ‘

L]
System.out.println((double)
.- Order of evaluating division is forced, via parentheses to occur first.
—_

Numerical Type Conversion: Exercise

ASSONDE

| gl

Consider the following Java code:

1 |double dlI = 3.1415926;
2 | System.out.println("dl
3 |double d2 = di;

4 | System.out.println("d2
5 |int i1 = (int) dI;

6 | System.out.println("il
7 |d2 = i1 % 5;

8 | System.out.println("d2

is

is

is

is

+ dl);

+ d2);

+ 11);

+ d2);

Write the exact output to the console.

dl is 3.1415926
d2 is 3.1415926
il is 3

d2 is 15.0

e

/|

Expressions (2.1) o

Consider the following Java code, is each line type-correct?
Why and Why Not?

1 |double di = 23;

2 |int i1 = 23.6;

3 |String s1 ="' ’;

4 |char c1 =" ";
e L1: YES [coercion]
e L2: NO [cast assignment source, i.e., (int) 23.6]
e L3: NO [cannot assign char to string]
e L4: NO [cannot assign string to char]

25.0t.35

/|

Expressions (2.2) o

Consider the following Java code, is each line type-correct?
Why and Why Not?

1 |int i1 = (int) 23.6;

2 |double dil = il % 3;

3 |String s1 = "La ";

4 |String s2 = sl + "La Land";

5 |i1 = (s2 = d1) + (il + dl);
e L1: YES [proper cast]
e L2: YES [coercion]
e L3: YES [string literal assigned to string var.]
e L4: YES [type-correct string concat. assigned to string var.]
e L5: NO [string x number is undefined]

260135

Augmented Assignments Lassonpe

* You very often want to increment or decrement the value of a
variable by some amount.

balance = balance + deposit;
balance = balance - withdraw;

Java supports special operators for these:

balance += deposit;
balance —-= withdraw;

e Java supports operators for incrementing or decrementing by 1:

14+ J ==

e Confusingly, these increment/decrement assignment operators
can be used in assignments:

int i = 0; int j =

k=1 ++; /+ k is a
k =++ j; /+ k is a
27.0f35

Literals (2) LassonDE
Q. Outputs of system.out.println(‘a’) versus
System.out.println(‘‘a’’)? [SAME]
Q. Result of comparison **a’’ == a’? [TYPE ERROR]

o Literal *a’ ' is a string (i.e., character sequence) that consists of
a single character.
o Literal “a’ is a single character.

.. You cannot compare a character sequence with a character.

/|

Escape Sequences o

An escape sequence denotes a single character.
e Specified as a backslash (\) followed by a single character
o eg,\t, \n, \7 \" A\
e Does not mean literally, but means specially to Java compiler
o \t means atab
o \n means a new line
o \\ means a back slash
o\’ means a single quote
o \" means a double quote
e May use an escape sequence in a character or string literal:
o w7 [INVALID; need to escape ']

o "\~ [VALID]
o s [VALID; no need to escape "]
o Vs [INVALID; need to escape "]
o v/ [VALID]
o v [VALID; no need to escape ']
o \n\t\"’~ [VALID]
29.0135

|

|

print VS. println

SSONDE

Executing System.out.println (someString) isthe same
as executing System.out.print (someString + "\n").
v eg.,

System.out.print ("Hello");
System.out.print ("World");

HelloWorld

e eg.,

System.out.println("Hello");
System.out.println("World");

Hello
World

30.0t35

/|

SSONDE

|

Identifiers & Naming Conventions
¢ |dentifiers are names for identifying Java elements: classes,
methods, constants, and variables.
An identifier:
o Is an arbitrarily long sequence of characters: letters, digits,
underscores (_), and dollar signs (3).
o Must start with a letter, an underscore, or a dollar sign.
o Must not start with a digit.
o Cannot clash with reserved words (e.g., class, if, for, int).
Valid ids: $2, Welcome, name, _name, YORK_University
Invalid ids: 2name, +YORK, Toronto@Canada
More conventions:
o Class names are compound words, all capitalized:
e.g., Tester, HelloWorld, TicTacToe, MagicCardGame
o Variable and method names are like class names, except 1st word
is all lower cases: e.g, main, firstName, averageOfClass
o Constant names are underscore-separated upper cases:
e.g., PI, USD_IN_WON

e

Beyond this lecture. .. o

e Create a tester in Eclipse.
» Try out the examples give in the slides.

e See https://docs.oracle.com/javase/tutorial/
java/nutsandbolts/datatypes.html for more
information about data types in Java.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Index (1) ;ASSONDE

Learning Outcomes

Entry Point of Execution: the “main” Method
Development Process

Compile Time vs. Run Time

Compile Time Errors vs. Run Time Errors
Always Document Your Code

Literals (1)

Operations

Java Data Types

Assignments

Named Constants vs. Variables
Expressions (1)

Multiple Executions of Same Print Statement

Case Study 1: Compute the Area of a Circle
e

Index (2) _;HASSONDE
Input and Output
Useful Methods for Scanner

Variables: Common Mistakes (1)

Variables: Common Mistakes (2)

Case Study 2: Display Time

Where May Assignment Sources Come From?
Numerical Type Conversion: Coercion
Numerical Type Conversion: Casting
Numerical Type Conversion: Exercise

Expressions (2.1)
Expressions (2.2)

Augmented Assignments
Literals (2)

Escape Sequence

/|

Index (3) .;ASSONDE
print VS. println

Identifiers and Naming Conventions in Java

Beyond this lecture. ..

Selections

EECS1021:
Object Oriented Programming:

YORKIN " imeai™

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes Lassonpe

The Boolean Data Type
if Statement
Compound vs. Primitive Statement

Common Errors and Pitfalls

Logical Operations

/|

|

Motivating Examples (1.1)

SSONDE
1 |import java.util.Scanner;
2 |public class ComputeArea {
3 public static void main(String[] args) {
4 Scanner input = new Scanner (System.in);
5 final double PI = 3.14;
6 System.out.println("Enter the radius of a circle:");
7 double radiusFromUser = input.nextDouble();
8 double area = radiusFromUser * radiusFromUser * PI;
9 System.out.print ("Circle with radius " + radiusFromUser);
10 System.out.println(" has an area of " + area);
11 }
12 |}

e When the above Java class is run as a Java Application, Line 4
is executed first, followed by executing Line 5, ..., and ended
with executing Line 10.

* In Line 7, the radius value comes from the user. Any problems?

e

|

Motivating Examples (1.2)

SSONDE

o If the user enters a positive radius value as expected:

Enter the radius of a circle:
3
Circle with radius 3.0 has an area of 28.26

e However, if the user enters a negative radius value:

Enter the radius of a circle:
-3
Circle with radius -3.0 has an area of 28.26

In this case, the area should not have been calculated!
¢ \We need a mechanism to take selective actions :

Act differently in response to valid and invalid input values.
datfl

-
Motivating Examples (2.1)

SSONDE

|

Problem: Take an integer value from the user, then output a
message indicating if the number is negative, zero, or positive.

e Here is an example run of the program:

Enter a number:
5
You just entered a positive number.

e Here is another example run of the program:

Enter a number:
-5
You just entered a negative number.

* Your solution program must accommodate all possibilities!

e

/|

Motivating Examples (2.2)

SSONDE

|

¢ So far, you only learned about writing programs that are
executed line by line, top to bottom.

¢ In general, we need a mechanism to allow the program to:
o Check a list of conditions; and
o Branch its execution accordingly.

* e.g., To solve the above problem, we have 3 possible branches:

1. If the user input is negative, then we execute the first branch that
prints You just entered a negative number.

2. If the user inputis zero, then we execute the second branch that
prints You just entered zero.

3. If the userinput is positive, then we execute the third branch that
prints You just entered a positive number.

e

/|

The boolean Data Type LASSONDE

A (data) type denotes a set of related runtime values.

We need a data type whose values suggest either a condition
holds, or it does not hold, so that we can take selective actions.
The Java boolean type consists of 2 literal values: frue, false

All relational expressions have the boolean type.

Math Symbol Java Operator Example (ris5) Result

< <= r <=5 true
> r >= 5 frue
= == r =5 true
< < r <5 false
> > r > 5 false
1= r !=5 false
Note. You may do the following rewritings:
0 x <=y X >y x =y X ==y
o l(x > vy) L(x <=y) L(x == vy) L(x !I'=y)

e

Syntax of if Statement

/+ Mandatory */

*/

T

| if (BooleanExpression;) {

Statement; 1; Statements 1;
/# Optional

|else if (BooleanExpression;) ({

}
Statement, 5 ;

Statements 4 ;
/* Optlonal */

{

}
else if (BooleanExpress:on,7)
Statement, 1; Statement, »;

/* Optional =*/
previous bre
}

else {
/+ when all :
Statementy; Statement;;

e

}

|

start of if-statement

Statement;
: 6 end of if-statement

S
Semantics of if Statement (1.1) "'égsésom

/|

Semantics of if Statement (1.2) LassonDE

Consider a single i f statement as consisting of:

e An if branch

e A (possibly empty) list of else if branches

e An optional else branch

At runtime :

e Branches of the i f statement are executed from top to bottom.

» We only evaluate the condition of a branch if those conditions
of its preceding branches evaluate to false.

¢ The first branch whose condition evaluates to frue gets its
body (i.e., code wrapped within { and }) executed.

o After this execution, all /ater branches are ignored.

e

S
Semantics of if Statement (2.1.1) jgé

Only first satisfying branch executed; later branches ignored.
r
int 1 = -4;
if(i < 0) {
System.out.println("i is negative");
{

}

else if (i < 10)
System.out.println("i is less than than 10");

}
else if (i == 10) {
System.out.println("i is equal to 10");

}

else {

}
i is negative
e

System.out.println("i is greater than 10");

S
Semantics of if Statement (2.1.2) jgé

Only first satisfying branch executed; later branches ignored.
r
int 1 = 5;
if(i < 0) {
System.out.println("i is negative");
{

}

else if (i < 10)
System.out.println("i is less than than 10");

}
else if (i == 10) {
System.out.println("i is equal to 10");

}

else {

}
i is less than 10
e

System.out.println("i is greater than 10");

- ___
—

Semantics of if Statement (2.2)

SSONDE

|

No satisfying branches, and no e1se part, then nothing is
executed.

r

int 1 = 12;
if(i < 0) |
System.out.println("i is negative");
}
else if (i < 10) {
System.out.println("i is less than than 10");
}
else if (i == 10) {
System.out.println("i is equal to 10");

}

\w,

ko

S
Semantics of if Statement (2.3) Zégsésom

No satisfying branches, then e1se part, if there, is executed.
r
int 1 = 12;
if(i < 0) {
System.out.println("i is negative");
{

}

else if (i < 10)
System.out.println("i is less than than 10");

}
else if (i == 10) {
System.out.println("i is equal to 10");

}

else {

}
i is greater than 10
e

System.out.println("i is greater than 10");

Two-Way if Statement without else Part

|

SSONDE

if (radius >= 0) {
area radius * radius = PI;
System.out.println("Area for the circle of is

}

" + area);

An if statement with the missing else part is equivalent to an if

statement with an e1se part that does nothing.

if (radius >= 0) {
area radius * radius = PI;
System.out.println("Area for the circle of is
}

else {

/ N n
/* Do n

}

" + area);

Multi-Way if Statement with else Part

/|

SSONDE

|

if (score >= 80.0) {
System.out.println("A");

}

else if (score >= 70.0) {
System.out.println("B");

}

else if (score >= 60.0) {
System.out.println("C");

}

else {

System.out.println("F");
}

if (score >= 80.0) {
System.out.println("A"); }
else { .0
if (score >= 70.0) {
System.out.println("B"); }
else { /+ score < 70.0 =/
if (score >= 60.0) {
System.out.println("C"); }
else { /x y
System.out.println("F");
}
}
}

/* score < 80 */

score < 60.0 */

Exercise: Draw the corresponding flow charts for both programs.
Convince yourself that they are equivalent.

e

/|

Multi-Way i £ Statement without else Part

|

SSONDE

String lettGrade = "F";

if (score >= 80.0) {
letterGrade = "A";

}

else if (score >= 70.0) {
letterGrade = "B";

}

else if (score >= 60.0) {
letterGrade = "C";

}

In this case, since we already assign an initial, default value
"F" to variable letterGrade, so when all the branch
conditions evaluate to false, then the default value is kept.

Compare the above example with the example in slide 53.
1Zoi6dl

Case Study: Error Handling of Input Radius g%

Problem: Prompt the user for the radius value of a circle. Print an
error message if input number is negative; otherwise, print the
calculated area.

public class ComputeArea {
public static void main(String[] args) {

System.out.println("Enter a radius value:");

Scanner input = new Scanner(System.in);

double radius = input.nextDouble();

final double PI = 3.14159;

if (radius < 0) { /#* condition of invalid inputs */
System.out.println("Error: Negative radius value!");

}

else { /* implicit: !(radius < 0), or radius >= 0 */
double area = radius * radius x PI;
System.out.println("Area is " + area);

Case Study: Error Handling of Input Radius g%

The same problem can be solved by checking the condition of

valid inputs first.

public class ComputeAreaZl ({
public static void main(String[] args) {

System.out.println("Enter a radius value:");
Scanner input = new Scanner(System.in);

double radius = input.nextDouble();

final double PI = 3.14159;

if (radius >= 0) { /% condition of valid inputs #*/
double area = radius * radius * PI;
System.out.println("Area is " + area);

}

else { /# implicit: !(radius >= 0), or radius < 0 #*/

System.out.println("Error: Negative radius value!");

ks

R
One if Stmt vs. Multiple if Stmts (1) 'ﬁgsgsom

Question: Do these two programs behave same at runtime?

if(i >= 3) {System.out.println("i is >= 3");}
else if (i <= 8) {System.out.println("i is <= 8");}
if(i >= 3) {System.out.println("i is >= 3");
if(i <= 8) ({System.out.println("i is <= 8");}
Question: Do these two programs behave same at runtime?
{System.out.println("i is <= 3");}
{System.out.println("i is >= 8");}

if (i <= 3)

else if (i >= 8)
if (i <= 3) {System.out.println("i is <= 3");}
if(i >= 8) {System.out.println("i is >= 8");}
e

One if Stmt vs. Multiple if Stmts (2) o

T 1
| int i = 5; |

if(i >= 3) {System.out.println("i is >= 3");}
else if (i <= 8) {System.out.println("i is <= 8");}

i is >= 3

T 1
| int i = 5; \
if (i >= 3

)
if (i <= 8)

{System.out.println("i is >= 3");}
{System.out.println("i is <= 8");}

i is >= 3
i is <= 8

Two versions behave differently because the two conditions i >= 3
and i <= 8 may be satisfied simultaneously.
21 of 61,

One if Stmt vs. Multiple if Stmts (3) o

r 1
| int i = 2; \
if(i <= 3) {System.out.println("i is <= 3");}

else if (i >= 8) {System.out.println("i is >= 8");}

i is <=3

r 1
| int i = 2; \
if (i <= 3)
if (i >= 8)

{System.out.println("i is >= 8");}

{System.out.println("i is <= 3");}

i is <=3

Two versions behave the same because the two conditions i <= 3
and i >= 8 cannot be satisfied simultaneously.

220t 63

/|

SSONDE

|

Scope of Variables (1)

When you declare a variable, there is a limited scope where the

variable can be used.

e |f the variable is declared directly under the main method, then
all lines of code (including branches of i f statements) may
either re-assign a new value to it or use its value.

public static void main(String[] args) {
int i = input.nextInt();
System.out.println("i is " + 1i);
if (i > 0) |
i =1 * 3; /+ both use and re why * /
}
else {
i =1 % =-3; /% both use and re-—-assignment, why? %/
}
System.out.println("3 x [i| is " + 1);
}

e

Scope of Variables (2.1)

/|

SSONDE

|

e [f the variable is declared under an if branch, anelse if
branch, or an e1se branch, then only lines of code appearing
within that branch (i.e., its body) may either re-assign a new

value to it or use its value.

public static void main(String[] args)
int i = input.nextInt();
if (i > 0) {
int j = 1 * 3; /% a new variable j
if (j > 10) { .}
}
else {
int j = i x -3; /% a new variable al
if (7 < 10) { ...}
}
}

{

e

/|

Scope of Variables (2.2)

|

SSONDE

e A variable declared under an if branch, an else if branch,
or an else branch, cannot be re-assigned or used outside its

scope.
public static void main(String[] args) {
int i = input.nextInt();
if (i > 0) {
int j =1 % 3; /% a new variable j */
if (j > 10) { .}
}
else {
int k = 1 x -3; /% a new e also called j *
if (j < k) { ...} x
}
}

/|

Scope of Variables (2.3) LassonDE

e A variable declared under an i f branch, else 1if branch, or
else branch, cannot be re-assigned or used outside its scope.

1 |public static void main(String[] args) {

2 int i = input.nextInt();

3 if (i > 0) {

4 int j = 1 x 3; /* a new variable j */

5 if (7 > 10) { }

6 }

7 else {

8 int j = 1 * -3; /* a new variable also called j */
9 if (§ < 10) { ...}

10 }

11 ‘ System.out.println("i = j is " + (i * F)); X ‘

12 ’ } ‘
o A variable cannot be referred to outside its declared scope.
[e.g., illegal use of § at L11]

o A variable can be used:
¢ within its declared scope [e.g.,useof i atL11]
¢ within sub-scopes of its declared scope [e.g.,use of i at L4, L8]

e

Primitive Statement vs. Compound Statemeﬂ#ﬁ

=

e A statement is a block of Java code that modifies value(s) of
some variable(s).

¢ An assignment (=) statement is a primitive statement:
It only modifies its left-hand-side (LHS) variable.
e An if statementis a compound statement:

Each of its branches may modify more than one variables via
other statements (e.g., assignments, if statements).

Compound if Statement: Example

|

SSONDE

int x = input.nextInt();

int y 0;

if (x >= 0) {
System.out.println("x
if (x > 10) { y = x * 2;
else if (x < 10) { y = x
else { y = x x x; }

}

else { /+ x < 0 */
System.out.println("x is negative");
if(x < -5) { y = -x; }

}

ositive");

ONO GO~ WN =

—_
N = O ©

Exercise: Draw a flow chart for the above compound statement.

28.0t61

/|

Logical Operators

|

SSONDE

e [ogical operators are used to create compound Boolean
expressions.
o Similar to arithmetic operators for creating compound number
expressions.
o Logical operators can combine Boolean expressions that are built
using the relational operators.
eg.,1 <= x && x <= 10

eg,x <1 |] x > 10
e We consider three logical operators:
Java Operator Description Meaning
! logical negation not
&& logical conjunction and
| | logical disjunction or

e

Logical Negation

/|

|

SSONDE

e Logical negation is a unary operator (i.e., one operand being

a Boolean expression).

e The result is the “negated” value of its operand.

Operand op !op
true false
false true
double radius = input.nextDouble();
boolean isPositive = radius > 0;
if (!isPositive) {/#* not the case that isPositive 1s true =/
System.out.println("Error: radius value must be positive.");

}

else {
System.out.println("Area is

}

" + radius * radius * PI);

300t 61

/|

Logical Conjunction

SSONDE

|

e Logical conjunction is a binary operator (i.e., two operands,
each being a Boolean expression).

e The conjunction is frue only when both operands are true.
e If one of the operands is false, their conjunction is false.

Left Operand op1 Right Operand op2 opl && op2

true true true
frue false false
false true false
false false false

int age input.nextInt () ;
boolean isOldEnough = age >= 45;
boolean isNotTooOld = age < 65

if (!isOldENough) { /#* young =%/ }
else if (isOldEnough && isNotTooOld) { /+* Jle—aged */ }
else { /+ senior +/ }

31of61

- ___
—

SSONDE

|

Logical Disjunction

e Logical disjunction is a binary operator (i.e., two operands,
each being a Boolean expression).
¢ The disjunction is false only when both operands are false.

e If one of the operands is true, their disjunction is true.
Left Operand op1 Right Operand op2 opl || op2

false false false
frue false true
false frue frue
true true true

int age = input.nextInt();
boolean isSenior = age >= 65;
boolean isChild = age < 18
if (isSenior || isChild) { /* discount
else { /+ no discount +/ }

e

|

SSONDE

Logical Laws (1)
e The negation of a strict inequality is a non-strict inequality.

Relation || Negation | Equivalence
i>7 (1> 9) i[<=
i>= 3 td >= 9 i< 7
i <7 i<) i 3= 5
i<=3'd <=3 i
. eg.,
I 1 r ‘
|i€04 > 3) ¢ \ |i€£(4 <= 7) |
T U
Jo i@ s g) o] €Quivalentto oo (L =)

‘else {
‘ . tion ,
o Action 1 is executed when i > j
o Action 2 is executed when i <= j.
e

/|

Logical Laws (2.1) LassoNDE

Say we have two Boolean expressions By and Bo:
e Whatdoes ! (B; && B>) mean?
It is not the case that both By and B are true.

e Whatdoes !By |/ !B> mean?
It is either By is false, Bs is false, or both are false.
¢ Both expressions are equivalent! [proved by the truth table]
Bi B | 1B & By | 1B || !B
true true false false
true false true true
false true true true

false false true true

34.0t61

}

}

}

else {
e When is Action 1 executed?
e When is Action 2 executed? true (i.e.,i >= 0
Lesson: Be careful not to write branching conditions that use &«
but always evaluate to false.

Logical Laws (2.2) :Afégsésonos
=
if(0 <= 1 && 1 <= 10) { /% Action 1 =*/ }
else { /+ Action 2 =%/ }
e When is Action 2 executed? i <0 || 1> 10
if(i < 0 && false) { /+ Action 1 x/
else { /+ Action 2 =%/ }
e When is Action 1 executed? false
e When is Action 2 executed? frue (i.e.,i >= 0 || true)
if(i < 0 && 1 > 10) { /» Action 1 =*/
false
|| 1 <= 10)

Logical Laws (3.1)

LASSONDE
i

Say we have two Boolean expressions By and Bs:
e Whatdoes ! (By |/ B>) mean?

It is not the case that either B, is true, Bs is true, or both are
frue.

e Whatdoes !B; &«& !B, mean?
Both B; and B, are false.

¢ Both expressions are equivalent' [proved by the truth table]
B; B B B>) ‘ !'By && ! Bo
true true false false
true false false false
false ftrue false false
false false true true
36.0L61

}

else { /
e When is Action 1 executed?
e When is Action 2 executed? false (i.e., i >= 10 && i < 10)
Lesson: Be careful not to write branching conditions that use /|
but always evaluate to frue.
e

Logical Laws (3.2) jgsésom
if(i < 0 || 1 > 10) { /* Action 1 #*/
else { /+ Action 2 x/ }
e When is Action 2 executed? 0 <= i && i <= 10
if(i <0 || true) { /# Action 1 */
else { /+ Action 2 x/
e When is Action 1 executed? true
e When is Action 2 executed? false (i.e.,i >= 0 && false)
if(i < 10 || i >= 10) { / Action 1 =/}
'+ Action 2 */ }
true

/|

Operator Precedence LassonDE

e Operators with higher precedence are evaluated before those
with lower precedence.

eg.,2 + 3 x5
» For the three logical operators , negation (!) has the highest
precedence, then conjunction (&¢), then disjunction (| |).

€.0.,true || true && false means
o true || (true && false), ratherthan
o (true || true) && false

e When unsure, use parentheses to force the precedence.

38.0t61

Operator Associativity LassonDE

e When operators with the same precedence are grouped
together, we evaluate them from left to right.

e.g.,1 + 2 - 3 means
((1 + 2) - 3)

e.g., false || true || false means
((false || true) || false)

/|

Short'C|rCUit Evaluatlon (1) LASSONDE

Both Logical operators && and || evaluate from left to right.
Operator && continues to evaluate only when operands so far
evaluate to frue.

if (x !'= 0 && y / x> 2) |

something #*,

}

else {
/% print error +/ }
Operator || continues to evaluate only when operands so far

evaluate to false.

if (x == 0 || ¥y / x <= 2) {

/* print error */

}

else {

/|

Short'C|rCUit Evaluatlon (2) LASSONDE

e Both Logical operators && and || evaluate from left to right.

e Short-Circuit Evaluation is not exploited: crash when x == 0
if (y / X > 2 && x !'= 0) {
) o
else {
/+ print error %/}
e Short-Circuit Evaluation is not exploited: crash when x == 0
if y/X<—2 I x == 0)
/# print error %/
}
else {
'+ do something }

Common Error 1: Independent if Statemenlff%m
with Overlapping Conditions

if (marks >= 80) {
System.out.println("A");

}

if (marks >= 70) {
System.out.println("B");

}

if (marks >= 60) {
System.out.println("C");

}

else {
System.out.println("F");

if (marks >= 80) {
System.out.println("A");

}

else if (marks >= 70) {
System.out.println("B");

}

else if (marks >= 60) {
System.out.println("C");

}

else {
System.out.println("F");

e Conditions in a list of i f statements are checked independently .

¢ In asingle if statement, only the first satisfying branch is executed.

420161

/|

Overlapping Conditions: Exercise (1)

|

SSONDE

e Does this program always print exactly one line?

if(x < 0) { printlIn("x < 0"); }

if(0 <= x && x < 10) { printIn("0 <= x < 10"); }
if (10 <= x && x < 20) { println("10 <= x < 20"); }
if(x >= 20) { println("x >= 20"); }

¢ Yes, because the branching conditions for the four
if-statements are all non-overlapping.

e That is, any two of these conditions cannot be satisfied
simultaneously:
ox < 0
o (0 <= x && x < 10
o 10 <= x && x < 20
o x >= 20

43.0t61

- ___
—

Overlapping Conditions: Exercise (2)

SSONDE

|

¢ Does this program always print exactly one line?

if(x < 0) { printIn("x < 0"); }

else if (0 <= x && x < 10) { println("0 <= x < 10"); }
else if (10 <= x && x < 20) { println("10 <= x < 20"); }
else if(x >= 20) { println("x >= 20"); }

e Yes, because it’s a single if-statement:
Only the first satisfying branch is executed.

e But, can it be simplified?
Hint: In a single if-statement, a branch is executed only if all
earlier branching conditions fail.

e

/|

Overlapping Conditions: Exercise (3) Lassonpe

» This simplified version is equivalent:

1 |if(x < 0) { println("x < 0"); }

2 |else if(x < 10) { println("0 <= x < 10"); }
3 |else if(x < 20) { println("10 <= x < 20"); }
4

else { println("x >= 20"); }

« At runtime, the 2nd condition at L2 is checked only
when the 1st condition at L1 fails
(i.e.,, ! (x < 0),orequivalently, x >= 0).

« At runtime, the 3rd condition at L3 is checked only
when the 2nd condition at L2 fails
(i.e.,, ! (x < 10), orequivalently, x >= 10).

¢ At runtime, the else (default) branch at L4 is reached only when
the 3rd condition at L3 fails
(i.e., ! (x < 20), orequivalently, x >= 20).

e

/|

General vs. Specific Boolean Conditions (1) csovee

Two or more conditions overlap if they can evaluate to frue
simultaneously.

e.g., Say marks is declared as an integer variable:
o marks >= 80 andmarks >= 70 overlap. [why?]
o Values 80, 81, 82, ... make both conditions frue
e marks >= 80 has fewer satisfying values than marks >= 70
e We say marks >= 80 is more specific than marks >= 70
e Or,we say marks >= 70 is more general than marks >= 80
o marks <= 65andmarks <= 75 overlap. [why?]
o Values 65, 64, 63, ... make both conditions frue
e marks <= 65 has fewer satisfying values than marks <= 75
o We say marks <= 65 is more specific than marks <= 75
e Or,we say marks <= 75 is more general than marks <= 65

46.0t61

/|

General vs. Specific Boolean Conditions (2) Jsove

Say we have two overlapping conditions x >= 5and x >= 0:
o What values make both conditions true? [5,6,7,...]
o Which condition is more general? [x >= 0]
o If we have a single if statement, then having this order

if(x >= 5) { System.out.println("x >= 5");
else if(x >= 0) { System.out.println(" >

’

}
0"; 1}

is different from having this order

if(x >= 0) { System.out.println("x >= 0");
else if(x >= 5) { System.out.println("x >

I~

}
5"y}

o Say x is 5, then we have
o What output from the first program? [x >= 5]
o What output from the second program? [x >= 0, not specific enough!]
o The cause of the “ not-specific-enough ” problem of the second
program is that we did not check the more specific condition (x >=

5) before checking the more general condition (x >= 0).
4zathl

Common Error 2: if-elseif Statement withsonw:
Most General Condition First (1)

if (gpa >= 2.5) {
graduateWith = "Pass";

}

else if (gpa >= 3.5) {
graduateWith = "Credit";

}

else if (gpa >= 4) {
graduateWith = "Distinction";

}

else if (gpa >= 4.5) {
graduateWith = "High Distinction"

}

’

The above program will:

o Not award a “High Distinction” to gpa == 4.8.

o Why?

480t 61

/|

Common EI‘rOI‘ 2: if-elseif Statement WithiSSONDE
Most General Condition First (2)

e Always “sort” the branching conditions s.t. the more specific
conditions are checked before the more general conditions.

if (gpa >= 4.5) {
graduateWith = "High Distinction" ;
}
else if (gpa >= 4) {
graduateWith = "Distinction";
}
else if (gpa >= 3.5) {
graduateWith = "Credit";
}
else if (gpa >= 2.5) {

graduateWith = "Pass";
}
else { graduateWith = "Fail"; }
49.0t61

- ___
—

Common Error 3: Missing Braces (1)

SSONDE

|

Confusingly, braces can be omitted if the block contains a
single statement.

final double PI = 3.1415926;

Scanner input = new Scanner (System.in);

double radius = input.nextDouble();

if (radius >= 0)
System.out.println("Area is

" + radius * radius * PI);

In the above code, it is as if we wrote:

Scanner input = new Scanner (System.in);
double radius = input.nextDouble() ;

|if (radius >= 0) {

" + radius % radius * PI);

final double PI = 3.1415926;
System.out.println("Area is
]

|
| 3

e

Common Error 3: Missing Braces (2)

/|

|

SSONDE

Your program will misbehave when a block is supposed to

execute multiple statements , but you forget to enclose them

within braces.

final double PI = 3.1415926;
Scanner input = new Scanner (System.in);
double radius = input.nextDouble() ;
double area = 0;
if (radius >= 0)
area = radius * radius = PI;
System.out.println("Area is " + area);

This program will mistakenly print “Area is 0.0” when a
negative number is input by the user, why? Fix?

if (radius >= 0) {

area = radius % radius * PI;
System.out.println("Area is " + area);
}
Slof61

/|

™

-

ASSONDE

Common Error 4: Misplaced Semicolon

k

Semicolon (;) in Java marks the end of a statement (e.g.,
assignment, i f statement).

if (radius >= 0); {
area = radius * radius * PI;
System.out.println("Area is " + area);

}

This program will calculate and output the area even when the
input radius is negative, why? Fix?

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("Area is " + area);

}

e

/|

Common Error 5: LASSONDE
Variable Not Properly Re-Assigned

1 | String graduateWith = "";

2 |if (gpa >= 4.5) {

3 graduateWith = "High Distinction" ; }
4 |else if (gpa >= 4) {

5 graduateWith = "Distinction"; }

6 |else if (gpa >= 3.5) {

7 graduateWith = "Credit"; }

8 |else if (gpa >= 2.5) {

9 graduateWith = "Pass"; }

The above program will award “” to gpa == 1.5. Why?
Possible Fix 1: Change the initial value in Line 1 to “Fail”.
Possible Fix 2: Add an else branch after Line 9:

’else { graduatewith = "fail" } ‘

Compare this example with the example in slide 17.

e

/|

Common EI‘rOI‘S 6: AmbIgUOUS else (1) LASSONDE

if (x >= 0)
if (x > 100) {
System.out.println("x is larger than 100");

}
else {
System.out.println("x is negative");

}
* When x is 20, this program considers it as negative. Why?
-+ else clause matches the most recent unmatched i £ clause.
. The above is as if we wrote:
|if (x >= 0) |

1

|

if (x > 100) {

System.out.println("x is larger than 100");
}
else {
System.out.println("x is negative");

|
|

)
|13
54.0161

Common Errors 6: Ambiguous else (2) issono:

o Fix?
Use pairs of curly braces ({}) to force what you really mean to
specify!

r 1
|if (x >= 0) | \
if (x > 100) {

System.out.println("x is larger than 100");
}

else {
System.out.println("x is negative");

}

85.0t61

Common Pitfall 1: Updating Boolean Variabl@ssov:

boolean isEven;

if (number % 2 == 0) {
isEven = true;

}

else {
isEven = false;

}

Correct, but simplifiable : voclean isEven
Similarly, how would you simply the following?

(number%2

if (isEven == false) {
System.out.println("0dd Number");
}
else {
System.out.println("Even Number");

}

Simplify isEven == falseto !isEven
S6.0L61

Index (1) ;ASSONDE

Learning Outcomes
Motivating Examples (1.1)
Motivating Examples (1.2)

Motivating Examples (2.1)
Motivating Examples (2.2)

The boolean Data Type

Syntax of i f Statement
Semantics of if Statement (1.1)
Semantics of if Statement (1.2)
Semantics of if Statement (2.1.1)
Semantics of if Statement (2.1.2)
Semantics of if Statement (2.2)
Semantics of if Statement (2.3)

Two-Way if Statement without else Part

Index (2) ;ASSONDE

Multi-Way i f Statement with else Part
Multi-Way i f Statement without else Part
Case Study: Error Handing of Input Radius (1)
Case Study: Error Handing of Input Radius (2)

One if Stmt vs. Multiple i f Stmts (1)
One if Stmt vs. Multiple i f Stmts (2)
One if Stmt vs. Multiple i f Stmts (3)

Scope of Variables (1)

Scope of Variables (2.1)
Scope of Variables (2.2)
Scope of Variables (2.3)

Primitive Statement vs. Compound Statement
Compound if Statement: Example

Logical Operators

Index (3) _;HASSONDE
Logical Operators: Negation

Logical Operators: Conjunction

Logical Operators: Disjunction

Logical Operators: Laws (1)

Logical Operators: Laws (2.1)

Logical Operators: Laws (2.2)

Logical Operators: Laws (3.1)

Logical Operators: Laws (3.2)

Operator Precedence

Operator Associativity

Short-Circuit Evaluation (1)

Short-Circuit Evaluation (2)

Common Error 1: Independent if Statements with

Overlapping Conditions
e

Index (4) _;HASSONDE
Overlapping Conditions: Exercise (1)

Overlapping Conditions: Exercise (2)

Overlapping Conditions: Exercise (3)

General vs. Specific Boolean Conditions (1)

General vs. Specific Boolean Conditions (2)

C E 5 if—clseif Sial t with Most G I
Condition First (1)

C E 5. i f-alseif Stal t with Most G l
Condition First (2)

Common Error 3: Missing Braces (1)

Common Error 3: Missing Braces (2)

Common Error 4: Misplaced Semicolon
Common Frror 5:

Variable Not Properly Re-Assigned

Common Error 6: Ambiguous else (1)

/|

Index (5) _;ASSONDE
Common Error 6: Ambiguous else (2)

Common Pitfall 1: Updating Boolean Variable

Loops

EECS1021:
Object Oriented Programming:

YORKIN " imeai™

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Outcomes Lassonpe

Understand about Loops :

Motivation: Repetition of similar actions

Two common loops: for and while
Primitive vs. Compound Statements
Nesting loops within i £ statements
Nesting it statements within loops
Common Errors and Pitfalls

/|

Motivation of Loops LAssONDE

e We may want to repeat the similar action(s) for a (bounded)
number of times.

e.g., Print the “Hello World” message for 100 times
e.g., To find out the maximum value in a list of numbers

e We may want to repeat the similar action(s) under certain
circumstances.
e.g., Keep letting users enter new input values for calculating
the BMI until they enter “quit”

e [oops allow us to repeat similar actions either
o for a specified number of times; or
o while a specified condition holds irue.

3.of70

SSONDE

|

{

The for Loop (1)
i < 100; 1 ++)

= 0;
System.out.println("Welcome to Java!");

for (int i1 =

false

|

initial-action

(i < 100)?

false

loop-
continuation-
condition?

true
System.out.printin(
"Welcome to Java");

|
]

—

Statement(s)
(loop body)

— action-after-each-iteration |

The for Loop (2)

-ilirASSONDE
for (int i = 0; 1 < 100; i ++) |
System.out.println("Welcome to Javal!");
}
i || <100 | Enter/Stay Loop? | lteration | Actions
0 0<100 True 1 print, i ++
1 1<100 True 2 print, 1 ++
2 2<100 True 3 print, i ++
99 99 <100 True 100 print, i ++
100 || 100 <100 False - -

e The number of iterations (i.e., 100) corresponds to the number

of times the loop body is executed.

e # of times that we check the stay condition (SC) (i.e., 101) is #
of iterations (i.e., 100) plus 1.

e

[True x 100; False x 1]

/|

The for Loop (3)

|

SSONDE

T 1
for (int 1 = 0; i < 100; 1 ++) {
System.out.println("Welcome to Java!");

}

o The “initial-action” is executed only once, so it may be moved right
before the for loop.

o The “action-after-each-iteration” is executed repetitively to make
progress, so it may be moved to the end of the for loop body.

System.out.println("Welcome to Java!");
i ++;

I 1
for (; 1 < 100;) {
\ \
| |

The for Loop: Exercise (1)

|

SSONDE

Compare the behaviour of this program

for (int count = 0; count < 100; count ++) {
System.out.println("Welcome to Java!");

}

and this program

for (int count = 1; count < 201; count += 2) {
System.out.println("Welcome to Java!");

}

o Are the outputs same or different?
o |tis similar to asking if the two intervals

[0,1,2,...,100) and [1,3,5,...,201)

contain the same number of integers.

o Same, both loop bodies run exactly 100 times and do not depend

on the value of count.
Zatz0

/|

SSONDE

|

The for Loop: Exercise (2)

Compare the behaviour of this program

int count = 0;

for (; count < 100;) {
System.out. prlntln("Welcome to Java " + count + "!M);
count ++; /# count = count + 1; /

}

and this program

int count = 1;

for (; count <= 100;) {
System.out.println("Welcome to Java " + count + "!");
count ++; /% count = count + 1; */

}

Are the outputs same or different? Different, both loop body run
exactly 100 times and depend on the value of count.

e

|

N
The for LOOp: ExerCise (3) -SSON;E

Compare the behaviour of the following three programs:

{

;1)

(int i = 1; i <= 5

for
System.out.print(i); }

Output: 12345

int 1 = 1;
for (; 1 <=5 ;) {
System.out.print (1) ;

i ++; 1}

Output: 12345

int 1 = 1;
for (; 1 <=5 ;) {
1 ++;
System.out.print(i); }
Output: 23456
e

SSONDE

The while Loop (1)

/|

|

= 0;

= C

int count
while (count < 100)
System.out.printl

/ %

count ++;

T

{
n("Welcome to Java!");

count = 0;

false

—

loop-
continuation-
condition?

false

(count < 100)?

true

| System.out.printin("Welcome to Java!");

Statement(s)
—_ (loop body)
count++;
e

The while LOOp (2) i\SSONDE
int j = 3;
while (j < 103) {
System.out.println("Welcome to Java!");
JoAt; S Go=F o+ 1; #/)
j || j<103 | Enter/Stay Loop? | lteration | Actions
3 3<103 True 1 print, 3 ++
4 4 <103 True 2 print, § ++
5 5<103 True 3 print, 3 ++
102 || 102 <103 True 100 print, 3 ++
103 || 103< 103 False - -

e The number of iterations (i.e., 100) corresponds to the number
of times the loop body is executed.
o # of times that we check the stay condition (SC) (i.e., 101) is #

of iterations (i.e., 100) plus 1. [True x 100; False x 1]
ilof70

/|

SSONDE

|

The while Loop: Exercise (1)

Compare the behaviour of this program

int count = 0;

while (count < 100) {
System.out. prlntln("Welcome to Java'"),
count ++; /# count = count + 1; /

}

and this program

int count = 1;

while (count <= 100) {
System.out.println("Welcome to Javal!");
count ++; /% count = count + 1; x/

}

Are the outputs same or different? Same, both loop bodies run
exactly 100 times and do not depend on the value of count.

e

/|

SSONDE

|

The while Loop: Exercise (2)

Compare the behaviour of this program

int count = 0;

while (count < 100) {
System.out. prlntln("Welcome to Java " + count + "!M);
count ++; /# count = count + 1; /

}

and this program

int count = 1;

while (count <= 100) {
System.out.println("Welcome to Java " + count + "!");
count ++; /% count = count + 1; */

}

Are the outputs same or different? Different, both loop body run
exactly 100 times and depend on the value of count.

e

Primitive Statement vs. Compound Statemeﬂ#ﬁ

=

e A statement is a block of Java code that modifies value(s) of
some variable(s).

¢ An assignment (=) statement is a primitive statement: it only
modifies its left-hand-side (LHS) variable.

e An for or while loop statement is a compound statement: the
loop body may modify more than one variables via other
statements (e.g., assignments, i f statements, and for or
while statements).

o e.g., a loop statement may contain as its body i f statements
o e.g., a loop statement may contain as its body loop statements
o e.g., an 1if statement may contain as its body 1ocop statements

14.0t70

/|

- ___
—

SSONDE

|

Compound Loop: Exercise (1.1)
How do you extend the following program

System.out.println("Enter a radius value:");
double radius = input.nextDouble() ;

double area = radius » radius * 3.14;
System.out.println("Area is " + area);

with the ability to repeatedly prompt the user for a radius value,
until they explicitly enter a negative radius value to terminate
the program (in which case an error message is also printed)?

System.out.println("Enter a radius value:");
double radius = input.nextDouble();

‘ while (radius >= 0) |

double area = radius * radius = 3.14;

System.out.println("Area is " + area);
System.out.println("Enter a radius value:");

radius = input.nextDouble(); } |
’System.out.println("Error: negative radius value."); ‘

e

Compound Loop: Exercise (1.2)
Another alternative: Use a boolean variable isPositive

SSONDE

|

‘ isPositive = radius >= 0; } ‘

1 System.out.println("Enter a radius value:");

2 |double radius = input.nextDouble();

3 ‘ boolean isPositive = radius >= 0; ‘
4 ‘ while (isPositive) {

5 double area = radius » radius * 3.14;

6 System.out.println("Area is " + area);

7 System.out.println("Enter a radius value:");

8 radius = input.nextDouble();

9

0

’System.out.println("Error: negative radius value."); ‘

e In L2: What if user enters 2? What if user enters —27?
e Say in L2 user entered 2, then in L8:
What if user enters 3? What if user enters -37?
e What if isPositive = radius >= 0 in L9 is missing?

e

Compound Loop: Exercise (1.3)
Another alternative: Use a boolean variable i sNegative

SSONDE

|

1 | System.out.println("Enter a radius value:");

2 |double radius = input.nextDouble() ;

3 ‘ boolean isNegative = radius < 0; ‘
4 | while (!isNegative) { |
5 double area = radius x radius * 3.14;

6 System.out.println("Area is " + area);

7 System.out.println("Enter a radius value:");

8 radius = input.nextDouble();

9 | isNegative = radius < 0; }

10 ’System.out.println("Error: negative radius value."); ‘

e In L2: What if user enters 27? What if user enters -27?
e Say in L2 user entered 2, then in L8:
What if user enters 3? What if user enters —-37?
e What if isNegative = radius < 0in L9 is missing?

e

Converting between for and while Loops (T:ou:

e To convert a while loop to a for loop, leave the initialization
and update parts of the for loop empty.

while (B) {

/+ Actions */

}

is equivalent to:

for(; B ;) {

}

where B is any valid Boolean expression.

¢ However, when there is not a loop counter (i.e., i, count, etc.)
that you intend to explicitly maintain, stick to a while loop.

e

Converting between for and while LoOpS (2o

e To convert a for loop to a while loop, move the initialization
part immediately before the while loop and place the update
part at the end of the while loop body.

for(int i =0 ; B ; i ++) {
* Actions #*/

}

is equivalent to:

int i = 0;
while (B) {
i ++;

}

where B is any valid Boolean expression.

e However, when there is a loop counter (i.e., i, count, etc.) that

you intend to explicitly maintain, stick to a for loop.
19.070

Stay Condition (SC) vs. Exit Condition (1) Jou
e A[for(...; sc ; ...)|loopora[while (sC) |loop

o stays to repeat its body as long as SC evaluates to frue.
o exits as soon as its SC evaluates to false.

e Say we have two Boolean variables:

’boolean P, q; ‘

* When does the loop exit (i.e., stop repeating Action 1)?

’whlle (p && q) { /# Action 1 */ } ‘
'(p && q)

this is equivalentto 'p || !qg

e When does the loop exit (i.e., stop repeating Action 2)?

’whlle(p Il g { /» Action 2 x/ } ‘
e Il 9

this is equivalentto 'p && !g

20.0t70

Stay Condition (SC) vs. Exit Condition (2)

LASSONDE
i

Consider the following loop:
int x = input.nextInt();
while (10 <= x || x <= 20) {
/% body of while loop */
}
e |t compiles, but has a logical error. Why?
e Think about the exit condition :
o 1(10 <= x || x <= 20) [negation of stay condition]
o 1 (10 <= x) && ! (x <= 20) [.- law of disjunction]
010 > x && x > 20 [law of negation]

e 10 > x && x > 20 is equivalent to false, since there is no
number smaller than 10 and larger than 20 at the same time.
* An exit condition being false means that there is no way to exit

from the loop! [infinite loops are BAD!]
210120

/|

Problems, Data Structures, and Algorithms oo

* A well-specified computational problem precisely describes
the desired input/output relationship.
o Input: A sequence of nnumbers (as, ao, ..., an)
o Output: The maximum number max in the input array, such that

max > aj, where 1 <i<n

o An instance of the problem: (3, 1, 2, 5, 4)

e A data structure is a systematic way to store and organize
data in order to facilitate access and modifications.

e An algorithm is:
o A solution to a well-specified computational problem

o A sequence of computational steps that takes value(s) as input
and produces value(s) as output

e Steps in an algorithm manipulate well-chosen data structure(s).

22.0t70

/|

Arrays: A Simple Data Structure

|

SSONDE
e An array is a linear sequence of elements.
| 940|880 830|790 | 750 | 660|650 | 590 | 510|440 |
0 1 2 3 4 5 6 7 8 9

e Types of elements in an array are the same.

o an array of integers [int []]

o an array of doubles [double[]]

o an array of characters [char[]]

o an array of strings [string[]]

o an array of booleans [boolean[]]

e Each element in an array is associated with an integer index.

e Range of valid indices of an array is constrained by its size.

The 1st element of an array has the index 0.

The 2nd has index 1.

The i element has index i — 1.

o The last element of an array has the index value that is equal to
the size of the array minus one.

e

o O ©O

/|

Arrays: Initialization and Indexing LassoNDE

e Initialize a new array object with a fixed size:

’ String[] names = new String[10];

¢ Alternatively, initialize a new array explicitly with its contents:

’ String[] names = {"Alan", "Mark", "Tom"};

e Access elements in an array through indexing:

String first = names[0];
String last = names[names.length - 1];

An illegal index triggers an ArraylnexOutOfBoundsException.

24.0t70

/|

|

Arrays: Iterations

SSONDE

e lterate through an array using a for-loop:

for (int i = 0; i < names.length; 1 ++) {
System.out.println (names[i]);

}

Iterate through an array using a while-loop:

int i = 0;

while (i < names.length) {
System.out.println (names[i]);
i ++;

}

ks

N
The for LOOp: ExerCise (3) -SSONDE

Problem: Given an array numbers of integers, how do you

{

print its average?
e.g., Given array {1,2,6,8}, print 4.25.

int sum =

for(int i = 0; i < numbers.length; 1 ++)
sum += numbers[i];

(double) sum / numbers.length;
" + average);

}

double average
System.out.println("Average is

Q: What'’s the printout when the array is empty

(e.9., int[] numbers = {};)?

A: Division by zero (i.e., numbers.length is 0). Fix?

26.0f70
e

ks

S
The for Loop: Exercise (4) 'ﬁgsgsom

Problem: Given an array numbers of integers, how do you

print its contents backwards?
e.g., Given array {1,2,3,4},print4 3 2 1.
Solution 1: Change bounds and updates of loop counter.
ifor(int i = numbers.length — 1; 1 >=0; i ——) { ‘\
System.out.println(numbers[i]); ‘
|
|
|

E
Solution 2: Change indexing.

’for(int i = 0; i < names.length; 1 ++) {

‘ System.out.println(numbers|[names.length — 1 - 11]);

] }
e

The for Loop: Exercise (5)

/|

SSONDE

|

Problem: Given an array names of strings, how do you print its

contents separated by commas and ended with a period?

e.g., Given array {" Alan",” Mark",” Tom'" },
print "’Names: Alan, Mark, Tom.”

System.out.print ("Names:")
for(int i = 0; i < names.length; i ++) {
System.out.print (names[i]);
if (i < names.length - 1) {
System.out.print (", ");
}
}

System.out.printIn(".");

e

Array lterations: Translating for to while (1?%.;0“05

» Use either when you intend to iterate through the entire array.

int[] a = new int[100];
for(int i = 0; 1 < a. length, i ++) {
/+ Actions to repea /

}

In a for loop, the initialization and update of the loop counter i

are specified as part of the loop header.

int[] a = new int[100];
int 1 = 0;
while (i < a.length) {
/% Actions to repeat. «
1 ++;

}

In a while loop, the loop counter i
o s initialized outside and before the loop header

o Is updated at the end of the loop body
22.0£70

Array lterations: Translating for to while (2)ssono

¢ In both the for and while loops:
o The stay/continuation conditions are identical.

o The loop counter i is initialized only once before first entrance.

o In each iteration, the loop counter i is executed at the end of the
loop body.

/|

Compound Loop: Exercise (2) o

Given an integer array:
int[] a = {2, 1, 3, 4, -4, 10}
How do you print out positive numbers only?

Hint: Use a for loop to iterate over the array. In the loop body,
conditionally print out positive numbers only.

for(int i = 0; 1 < a.length; 1 ++) {
if (al[i]l > 0) {
System.out.println(alil);
}

g wnn =

}

Exercise: Write the equivalent using a while loop.

31at70

/|

Compound Loop: Exercise (3) Lassonpe

g wnn =

Given a non-empty integer array, e.g., int[] a = {2, 1,
3, 4, -4, 10}, find out its maximum element.

Hint: /terate over the array. In the loop body, maintain the
maximum found so far and update it when necessary.

int max = a[0];
for(int i = 0; i < a.length; 1 ++) {
if (ali] > max) { max = al[il; }
}
System.out.println("Maximum is " + max);

Q: What if we change the initialization in L1 t0 int max = 07?

A: NoO -~ Contents of a may be all smaller than this initial value
(e.g., all negatives).

Q: What if we change the initialization in L2to int 1 = 17
A:YES--a[0] > a[0] is always false anyway.

32.0t70

/|

Compound Loop: Exercise (3) Demo LassonDE

1 int([] a = {2, 1, 3, 4, -4, 10}

2 |int max = al[0];

3 |for(int i = 0; i < a.length; i ++) {

4 if (ali] > max) {

5 max = alil; } }

6 | System.out.println("Maximum is " + max);
i | ali] | a[i] > max | update max? | max
o] - [- | - e
0 2 false N 2
1 1 false N 2
2 3 true Y 3
3 4 true Y 4
4 | -4 false N 4
51 10 true Y 10

|

Compound Loop: Exercise (4.1)

/|

LASSONDE
i

e Problem: Given an array of numbers, determine if it contains

all positive number.

1 |int[] numbers = {2, 3, -1, 4, 5};

2 |boolean soFarOnlyPosNums = true;

3 |int 1 = 0;

4 |while (i < numbers.length) {

5 soFarOnlyPosNums = soFarOnlyPosNums && (numbers[i] > 0);

6 =1+ 1;

71

8 |if (soFarOnlyPosNums) { /+* pr sg. */ '}

9 |else { /% print another msg.

e Change Line 510 soFarOnlyPosNums = numbers[i] > 0;7?

 Hints: Run both versions on the following three arrays:
1. {2, 3, 1, 4, 5, 6, 8, 9, 100} [all positive]
2. {2, 3, 100, 4, 5, 6, 8, 9, -1} [negative at the end]
3. {2, 3, -1, 4, 5, 6, 8, 9, 100} [negative in the middle]

e

/|

Compound Loop: Exercise (4.1) Demo (1)

|

SSONDE

1 int(] ns = {2, 3, -1, 4, 5};

2 |boolean soFarOnlyPosNums = true;

3 |int i = 0;

4 |while (i < ns.length) {

5 soFarOnlyPosNums = soFarOnlyPosNums && (ns[i] > 0);

6 i=1+1;

7 1}
i | soFarOnlyPosNums | i< ns.length | stay? | ns[i] | ns[i]> 0
0 true frue YES 2 true
1 true true YES 3 true
2 true frue YES -1 false
3 false true YES 4 true
4 false frue YES 5 true
5 false false No - -

|

/|

Compound Loop: Exercise (4.1) Demo (2)

|

|

SSONDE

1 |int[] ns = {2, 3, -1, 4, 5};

2 |boolean soFarOnlyPosNums = true;

3 |int i = 0;

4 |while (i < ns.length) {

5 soFarOnlyPosNums = ns[i] > 0; /* wrong =*/

6 i=1+ 1;

7 1}
i | soFarOnlyPosNums | i< ns.length | stay? | ns[i] | ns[i]>0
0 true true YES 2 true
1 true true YES 3 true
2 true true YES -1 false
3 false frue YES 4 true
4 true frue YES 5 true
5 true false No - -

/|

SSONDE

|

Compound Loop: Exercise (4.2)

Problem: Given an array of numbers, determine if it contains
all positive number. Also, for efficiency, exit from the loop as
soon as you find a negative number.

int[] numbers = {2, 3, -1, 4, 5};
boolean soFarOnlyPosNums = true;
int i = 0;

while (soFarOnlyPosNums && 1 < numbers.length) {
soFarOnlyPosNums = numbers[i] > 0;
i=1+1;

}

if (soFarOnlyPosNums) { /

;

else { /+

©CoOoO~NOOh WN =

. 1 /
print another msg. x/ }

e

/|

Compound Loop: Exercise (4.2) Demo (1)

|

e

SSONDE
1 |int[] ns = {2, 3, -1, 4, 5};
2 |boolean soFarOnlyPosNums = true;
3 |int 1 = 0;
4 |while (soFarOnlyPosNums && 1i < ns.length) {
5 soFarOnlyPosNums = soFarOnlyPosNums && ns[i] > 0;
6 i=1+1;
71
i | soFarOnlyPosNums | i< ns.length | stay? | ns[i] | ns[i]>0
0 true true YES 2 true
1 true frue YES 3 true
2 frue frue YES -1 false
3 false true No - -

/|

Compound Loop: Exercise (4.2) Demo (2)

|

SSONDE

1 |int[] ns = {2, 3, -1, 4, 5};

2 |boolean soFarOnlyPosNums = true;

3 |int i = 0;

4 |while (soFarOnlyPosNums && 1i < ns.length) {

5 soFarOnlyPosNums = ns[i] > 0;

6 i=1+1;

7 1}
i | soFarOnlyPosNums | i< ns.length | stay? | ns[i] | ns[i]>0
0 true true YES 2 true
1 true frue YES 3 true
2 frue frue YES -1 false
3 false frue No — -

39070

SSONDE

|

Compound Loop: Exercise (4.3) Summary

Four possible solutions (posNumsSoFar is initialized as frue):
1. Scan the entire array and accumulate the result.

for (int i = 0; 1 < ns.length; i ++) {
posNumsSoFar = posNumsSoFar && ns[i] > 0; }

2. Scan the entire array but the result is not accumulative.

’for (int i = 0; i1 < ns.length; i ++) { ‘
‘ posNumsSoFar = ns[i] > 0; } /# Not working. Why? */
L

3. The result is accumulative until the early exit point.

for (int i = 0; posNumsSoFar && 1 < ns.length; 1 ++) {
posNumsSoFar = posNumsSoFar && ns[i] > 0; }

4. The result is not accumulative until the early exit point.

for (int i = 0; posNumsSoFar && 1 < ns.length; 1 ++) {
posNumsSoFar = ns[i] > 0; }

e

/|

|

Compound Loop: Exercise (5)

SSONDE

Problem: Given an array a of integers, how do determine if it is
sorted in a non-decreasing order?

e.g., Given {1,2,2.4}, print frue; given {2, 4, 3,3} print false.

1 ’boolean isSorted = true; ‘
2 |for(int i = 0; i < a.length - 1; i ++) { |
3 ‘ isSorted = isSorted &s& (ali] <= al[i + 1]); ‘
4 1

Alternatively (with early exit):

1 ’boolean isSorted = true; ‘
2 ‘for(int i = 0; isSorted && i < a.length — 1; i ++) { ‘
3 isSorted = al[i] <= al[i + 1];

4 |}

4lat70

Compound Loop: Exercise (5) Demo [A] issone:

1 |int[] a = {1, 2, 2, 4}

2 |boolean isSorted = true;

3 |for(int i = 0; 1 < a.length - 1; i ++) {

4 isSorted = isSorted && (ali] <= ali + 11);

5|1
i | ali]| ali+1]| a[i]<=a[i+1] | isSorted | exit?
o] - | -] - | true | N
0 1 2 true true N
1 2 true true N
2| 2 4 true true Y

e

Compound Loop: Exercise (5) Demo [B] iissone:

1 int(] a = {2, 4, 3, 3}

2 |boolean isSorted = true;

3 |for(int i = 0; 1 < a.length - 1; i ++) {

4 isSorted = isSorted && (al[i]l <= al[i + 1]);

5 1)
i | ali]| ali+1]| a[i]<=a[i+1] | isSorted | exit?
o] - | -] — | true | N
0 2 4 true true N
1 4 3 false false N
2 3 3 true false Y

e

Compound Loop: Exercise (5) Demo [C] iissone:

1 |int[] a = {2, 4, 3, 3}

2 |boolean isSorted = true;

3 ‘for(int i = 0; isSorted && i < a.length - 1; i ++) {

4 isSorted = al[i] <= ali + 1];

5 |}
i |a[i]|ali+1]]|ali]<=ali+1] | isSorted | exit?
o] - | -] - | true [N
0] 2 4 true true N
1 4 3 false false Y

e

Checking Properties of Arrays (1) LassonDE

e Determine if all elements satisfy a property.
* We need to repeatedly apply the logical conjunction .
e As soon as we find an element that does not satisfy a
property, then we exit from the loop.
e.g., Determine if all elements in array a are positive.

boolean allPos = true;

for(int i = 0; i < a.length; 1 ++) {
allPos = allPos && (ali] > 0);

}

AW =

Alternatively (with early exit):

boolean allPos = true;

for(int i = 0; allPos && 1 < a.length; i ++) {
allPos = ali] > 0;

}

SO =

450170

/|

Checking Properties of Arrays (1): Demo ou

apswn =

boolean allPos = true;

allPos = al[i] > 0;

}

int[] a = {2, 3, -1, 4, 5,

for(int i = 0; allPos && 1 < a.length;

{

i | a[i] | a[i]>0 | allPos | exit?

[- |

N

I
0
0| 2
1 3
2| -1

N
N
Y

¢ Question: Why do we initialize al1Pos as frue in Line 2?
¢ Question: What if we change the stay condition in Line 3 to

onlyi < a.length?

Intermediate values of al1Pos will be overwritten!

e

N
Checking Properties of Arrays (2)

SSONDE

|

* Determine if at least one element satisfies a property.

e As soon as we find an element that satisfies a property, then
we exit from the loop.
e.g., Is there at lease one negative element in array a?
Version 1: Scanner the Entire Array

boolean foundNegative = false;
for(int i = 0; 1 < a.length; i ++) {

1
2

3 ‘ foundNegative = foundNegative || al[i] < 0; ‘
“ |
Version 2: Possible Early Exit

boolean foundNegative = false;
for(int i = 0; ! foundNegative && 1 < a.length; i ++) {
foundNegative = ali] < 0;

}

e

AW =

/|

Checking Properties of Arrays (2) Demo ou

1 int(] a = {2, 3, -1, 4, 5, 6, 8, 9, 100};

2 |boolean foundNegative = false;

3 |for(int i = 0; ! foundNegative && 1 < a.length; 1 ++) {

4 foundNegative = al[i] < 0;

5 |}
i | a[i] | a[i] <0 | foundNegative | !foundNegative | exit?
o] - | -] false \ true | N
0 2 false false true N
1 3 false false true N
21 -1 true true false Y

¢ Question: Why do we initialize foundNegative as false in

Line 27

e

- ___
—

Observations

SSONDE

|

* In some cases, you must iterate through the entire array in
order to obtain the result.
e.g., max, min, total, etc.
¢ In other cases, you exit from the loop as soon as you obtain
the result.
e.g., to know if all numbers positive, it is certainly false
as soon as you find the first negative number
e.g., to know if there is at least one negative number, it is certainly
frue as soon as you find the first negative number

Arrays: Indexing and Short-Circuit Logic (1);;\550“;5

Problem: Ask the user how many integers they would like to
input, prompt them accordingly, then ask them for an integer
index, and check if the number stored at that index is even (i.e.,
error if it is odd).

How many integers?

2

Enter an integer:

23

Enter an integer:

24

Enter an index:

1

24 at index 1 is even.

a0.0t70

/|

Arrays: Indexing and Short-Circuit Logic (2);;550NDE

1 Scanner input = new Scanner (System.in);
2 | System.out.println("How many integers?");
3 |int howMany = input.nextInt();
4 |int[] ns = new int[howMany];
5 |for(int i = 0; i < howMany; 1 ++) {
6 System.out.println("Enter an integer");
7 ns[1i] = input.nextInt(); }
8 | System.out.println("Enter an index:");
9 ‘int i = input.nextInt();
10 |if(ns[1] % 2 == 0) {
11 System.out.println("Element at index " + i + " is even."); }
12 |else { /#+ Error *r ns[i] is odd =%/ }
* Does the above code work? [not always!]
o ltworksif0 <= 1 && i < ns.length
o ltfailsonL10ifi < 0 || i >= ns.length
[ArrayIndexOutOfBoundException]
Slof70

Arrays: Indexing and Short-Circuit Logic (3. T}:on

1 Scanner input = new Scanner (System.in);

2 | System.out.println("How many integers?");

3 |int howMany = input.nextInt();

4 |int[] ns = new int[howMany];

5 |for(int i = 0; i < howMany; i ++) {

6 System.out.println("Enter an integer");

7 ns[i] = input.nextInt(); }

8 | System.out.println("Enter an index:");

9 ‘int i = input.nextInt(); ‘
10 |if(0 <= i && i < ns.length && ns[i] % 2 == 0) {

11 println(ns[i] + " at index " + i + " is even."); }
12 |else { /% Error: invalid index or odd ns[i] */ }

* Does the above code work? [always!]
e Short-circuit effect of conjunction has L-to-R evaluations:

ns[i] % 2 == 0 is evaluated only when the guard
(i.e., 0 <= i && 1 < ns.length) evaluates to true.

82.0t70

/|

Arrays: Indexing and Short-Circuit Logic (3.2} :on

1 Scanner input = new Scanner (System.in);

2 | System.out.println("How many integers?");

3 |int howMany = input.nextInt();

4 |int[] ns = new int[howMany];

5 |for(int i = 0; 1 < howMany; 1 ++) {

6 System.out.println("Enter an integer");

7 ns[i] = input.nextInt(); }

8 | System.out.println("Enter an index:");

9 |int i = input.nextInt(); ‘
10 |if(i <0 /[i > |
11 /* Error: inv Id n

12 |else { println(ns[i] + " at index

* Does the above code work? [always!]
e Short-circuit effect of disjunction has L-to-R evaluations:
ns[i] % 2 == 1 is evaluated only when the guard
(.,e.,i < 0 || i >= ns.length) evaluates to false.
53.0070

Arrays: Indexing and Short-Circuit Logic (4);;550NSE
e -~ Short-circuit evaluations go from left to right.

.. Order in which the operands are placed matters!
e Consider the following changes to L10:

o nsfi] % == 0 && 0 <=1 && 1 < ns.length
What ifinput 1 iss.t. 1 < 07? [crash]
What if input i iss.t. i >= ns.length? [crash]
o0 <=1 && nsf[i] % == (0 && i1 < ns.length
What if input i iss.t. i < 07 [works]
What if input i iss.t. i >= ns.length? [crash]
© i < ns.length && nsf[i] % = 0 && 0 <= 1i
What ifinput i iss.t. 1 < 07 [crash]
What if input 1 iss.t. i >= ns.length? [works]
e When does each change to L10 work and crash?
°© ns[i] & 2 =1 || 1 <0 || 1 >= ns.length
oi <0 || ns[i] $ 2 == 1 || 1 >= ns.length
o i >= ns.length || ns[i] % =1 |] i < 0

84.0t70

Parallel Loops vs. Nested Loops

/|

|

SSONDE

e Parallel Loops :

Each loop completes an independent phase of work.
e.g., Print an array from left to right, then right to left.

’System.out.println("Left to right:");
for(int i = 0; 1 < a.length; 1 ++) {
System.out.println(alil); }
System.out.println("Right to left:");
for(int i = 0; i < a.length; i ++) {
System.out.println(ala.length - 1 - 1]); }

e Nested Loops :
Loop counters form all combinations of indices.

T
‘for(int i = 0; i < a.length; 1 ++) {

1
| for(int j = 0; j < a.length; j ++) { |
System.out.println("(" + i + ", " + F + ")");
bod
550170

/|

Nested Loops: Finding Duplicates (1) Lassonpe

» Given an integer array a, determine if it contains any duplicates.
e.g., Print false for {1,2,3,4}. Print true for {1,4,2,4}.

e Hint: When can you conclude that there are duplicates?
As soon as we find that two elements at difference indices
happen to be the same

boolean hasDup = false;
for(int i = 0; i < a.length; 1 ++) {
for(int j = 0; j < a.length; j ++) {
hasDup = hasDup [(i !'= j && ali]l == aljl);
} /+ end inner for %/ } /* end outer for #*/
System.out. prlntln(hasDup) ;

(o3, BN SRS I \C

¢ Question: How do you modify the code, so that we exit from
the loops as soon as the array is found containing duplicates?
o L2: for(...; !hasDup && i < a.length; ...)

o L3: for(...; !hasDup && j < a.length; ...)
o L4: hasDup = (i !'= j && ali] == aljl);
56.0£70

Nested Loops F|nd|ng Dupllcates (2)

|

SSONDE

1 | /+ Version with 1

2 |int[] a = {1 2,

3 |boolean hasDup =

4 |for(int i = 0; i < a.length; i ++) {

5 for(int j = 0; j < a.length; j ++) {

6 hasDup = hasDup \ | (i '= § && alil == aljl);

7 } /* end inner for #/ } /% end outer for x/

8 | System.out. prlntln(hasDup),
i34 t=3]alil | alj]l |ali]l == alj] || hasbup
0|0 false 1 1 true false
0|1 true 1 2 false false
012 true 1 3 false false
110 true 2 1 false false
111 false 2 2 true false
112 true 2 3 false false
210 true 3 1 false false
2 |1 true 3 2 false false
2|2 false 3 3 true false

aZof70

|

Nested Loops F|nd|ng Dupllcates (3)

SSONDE

1 | /+ Version with */

2 |int[] a = {4 2, 4}, ,

3 |boolean hasDup = false;

4 |for(int i = 0; i < a.length; i ++) {

5 for(int j = 0; j < a.length; j ++) {

6 hasDup = hasDup \ | (i '= § && alil == aljl);

7 } /* end inner for %/ } /% end outer for */

8 | System.out. prlntln(hasDup),
i34 t=3]alil | alj]l |ali]l == alj] || hasbup
0|0 false 4 4 true false
0|1 true 4 2 false false
012 true 4 4 true true
110 true 2 4 false true
111 false 2 2 true true
1] 2 true 2 4 false true
210 true 4 4 true true
2 |1 true 4 2 false true
212 false 4 4 true true

Nested Loops Finding Dupllcates (4)

1 | /+ Version with r
2 J.nt[] a = {1 2, 3}, */
3 |boolean hasDup = false;
4 ‘for(int i =0; i < a.length && !hasDup ; i ++) { ‘
5 ‘ for(int j = 0; j < a.length && !hasDup ; 7 ++) { ‘
6 | hasDup = 1 != j && al[i] == al[j] ; |
7 } /* end inner for %/ } /% end outer for x/ ‘
8 | System.out.println(hasDup) ;

i34 t=3]alil | aljl | ali]l == alj] || hasbup

0|0 false 1 1 true false

0|1 true 1 2 false false

012 true 1 3 false false

110 true 2 1 false false

111 false 2 2 true false

112 true 2 3 false false

210 true 3 1 false false

2 |1 true 3 2 false false

2|2 false 3 3 true false
29.0f70

ONO O W=

Jx UV with re

int[] a = {4, 2, 4}; ”
boolean hasDup = false;
‘for(int i = 0; i < a.length && !hasDup ; i ++) { ‘

‘ for(int j = 0; j < a.length && !hasDup ; j ++) {
‘ hasDup = 1 != j && a[i] == al[j] ;
} /% enc er for #/ } /# end outer for

System.out.println(hasDup) ;

i34 t=3]alil | alj] |ali]l == alj] || hasbup
0|0 false 4 4 true false
0|1 true 4 2 false false
0|2 true 4 4 true true

Nested Loops: Finding Duplicates (6)

/|

The previous two versions scan all pairs of array slots, but with

LASSONDE
i

redundancy: e.g., a[0] == a[2] anda[2] == a[O0].

1 /+ Version 3 with no red I /

2 |int[] a = {1, 2, 3, 4}; te */

3 |boolean hasDup = false;

4 ‘for(int i =0; 1 < a.length && !hasDup; 1 ++) {

5 \ for(int j =i + 1; j < a.length && !hasDup; j ++) {

6 hasDup = afi] == alj] ;

7 } /+ end inner for x/ } /+ end outer for #*/

8 | System.out.println(hasDup) ;
i3 [alil [alj) [ali) == alj] [| hasDup
0] 1 1 2 false false
0] 2 1 3 false false
0|3 1 4 false false
112 2 3 false false
113 2 4 false false
213 3 4 false false

61070

Nested Loops: Finding Duplicates (7) fiéésésom

1 / %
2 + lo
3 */
4 |int[] a = {1, 2, 3, 2}; /* duplicates: a[l] and a[3] */
5 |boolean hasDup = false;
6 ‘for(int i =0; i < a.length && !hasDup ; i ++) { ‘
7| for(int j =i + 1; j < a.length && !hasDup; J ++) { |
8 | hasDup = af[i] == al[j] ; ‘
9 } /* end inner for x/ } /% enc | iter for
10 | System.out.println(hasDup) ;
i| 3| aril | aljl | alil == al[j] || hasDup
0] 1 1 2 false false
012 1 3 false false
013 1 2 false false
112 2 3 false false
113 2 2 true true

/|

Common Error (1): LASSONDE
Improper Initialization of Loop Counter

boolean userWantsToContinue;

while (userWantsToContinue) {
/* e con ations here x*/
String answer = input.nextLine();
userWantsToContinue = answer.equals ("Y");

}

The default value for an initialized boolean variable is false.
Fix?

boolean userWantsToContinue = true;
while (userWantsToContinue) {
/* some computations here 4/'/
String answer = input.nextLine();
userWantsToContinue = answer.equals ("Y");

}

e

Common Error (2): LASSONDE
Improper Stay Condition

for (int i = 0; 1 <= a.length; 1 ++) {
System.out.println(alil);
}

The maximum index for array a is a.length - 1
Fix?

for (int i = 0; 1 < a.length; i ++) {
System.out.println(alil);
}

Common Error (3): o

LASSONDE
i
Improper Update to Loop Counter
Does the following loop print all slots of array a?
int i = 0;
while (i < a.length) {
i ++;
System.out.println(alil);
}
The indices used to print willbe: 1, 2, 3, ..., a.length
Fix?
int i = 0; int i = 0;
while (i < a.length) { while (i < a.length) {
System.out.println(alil); i ++;
i 4+ System.out.println(ali - 1]);
} }
62.0£70

/|

Common Error (4): LASSONDE
Improper Update of Stay Condition

String answer = input.nextLine();
boolean userWantsToContinue = answer.equals("Y");
while (userWantsToContinue) { /# stay condition (S5C) */

me cCo tations here + /

answer = input.nextLine();

}

OO WN =

What if the user’s answer in L1 is simply Y? An infinite loop!!
-- 8C never gets updated when a new answer is read. Fix?

String answer = input.nextLine();
boolean userWantsToContinue = answer.equals("Y");
while (userWantsToContinue) {

/* some

tations here =*/

CO.
answer = input.nextLine();
userWantsToContinue = answer.equals("Y");

Common Error (5):

LASSONDE
et

Improper Start Value of Loop Counter

int i = a.length - 1;

while (i >= 0) {
System.out.println(alil);

while (i < a.length) {
System.out.println(alil);

i-=;

i ++;

}

}

The value of loop counter i after the first while loop is —1!

Fix?

int i = a.length - 1;

while (i >= 0) {
System.out.println(alil);
i=0;

while (i < a.length) {
System.out.println(alil);

i-=;

i ++;

}

e

Common Error (6): Wrong Syntax LassonDE
How about this?
’while(inti=0; 1< 10; 1 ++) { ...} ‘
You meant:
’for(int i=20; 1 < 10; i ++) { ...} ‘

How about this?

’for(i < 10) { ...} ‘

You meant:

’while(i < 10) { ...} ‘

or

’for(;i<10;){...} ‘

68.0t70

Common Error (7): Misplaced Semicolon

|

SSONDE

Semicolon (;) in Java marks the end of a statement (e.g.,

assignment, i f statement, for,

while).

int[] ia = {1, 2, 3, 4};

for (int i = 0; 1 < 10; 1 ++4);
System.out.println("Hello!");

}

{

Output?

Hello!

Fix?

for (int i = 0; 1 < 10; 1 ++) {
System.out.println("Hello!");
}

69.0t70

Index (1) ;ASSONDE

Learning Outcomes
Motivation of Loops
The for Loop (1
The for Loop (2)
The for Loop (3)

The for Loop: Exercise (1

The for Loop: Exercise (2)

The for Loop: Exercise (3)

The while Loop (1)

The while Loop (2)

The while Loop: Exercise (1)

The while Loop: Exercise (2)

Primitive Statement vs. Compound Statement

Compound Loop: Exercise (1.1)

Index (2) _;HASSONDE
Compound Loop: Exercise (1.2)

Compound Loop: Exercise (1.3)
Converting between for and while Loops (1)
Converting between for and while Loops (2)

Stay Condition (SC) vs. Exit Condition (1)
Stay Condition (SC) vs. Exit Condition (2)
Problems, Data Structures, and Algorithms

Arrays: A Simple Data Structure

Arrays: Initialization and Indexing
Arrays: lterations

The for Loop: Exercise (3

The for Loop: Exercise (4)

The for Loop: Exercise (5)

Arra¥ lterations: Translating for to while (1)

Index (3) _;HASSONDE
Array lterations: Translating for to while (2)

Compound Loop: Exercise (2)
Compound Loop: Exercise (3)
Compound Loop: Exercise (3) Demo
Compound Loop: Exercise (4.1)
Compound Loop: Exercise (4.1) Demo (1)
Compound Loop: Exercise (4.1) Demo (2)
Compound Loop: Exercise (4.2)
Compound Loop: Exercise (4.2) Demo (1)
Compound Loop: Exercise (4.2) Demo (2
Compound Loop: Exercise (4.3) Summar
Compound Loop: Exercise (5
Compound Loop: Exercise (5) Demo [A

Compound Loop: Exercise (5) Demo [B]
e

Index (4) ;ASSONDE

Compound Loop: Exercise (5) Demo [C]
Checking Properties of Arrays (1)
Checking Properties of Arrays (1): Demo
Checking Properties of Arrays (2)

Checking Properties of Arrays (2) Demo
Qbservations

Arrays: Indexing and Short-Circuit Logic (1)
Arrays: Indexing and Short-Circuit Logic (2)
Arrays: Indexing and Short-Circuit Logic (3.1)
Arrays: Indexing and Short-Circuit Logic (3.2)
Arrays: Indexing and Short-Circuit Logic (4)

Parallel Loops vs. Nested Loops
Nested Loops: Finding Duplicates (1)

Nested Loops: Finding Duplicates (2)
e

Index (5) _;HASSONDE
Nested Loops: Finding Duplicates (3)

Nested Loops: Finding Duplicates (4)
Nested Loops: Finding Duplicates (5)
Nested Loops: Finding Duplicates (6)

Nested Loops: Finding Duplicates (7)
Common Error (1):

Improper Initialization of Loop Counter
Common Error (2):

Improper Stay Condition

Common Error (3):

Improper Update to Loop Counter
Common Error (4):

Improper Update of Stay Condition
Common Error (5):

Imgroger Start Value of Loop Counter

/|

Index (6) _;:ASSONDE
Common Error (6): Wrong Syntax

Common Error (7): Misplaced Semicolon

Classes and Objects

EECS1021:
Object Oriented Programming:

YORKIN " imeai™

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Where are we? Where will we go?

LASSONDE
i

» We have developed the Java code solely within main method.
e In Java:

o We may define more than one classes
o Each class may contain more than one methods
e object-oriented programming in Java:

o Use classes to define templates
o Use objects to instantiate classes

o At runtime, create objects and call methods on objects, to simulate
interactions between real-life entities.

20188

Object Orientation:

LASSONDE
[tn
Observe, Model, and Execute
- Compile-Time: Classes Run-Time: Objects
Real World: Entities (dafinitions of tomplates) rtime: O
class Person { Person Person
Entities: String name; name | “din” name_| “Jonathan®
jim, jonathan, ... Gouble h"":g;“' Sim [weight jonathan | weight 80
' Execute height | 1.80 height 1.80
. lass Potint { Point Point
Entities: °l oint (~
double x;
12,9), p2(1,-2), .. ; E
P12.3), p2(-1, -2) double ; o] P2 !
} y -2

o Study this tutorial video that walks you through the idea of

object orientation .
o We observe how real-world entities behave.

o We model the common attributes and behaviour of a set of

entities in a single class.

o We execute the program by creating instances of classes, which
interact in a way analogous to that of real-world entities.

https://www.youtube.com/watch?v=y7qOhn6Ep4A&index=15&t=4s&list=PL5dxAmCmjv_7WvY_QnJrcPczM_KjABxBn

/|

Oblect'oriented Progl‘ammlng (OOP) LASSONDE

¢ In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.
e Entities:
o Possess attributes;
o Exhibit bebaviour; and
o Interact with each other.
e Goals: Solve problems programmatically by
o Classifying entities of interest
Entities in the same class share common attributes and bebaviour.
o Manipulating data that represent these entities
Each entity is represented by specific values.

4ofB8

OO0 Thinking: Templates vs. Instances (1.1) Jsove

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

¢ A template called Person defines the common
o attributes (e.g., age, weight, height) [~ nouns]
o behaviour (e.g., get older, gain weight) [~ verbs]

/|

OO0 Thinking: Templates vs. Instances (1.2) Jsov

¢ Persons share these common attributes and behaviour.

o Each person possesses an age, a weight, and a height.
o Each person’s age, weight, and height might be distinct
e.g., jimis 50-years old, 1.8-meters tall and 80-kg heavy
€.0., jonathan is 65-years old, 1.73-meters tall and 90-kg heavy

e Each person, depending on the specific values of their

attributes, might exhibit distinct behaviour:

o When jim gets older, he becomes 51
o When jonathan gets older, he becomes 66.
o jim’s BMI is based on his own height and weight [1 5 |

o jonathan’s BMl is based on his own height and weight [

1. 732]

fof B8

/|

OO0 Thinking: Templates vs. Instances (1.3) csove

A template (e.g., class Person) defines what’s shared by a
set of related entities (i.e., persons).

o Common attributes (age, weight, height)
o Common behaviour (get older, lose weight, grow taller)

Each template may be instantiated into multiple instances.
o Person instance jim
o Person instance jonathan

Each instance may have specific values for the attributes.
o Each person instance has an age:
e jimis 50-years old
e jonathan is 65-years old
Therefore, instances of the same template may exhibit distinct
behaviour.
o Each Person instance can get older:
e jim getting older from 50 to 51
¢ jonathan getting older from 65 to 66
Zaiss

OO0 Thinking: Templates vs. Instances (2.1) Jsove

Points on a two-dimensional plane are identified by their signed

distances from the X- and Y-axises. A point may move

arbitrarily towards any direction on the plane. Given two points,

we are often interested in knowing the distance between them.
¢ A template called Point defines the common

o attributes (e.g., x, vy) [~ nouns]

o behaviour (e.g., move up, get distance from) [~ verbs]

/|

OO0 Thinking: Templates vs. Instances (2.2) Jsovs

¢ Points share these common attributes and behaviour.
o Each point possesses an x-coordinate and a y-coordinate.
o Each point’s location might be distinct
e.g., plis located at (3,4)
e.g., p2 is located at (-4,-3)
e Each point, depending on the specific values of their attributes
(i.e., locations), might exhibit distinct behaviour:
o When p1 moves up for 1 unit, it will end up being at (3,5)
o When p2 moves up for 1 unit, it will end up being at (-4, -2)
o Then, p1’s distance from origin: [V32 +52]

o Then, p2’s distance from origin: [V (-4)2 + (-2)3]

e

/|

OO0 Thinking: Templates vs. Instances (2.3) Jsov

A template (e.g., class Point) defines what's shared by a set
of related entities (i.e., 2-D points).

o Common attributes (x, y)
o Common behaviour (move left, move up)

Each template may be instantiated into multiple instances.
o Point instance p1l
o Point instance p2

Each instance may have specific values for the attributes.
o Each point instance has an age:
e plisat (3, 4)
e p2isat (-3, -4)
Therefore, instances of the same template may exhibit distinct
behaviour.
o Each Point instance can move up:
e pl moving up from (3, 3) resultsin (3, 4)
e p2 moving up from (-3, -4) resultsin (-3, -3)
10088

/|

OOP: Classes ~ Templates

|

SSONDE

In Java, you use a class to define a femplate that enumerates
attributes that are common to a set of entities of interest.

public class Person {
int age;
String nationality;
double weight;
double height;

}

public class Point {
double x;
double y;

t

1ot 88

OOP : LASSONDE

Define Constructors for Creating Objects (1.1)

e Within class Point, you define constructors , specifying how
instances of the Point template may be created.

public class Point {
. /* attributes: x, y */
Point (double newX, double newY) {
X = newX;
y = newyY; } }

In the corresponding tester class, each call to the point
constructor creates an instance of the Point template.

public class PointTester {
public static void main(String[] args) {
Point pl = new Point (2, 4);
printin(pl.x + " " + pl.y);
Point p2 = new Point (-4,
printin(p2.x + " " + p2.y);

OOP: :::ASSONDE
Define Constructors for Creating Objects (1.2)

Point pl = new Point (2, 4);

1. RHS (Source) of Assignment: new Point (2, 4) creates
a new Point object in memory.

Point ’

2. LHS (Target) of Assignment: Point pl declares a variable
that is meant to store the address of some Point object.
3. Assignment: Executing = stores new object’s address in p1.

Point
< x
pl Yy

/|

OOP: :ASSONDE
Define Constructors for Creating Objects (2.1)

e Within class person, you define constructors , specifying how
instances of the Person template may be created.

public class Person {

. /*x attributes: age, nationality, weight, height x/

Person(int newAge, String newNationality) {
age = newAge;

nationality = newNationality; } }

In the corresponding tester class, each call to the Person
constructor creates an instance of the Person template.

public class PersonTester {

public static void main(String[]

Person 3jim = new Person (50,

args)

{

"British");

println(jim.nationlaity + "

" + Jim.age);

println(jonathan

Person 3jonathan =
.nationlaity + "

new Person (60,

"Canadian");

" + jonathan.age); }

]

OOP: LASSONDE
Define Constructors for Creating Objects (2.2)

’Person jim = new Person (50, "British"); ‘

1. RHS (Source) of Assignment: new person (50, "British")
creates a new Person object in memory.

Person
50

nationality “British”

weight 0.0
0.0

2. LHS (Target) of Assignment: roint jim declares a variable
that is meant to store the address of some Person object.
3. Assignment: Executing = stores new object’s address in jim.

Person
50
nationality “British”
0.0

0.0

/|

SSONDE

|

Visualizing Objects at Runtime (1)

¢ To trace a program with sophisticated manipulations of objects,
it’s critical for you to visualize how objects are:
o Created using constructors
Person jim = new Person (50, "British", 80, 1.8);
o Inquired using accessor methods
double bmi = jim.getBMI () ;
o Modified using mutator methods
jim.gainWeightBy (10) ;
 To visualize an object:

o Draw a|rectangle box |to represent contents of that object:

o indicates the name of class from which the object is instantiated.
e | Left column |enumerates names of attributes of the instantiated class.
¢ | Right column |fills in values of the corresponding attributes.

o Draw m for variable(s) that store the object’s address .
160188

Visualizing Objects at Runtime (2.1) Lassonoe

After calling a constructor to create an object:

Person jim = new Person (50, "British", 80, 1.8);

Person

age 50
jim nationality “British”
weight 80
height 1.8

Visualizing Objects at Runtime (2.2) Lassonoe

After calling an accessor to inquire about context object 5 im:

double bmi = jim.getBMI();

e Contents of the object pointed to by jim remain intact.
¢ Retuned value € 8)2 of jim.getBMI () stored in variable bmi.

Person
(’ age 50

jim nationality “British”
weight 80
height 1.8

Visualizing Objects at Runtime (2.3) Lassonoe

After calling a mutator to modify the state of context object jim:

jim.gainWeightBy (10);

e Contents of the object pointed to by 5im change.
* Address of the object remains unchanged.
= jim points to the same object!

Person
(' age 50

Jjim nationality “British”
weight oo 90
height 1.8

Visualizing Objects at Runtime (2.4) Lassonoe

After calling the same accessor to inquire the modified state of
context object jim:

bmi = p.getBMI();

¢ Contents of the object pointed to by jim remain intact.

 Retuned value % of §im.getBMI () stored in variable bmi.

Person
(‘ age 50

Jjim nationality “British”
weight SS90
height 1.8

-
The this Reference (1) géé
» Each class may be instantiated to multiple objects at runtime.

SSONDE

|

class Point {
double x; double y;
void moveUp (double units) { y += units; }

}

e Each time when we call a method of some class, using the dot
notation, there is a specific farget/context object.

Point pl = new Point (2, 3);
Point p2 = new Point (4, 6);
pl.movelUp (3.

p2.moveUp (4

AWN =

5);
1) ;
o pl and p2 are called the call targets or context objects .

o Lines 3 and 4 apply the same definition of the moveUp method.
o But how does Java distinguish the change to p1 .y versus the

change to p2.vy?

e

-
The this Reference (2) géé

¢ In the method definition, each atiribute has an implicit this
which refers to the context object in a call to that method.

SSONDE

|

class Point {
double x;

double y;
Point (double newX, double newY) {

this.x = newX;
this.y = newY;

}
void moveUp (double units) {

this.y = this.y + units;
}
}

e Each time when the class definition is used to create a new
Point object, the this reference is substituted by the name of

the new object.

e

The this Reference (3)

|

SSONDE

o After we create p1 as an instance of Point

Point pl = new Point (2, 3);

e When invoking p1 .moveUp (3.5), a version of moveUp that is

specific to p1 will be used:

class Point {
double x;
double y;
Point (double newX, double newY)
pl .x = newX;
pl .y = newY;
}
void moveUp (double units) {

pl .y = pl.y + units;

{

23.0188

The this Reference (4)

|

SSONDE

o After we create p2 as an instance of Point

Point p2 = new Point (4, 6);

e When invoking p2 .moveUp (4.7), a version of moveUp that is

specific to p2 will be used:

class Point {
double x;
double y;
Point (double newX, double newY)
p2 .x = newX;
p2 .y = newy;
}
void moveUp (double units) {

p2 .y = p2.y + units;

{

24088

The this Reference (5)

/|

SSONDE

|

The this reference can be used to disambiguate when the
names of input parameters clash with the names of class

attributes.

class Point {
double x;
double y;

this.x = x;
this.y = y;

}

void setX(double x)
this.x = x;

}

void setY(double y)
this.y = y;

}

}
250188

Point (double x, double y)

{

{

{

The this Reference (6.1): Common Error o

The following code fragment compiles but is problematic:

class Person {
String name;
int age;
Person (String name, int age) {
name = name;
age = age;
}
void setAge(int age) {
age = age;
}
}

Why? Fix?

26.01.88

| Tl

S
The this Reference (6.2): Common Error ;’égsgsom

Always remember to use this when input parameter names

clash with class attribute names.

class Person {
String name;

int age;

Person(String name, int age) {

this.name = name;

this.age = age;

}

void setAge (int age) {
age;

}

this.age =
}
e

/|

OOP: Methods (1 .1) LASSONDE

e A method is a named block of code, reusable via its name.

m

T1 p1

{
15 p2

!
Ty Pn
e The Header of a method consists of:
o Return type [RT (which can be void)]
o Name of method [m]

o Zero or more parameter names [p1, P2, ..., Pn]
o The corresponding parameter types [Th, T2, ..., Th]

* A call to method m has the form: m(ay, a,...,an)
Types of argument values ay, ao, ..., a, must match the the
corresponding parameter types Ty, To, ..., Th.

e

/* implementation of method m */

/|

SSONDE

OOP: Methods (1.2)
¢ In the body of the method, you may
o Declare and use new /ocal variables
Scope of local variables is only within that method.

ks

o Use or change values of atiributes.
o Use values of parameters, if any.
{

= newNationality ;

class Person {
String nationality;
void changeNationality(String newNationality)
= b}
Call a method, with a context object , by passing arguments.

nationality
args) |

"British");
"Canadian") ;
}

class PersonTester {
public static void main(String[]

Person jim = new Person(50,

Person jonathan = new Person (60,
jim.changeNationality ("Korean") ;
jonathan.changeNationality ("Korean"); }

29.0LBF
e

-
OOP: Methods (2) o

Each class c defines a list of methods.
o A method mis a named block of code.

We reuse the code of method m by calling it on an object ob

of class C.
For each method call ob+.m(...):

o ob7j is the context object of type C

o mis a method defined in class C

o We intend to apply the code effect of method m to object ob .
€e.g., jim.getOlder () VS. jonathan.getOlder ()
e.g., pl.moveUp (3) VS. p2.moveUp (3)

All objects of class c share the same definition of method m.
However:

-~ Each object may have distinct attribute values.

.. Applying the same definition of method m has distinct effects.

e

/|

OOP: Methods (3)

|

SSONDE

1.

Constructor

o Same name as the class. No return type. /nitializes attributes.

o Called with the new keyword.

o e.g., Person jim = new Person (50, "British");

Mutator

o Changes (re-assigns) attributes

o void return type

o Cannot be used when a value is expected

o e.g.,double h = jim.setHeight (78.5) isillegal!

Accessor

o Uses attributes for computations (without changing their values)

o Any return type other than void

o An explicit return statement (typically at the end of the method)
returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g.,println(pl.getDistanceFromOrigin());

310t 88

N
OOP: The Dot Notation (1)

¢ A binary operator:
o LHS an object
o RHS an attribute or a method
e Given a variable of some reference type that is not null:
o We use a dot to retrieve any of its attributes .
Analogous to ’s in English
€.0., jim.nationality means jim’s nationality
o We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
€.0., jim.changeNationality ("CAN") changes the
nationality attribute of jim
o We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI () computes and returns the BMI calculated
based on jim’s weight and height
o Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = Jjim.getBMI ()

|

SSONDE

OOP: Method Calls P

iPoint prl = new Point (3, 4);

‘Point p2 = new Point (-6, -8);
‘System.out.println(pl. getDistanceFromOrigin ());
‘System.out.prim‘:ln (p2. getDistanceFromOrigin());

‘p2. moveUp (2) ;
‘ System.out.println(pl. getDistanceFromOrigin());

0 N O WD =

|
|
|
|
‘pl. moveUp (2) ;
|
|
1

‘ System.out.println(p2. getDistanceFromOrigin ());
L

¢ Lines 1 and 2 create two different instances of Point

 Lines 3 and 4: invoking the same accessor method on two
different instances returns distinct values

e Lines 5 and 6: invoking the same mutator method on two
different instances results in independent changes

* Lines 3 and 7: invoking the same accessor method on the
same instance may return distinct values, why? Line 5

e

/|

OOP: Class Constructors (1) o

* The purpose of defining a class is to be able to create
instances out of it.

 To instantiate a class, we use one of its constructors .
¢ A constructor
o declares input parameters
o uses input parameters to initialize some or all of its attributes

/|

OOP: Class Constructors (2)

public class Person {
int age;
String nationality;
double weight;
double height;
Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;
}
Person (double initW, double initH) {
weight = initW;
height = initH;
}
Person(int initAge, String initNat,
double initW, double initH) ({
/ 1

/* 1nitialize all attributes using the parameters +*

SSONDE

|

}
35.01.88

|

S
OOP: Class Constructors (3) 4%

public class Point {

double x;

double y;
Point (double initX, double initY)

{

x = 1InitX;

y = 1nity;
{

}

double distance)
distance; }
}

}
{ x =
{ yv = distance;
invalid axis.")

Point (char axis,
(axis == "x")
(axis == "y")

if

else if

else { System.out.println("Error:

}
e

/|

OOP: Class Constructors (4)

|

SSONDE

e For each class, you may define one or more constructors :

O O O o

Names of all constructors must match the class name.

No return types need to be specified for constructors.

Each constructor must have a distinct list of input parameter types.
Each parameter that is used to initialize an attribute must have a
matching type.

The body of each constructor specifies how some or all

attributes may be initialized.

|

OOP: Object Creation (1)

SSONDE

Point pl = new Point (2, 4);
System.out.println(pl);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + pl.x + ", " + pl.y + ")");

- ___
—

OOP: Object Creation (2)

|

A constructor may only initialize some attributes and leave others

uninitialized.
public class PersonTester {
public static void main(String[] args) {
/% initialize age and nationality only x/

/ *
Person jim = new Person(50, "BRI");
/#* initialize age and nationality only */

Person jonathan = new Person (65, "CAN");

/* initialize weight

Person alan = new Person (75, 1.80);

/+ initialize all attributes of a person */
1.78);

Person mark = new Person (40, "CAN", 69,

and height only */

| i \n,

ASSONDE

OOP: Object Creation (3)

Person jonathan

Person jim = new Person(50, “BRI”)
EeLSon Person
Jjim nationality “BRI” jonathan “CAN"
weight
height
Person alan = nmew Person(75, 1.80) Person mark = new Person(40, “CAN”, 69, 1.78)
Person Person
null mark nationality “CAN"
weight

alan nationality
weight
height

OOP: Object Creation

(4)

/|

|

SSONDE

A constructor may only initialize some attributes and leave others

uninitialized.

public class PointTester {

Point pl = new Point (3,
Point p2 = new Point (-3
Point p3 = new Point(’'x
Point p4 = new Point('y

}
}

public static void main(Stringl]

4);
-2);
", 5);
=T

args) |

\n,

ASSONDE

lgl—

new Point (-3,

OOP: Object Creation (5)

Point p2
Person

Point pl = new Point(3, 4)
Person
pl) pz y
Point p3 = new Point(‘x’, 5) Point p4 = new Point(‘y’, -7)
Person (. Person
p4

ks

SSONDE

OOP: Object Creation (6)
¢ When using the constructor, pass valid argument values:
o The type of each argument value must match the corresponding

parameter type.
o e.g., Person (50, "BRI") maiches
Person(int initAge, String initNationality)
4) matches

o e.g., Point (3,
Point (double initX, double initY)
e When creating an instance, uninitialized attributes implicitly get

assigned the default values .
o Set uninitialized attributes properly later using mutator methods
"British");

new Person (50,

Person jim =

jim.setWeight (85);

jim.setHeight (1.81);
e

|

SSONDE

OOP: Mutator Methods

e These methods change values of attributes.
» We call such methods mutators (with void return type).

public class Person {

void gainWeight (double units) {
weight + units;

weight
}

}

public class Point {

void moveUp () {
y=y+1;
}
e

}

R
OOP: Accessor Methods

e These methods return the result of computation based on
attribute values.
e We call such methods accessors (with non-void return type).

SSONDE

|

public class Person {

double getBMI() {
double bmi = height / (weight = weight);
return bmi;
}
}

public class Point {

double getDistanceFromOrigin() {
double dist = Math.sqrt(x*x + y*y);
return dist;

}

e —

/|

OOP: Use of Mutator vs. Accessor Methods uissoxe:

e Calls to mutator methods cannot be used as values.

o e.g., System.out.println(jim.setWeight (78.5)); X
o e.g.,,double w = jim.setWeight (78.5); X
o e.g., jim.setWeight (78.5); v
e Calls to accessor methods should be used as values.
o e.g., jim.getBMI(); X
o e.g., System.out.println (jim.getBMI()) ; e
v

o e.g.,,double w = jim.getBMI () ;

-
OOP: Method Parameters o

¢ Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.

e.g., Person (double w, double h) VS.
Person (String fName, String lName)

¢ Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.

e.g., InPoint, void moveToXAxis () VS.
void moveUpBy (double unit)

e Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.

e.g., In Point, double getDistFromOrigin () VS.
double getDistFrom(Point other)

e

OOP: Object Alias (1)

/|

|

SSONDE
1 |int 1 = 3;
2 |int j = 1; System.out.println(i == j); /* true */
3 |int k = 3; System.out.println(k == i && k == 7J); /* trug¢ =/

o Line 2 copies the number stored in 1 to j.
o After Line 4, i, j, k refer to three separate integer placeholder,
which happen to store the same value 3.

Point pl =
Point p2 =
Point p3 =

Systme.out
Systme.out

OO0 WN =

Systme.out.
.println(p3.x == pl.x && p3.y == pl.y);
.println(p3.x == p2.x && p3.y == p2.y);

new Point (2, 3);
pl; System.out.println(pl == p2); /* t
new Point (2, 3);
println(p3 == pl || p3 == p2); /* false

rue */

*/
/* trug
/% trug

b %/
b/

o Line 2 copies the address stored in p1 to p2.

o Both p1 and p2 refer to the same object in memory!

o p3, whose contents are same as pl and p2, refer to a different
object in memory.

e

0O Program Programming: Object Alias (2.1L;‘fésésom

Problem: Consider assignments to primitive variables:

1 |int 11 = 1;
2 |int i2 = 2;
3 |int i3 = 3;
4 |int[] numbersl = {11, i2, 1i3};
5 |int[] numbers2 = new int [numbersl.length];
6 |for(int i = 0; i < numbersl.length; 1 ++) {
7 numbers2(1] = numbersl[i];
8 |}
9 | numbersl[0] = 4;
10 | System.out.println(numbersl[0]);
11 | System.out.println(numbers2[0]);
49088

/|

0O Program Programming: Object Alias (2.2)soxo:

Problem:

Consider assignments to reference variables:

Person
Person
Person
Person

-
QOWoONOOHA~WN =

[GG
NoO Ok W=

Person[] personsl = {alan, mark, tom};
Person[] persons?2 = new Person|[personsl.length];
for(int 1 = 0; 1 < personsl.length; 1 ++) {
persons2[i] = personsl[i]; }
personsl[0].setAge(70);
System.
System.
System.
personsl[0] = jim;
personsl|[0].setAge
System.
System.
System.

alan = new Person("Alan");
mark = new Person("Mark");
tom = new Person("Tom");
jim = new Person("Jim");

out.println(jim.age);
out.println(alan.age);
out.println(persons2[0].age);

75) ;

jim.age);
alan.age);
persons2[0].age);

out.println
out.println
out.println

e

-
Java Data Types (1)

|

SSONDE
A (data) type denotes a set of related runtime values.
1. Primitive Types
o Integer Type
e int [set of 32-bit integers]
e long [set of 64-bit integers]
o Floating-Point Number Type
e double [set of 64-bit FP numbers]
o Character Type
e char [set of single characters]
o Boolean Type
e boolean [set of true and false]
2. Reference Type : Complex Type with Attributes and Methods
o String [set of references to character sequences]
o Person [set of references to Person objects]
o Point [set of references to Point objects]
o Scanner [set of references to Scanner objects]

e

/|

|

Java Data Types (2)

SSONDE
¢ A variable that is declared with a type but uninitialized is
implicitly assigned with its default value .
o Primitive Type
e int 1i; [0 is implicitly assigned to 1]
e double d; [0.0 isimplicitly assigned to d]
e boolean b; [false is implicitly assigned to b]
o Reference Type
e String s; [null is implicitly assigned to s]
e Person jim; [nul1 is implicitly assigned to jim]
e Point pl; [null is implicitly assigned to p1]
e Scanner input; [null is implicitly assigned to input]

¢ You can use a primitive variable that is uninitialized.

Make sure the default value is what you want!

e Calling a method on a uninitialized reference variable crashes
your program. [NullPointerException]
Always initialize reference variables!

e

Java Data Types (3.1)

|

SSONDE

e An attribute may store the reference to some object.

class Person { Person spouse; }

Methods may take as parameters references to other objects.

class Person {
void marry(Person other) { ... } }

Return values from methods may be references to other

objects.
class Point {
void moveUpBy(int i) { y =y + 1i; }
Point movedUpBy (int 1) {
Point np = new Point(x, Vy);

np.moveUp (1) ;
return np;
}
}

e

Java Data Types (3.2.1)

/|

LASSONDE
i

An attribute may be of type Point[] , storing references to

Point objects.

1 |class PointCollector {

2 Point[] points; int nop; /+ er of pc /

3 PointCollector() { points = new Point[100]; }

4 void addPoint (double x, double y) {

5 points[nop] = new Point(x, y); nop++; }

6 Point[] getPointsInQuadrantI() {

7 Point[] ps = new Point[nop];

8 int count = 0; /« I r of points in Quadrant I «

9 for(int i = 0; i < nop; i ++) {

10 Point p = points[i];

11 if(p.x > 0 && p.y > 0) { pslcount] = p; count ++; } }

12 ‘ Point[] glPoints = new Point|[count]; ‘

13 ‘ /* ps contains null if count < nop */ ‘

14 | for(int i = 0; i < count; i ++) { glPoints[i] = ps[i] } |

15 ‘ return glPoints ; ‘

16 ‘ }) ‘
Required Reading: Point and PointCollector

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/W/EECS1021/notes/EECS1021_W19_Notes_Tracing_PointCollectorTester.pdf

/|

Java Data Types (3.2.2)

|

SSONDE

1 |class PointCollectorTester {

2 public static void main(String[] args) {

3 PointCollector pc = new PointCollector();

4 System.out.println(pc.nop); /* 0 %/

5 pc.addPoint (3, 4);

6 System.out.println(pc.nop); /* 1 */

7 pc.addPoint (-3, 4);

8 System.out.println(pc.nop); /* 2 %/

9 pc.addPoint (-3, -4);

10 System.out.println(pc.nop); /* 3 */

11 pc.addPoint (3, -4);

12 System.out.println(pc.nop); /* 4 */
13 Point[] ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /+ 1 */
15 System.out.printIn("(" + ps[0].x + ", " + ps[0].y + ")");
16 /* (3, 4) */

-
Java Data Types (3.3.1)

An attribute may be of type ArraylList<Point>, storing
references to Point objects.

SSONDE

|

1 |class PointCollector {

2 ArrayList<Point> points;

3 PointCollector() { points = new ArrayList<>(); }

4 void addPoint (Point p) {

5 points.add (p); }

6 void addPoint (double x, double y) {

7 points.add (new Point(x, y)); }

8 ArrayList<Point> getPointsInQuadrantI() {

9 ArrayList<Point> glPoints = new ArrayList<>();

10 for(int i = 0; 1 < points.size(); 1 ++) {

11 Point p = points.get (1i);

12 if(p.x > 0 && p.y > 0) { glPoints.add (p); } }

13 ‘ return qglPoints ; ‘
14]}} ‘

L8 & L9 may be replaced by:

’for(Point p : points) { glPoints.add(p); } ‘

e

Java Data Types (3.3.2)

/|

|

SSONDE

O©CoONOOOTA~WN =

class PointCollectorTester {
public static void main(String[] args) {

PointCollector pc = new PointCollector();
System.out.println(pc.points.size()); /*
pc.addPoint (3, 4);
System.out.println(pc.points.size()); /*
pc.addPoint (=3, 4);
System.out.println(pc.points.size()); /+*
pc.addPoint (=3, -4);
System.out.println(pc.points.size()); /*
pc.addPoint (3, -4);
System.out.println(pc.points.size()); /*

ArrayList<Point> ps = pc.getPointsInQuadrantI();
System.out.println(ps.length); /x 1 x/
System.out.println("(" + ps[0].x + ", " + ps[0].y +
/*x (3, 4) */

(=)

-

W

4

*/
o/
*/
*/

*/

n) "),.

The this Reference (7.1): Exercise LassoNDE

Consider the person class

class Person |
String name;

Person spouse;
Person(String name) {
this.name = name;

}
}

How do you implement a mutator method marry which marries
the current Person object to an input Person object?

e

The this Reference (7.2): Exercise

SSONDE

|

void marry(Person other)
if (this.spouse != null

}

else { this.spouse =

}

System.out.println("Error:

other;

{
|| other.spouse != null) {
both must be single.");

other.spouse = this; }

When we call jim.marry (elsa): this is substituted by the
call target 5im, and other is substituted by the argument

elsa.

void marry(Person other)
jim.spouse = elsa;
elsa.spouse =
}
}

Jim;

{

e

/|

OOP: The Dot Notation (2)

|

SSONDE
e LHS of dot can be more complicated than a variable :
o |t can be a path that brings you to an object
class Person {
String name;
Person spouse;
}
o Say we have Person jim = new Person ("Jim Davies")
o Inquire about jim’s name? [jim.name]
o Inquire about jim's spouse’s name? [§im.spouse.name]
o Butwhatif jimis single (i.e., jim.spouse == null)?
Calling jim. spouse.name will trigger NullPointerException!!
o Assuming that:
e jimis not single. [jim.spouse != null]
¢ The marriage is mutual. [jim.spouse.spouse != null]
What does jim.spouse.spouse.name mean? [jim.name]

60088

/|

OOP: The Dot Notation (3.1)

|

SSONDE
In real life, the relationships among classes are sophisticated.
cs te
Student * Course " Faculty

class Student { class Course { class Faculty {

String id; String title; String name;

Course[] cs; Faculty prof; Course[] te;
} } }

Aggregation links between classes constrain how you can
navigate among these classes.

e.g., In the context of class student:
o Writing cs denotes the array of registered courses.
o Writing es[i] (where 1 is a valid index) navigates to the class

Course, which changes the context to class Course.
A1.0L88

OOP: The Dot Notation (3.2)

/|

|

SSONDE

class Student {

class Course {

class Faculty {

String id; String title; String name;
Course[] cs; Faculty prof; Course[] te;
} } }
class Student {
/* attributes #*/
/* Get the student’s id =/
String getID() { return this.id; }
/* Get the title of the ith course */
String getCourseTitle(int 1) {
return this.cs[i].title;
}
/* Get the instructor’s name of the ith course */

rName (int 1)
.prof.name;

String getInstructo
return this.cs[1]

OOP: The Dot Notation (3.3)

/|

|

SSONDE

class Student { class Course {
String id; String title;
Course[] cs; Faculty prof;

} } }

class Faculty {
String name;
Coursel]

te;

class Course {
/

‘, +tribu
J * ttribut

/ * ~ourse’
String getTitle()
/* Get t stru
String getInstructorName () {
return this.prof.name;

}

/*

Get the title

s */
{ return this
*/

.title;

ne 1in ctor’s name

1+

+

- T4+ 7) h +eacrhing colirs ~F
Get title of h teaching course of

String getCourseTitleOfInstructor(int 1
return this.prof.te.[1i].title;

}

— ot

OOP: The Dot Notation (3.4)

/|

|

SSONDE

class Student { class Course { class Faculty {
String id; String title; String name;
Coursel[] cs; Faculty prof; Coursel[] te;

} } }

class Faculty {
/* attributes #*/

/% Get the instructor’s name */
String getName () {

return this.name;
}
/+ Get the title of ith teaching course x/
String getCourseTitle(int 1) {

return this.te[i].title;

ks

SSONDE

OOP: Equality (1)

3);
3);

Point pl = new Point(2,
= new Point (2,

= (pl == p2);
System.out.println("pl and p2 same location?" + sameLoc);

Point p2
boolean sameLoc

false

pl and p2 same location?

/|

OOP: Equality (2)

e Recall that
o A primitive variable stores a primitive value
e.g., double dl = 7.5; double d2 = 7.5;
o A reference variable stores the address to some object (rather
than storing the object itself)
€.0., Point pl = new Point (2, 3) assignsto pl the
address of the new Point object
e.g., Point p2 = new Point (2, 3) assignsto p2 the
address of another new Point object
* The binary operator == may be applied to compare:

o Primitive variables: their contents are compared
e.g., d1 == d2 evaluates to true
o Reference variables: the addresses they store are compared
(rather than comparing contents of the objects they refer to)
e.g0., pl == p2 evaluates to false because p1 and p2 are
addresses of different objects, even if their contents are identical.
B6.0£88

|

SSONDE

Static Variables (1)

|

SSONDE

class Account {
int id;
String owner;
Account (int id, String owner) {
this.id = id;
this.owner = owner;

}

class AccountTester {
Account accl = new Account(l, "Jim");
Account acc2 = new Account (2, "Jeremy");
System.out.println(accl.id '= acc2.1id);

}

But, managing the unique id’s manually is error-prone !
6Zataa

/|

SSONDE

|

Static Variables (2)

class Account {

static int globalCounter = 1;
int id; String owner;
Account (String owner) {
this.id = globalCounter ; globalCounter ++;

this.owner = owner; } }

class AccountTester {
Account accl = new Account ("Jim");
Account acc2 = new Account ("Jeremy");
System.out.println(accl.id '= acc2.1id); }

e Each instance of a class (e.g., acc1, acc?2) has a local copy of
each attribute or instance variable (e.g., id).
o Changing acc1.id does not affect acc2.id.

» A static variable (e.g., globalCounter) belongs to the class.
o Allinstances of the class share a single copy of the static variable.
o Change to globalCounter via c1 is also visible to c2.

e

R
Static Variables (3)

’class Account { ‘

SSONDE

|

static int globalCounter = 1;

int id; String owner;

Account (String owner) {
this.id = globalCounter ;
globalCounter ++;
this.owner = owner;

b}

e Static variable globalCounter is not instance-specific like
instance variable (i.e., attribute) id is.
» To access a static variable:
o No context object is needed.
o Use of the class name suffices, e.g., Account .globalCounter.
e Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects
of Account.

e

R
Static Variables (4.1): Common Error Afégsésonos

class Client {

| gl

Account[] accounts;

static int numberOfAccounts = 0;

void addAccount (Account acc) |
accounts[numberOfAccounts] = acc;

numberOfAccounts ++;
Pl

class ClientTester {

Client bill = new Client ("Bill");
Client steve = new Client ("Steve");
Account accl = new Account();
Account acc2 = new Account();
bill.addAccount (accl);

/+* correctly added to bill.accounts[0] =*/
steve.addAccount (acc2) ;

/* mistakenly added to steve.accounts[1]! x/

}

e

- ___
—

Static Variables (4.2): Common Error

ASSONDE

| gl

e Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.

e If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberofAccounts will be visible to
all client objects.

e Here is the correct version:

class Client {
Account[] accounts;
int numberOfAccounts = 0;
void addAccount (Account acc) |
accounts[numberOfAccounts] = acc;
numberOfAccounts ++;

}
}

e

\n,

J

-

Static Variables (5.1): Common Error

ASSONDE

k

public class Bank {
public string branchName;
public static int nextAccountNumber = 1;
public static void useAccountNumber () {
System.out.println (branchName + ...);
nextAccountNumber ++;

O~NO O~ WN =

e Non-static method cannot be referenced from a static context

e Line 4 declares that we can call the method
userAccountNumber without instantiating an object of the
class Bank.

e However, in Lined 5, the static method references a non-static
attribute, for which we must instantiate a Bank object.
Z2.0£.88

J

-

ASSONDE

k

Static Variables (5.2): Common Error

public class Bank {
public string branchName;
public static int nextAccountNumber = 1;
public static void useAccountNumber () {
System.out.println (branchName + ...);
nextAccountNumber ++;

ONO O~ WN =

}
e To call useAccountNumber (), no instances of Bank are
required:

Bank .useAccountNumber() ;

e Contradictorily, to access branchName, a context object is
required:

Bank bl = new Bank(); bl.setBranch("Songdo IBK");
System.out.println(bl .branchName) ;

e

/|

Static Variables (5.3): Common Error LassonDE

There are two possible ways to fix:

1. Remove all uses of non-static variables (i.e., branchName) in
the static method (i.e., useAccountNumber).

2. Declare branchName as a static variable.

o This does not make sense.
-~ branchName should be a value specific to each Bank instance.

/|

OOP: Helper Methods (1) LassonDE

e After you complete and test your program, feeling confident that
it is correct, you may find that there are lots of repetitions.

e When similar fragments of code appear in your program, we
say that your code “smells”

* We may eliminate repetitions of your code by:
o Factoring out recurring code fragments into a new method.
o This new method is called a helper method :
¢ You can replace every occurrence of the recurring code fragment by a

call to this helper method, with appropriate argument values.
e Thatis, we reuse the body implementation, rather than repeating it
over and over again, of this helper method via calls to it.

e This process is called refactoring of your code:
Modify the code structure without compromising correctness.

Z5.01.88

/|

OOP: Helper (Accessor) Methods (2.1) o
class PersonCollector {
to be stored */

Person[] ps;

final int MAX
int nop; /» nt
PersonCollector() |

ps = new Person[MAX];

= 100; /+
imber of persons x/

}

void addPerson(Person p) |

pslnop] = p;
nop++;

n)

double w)

e hood
SOor: DLOOL

ean personk
t

or: void che
double h)

void

- ___
—

OOP: Helper (Accessor) Methods (2.2.1)

|

class PersonCollector {
/* ps, MAX, nop, PersonCollector(), addPerson */

boolean personExists(String n) {
boolean found = false;
for(int i = 0; 1 < nop; i ++) {
if(ps[i] .name.equals(n)) { found = true; } }
return found;
}
void changeWeightOf (String n,
for(int i = 0; 1 < nop; 1 ++) {
if(ps[i] .name.equals(n)) { ps[i].setWeight(w); } }

double w) {

}
void changeHeightOf (String n, double h) {

for(int i = 0; 1 < nop; i ++) {
if (psli] .name.equals(n)) { ps[i].setHeight(h); } }

e

{

}

{

OOP: Helper (Accessor) Methods (2.2.2) s
’class PersonCollector { /* code smells: repetitions! x/ |
/* ps, MAX, nop, PersonCollector (), addPerson #*/
boolean personExists(String n)
boolean found = false;
for(int i = 0; i < nop; 1 ++) |
if(ps[i].name.equals(n)) { found = true; }
return found;
}
void changeWeightOf(String n , double w) {
i < nop; i ++) | ‘
ps[i] .setWeight (w); } }
|
|

b}

for(int i = 0;
if(ps[i].name.equals (n))

}

‘ void changeHeightOf(String n , double h) {
‘ for(int i = 0; 1 < nop; 1 ++) |
if(ps[i].name.equals(n)) { ps[i] .setHeight (h);
}
}z8.0£.88
SN E—

*/

addPerson

OOP: Helper (Accessor) Methods (2.3)
/+ Eliminate code smell.

class PersonCollector {
PersonCollector (),
/% Helper Methods #*/

{

}

/* ps, MAX, nop,
int indexOf (String n) {
int i = -1;
for(int j = 0; j < nop; j ++)
if(psljl.name.equals(n)) { i = j; }
}
return i; /+ -1 if not found; >= 0 1if found. =/
}
boolean personExists(String n) { return indexOf (n) >= 0;
void changeWeightOf (String n, double w) {
int i = indexOf (n); if(i >= 0) { ps[i].setWeight (w);
}
void changeHeightOf (String n, double h) {
int i = indexOf (n); if(i >= 0) { psli].setHeight (h); }
}
}
Z9.0L88
e

OOP: Helper (Accessor) Methods (3.1)

Problems:

e A point class with x and y coordinate values.
e Accessor double getDistanceFromOrigin().
p.getDistanceFromOrigin () returns the distance
between p and (0, 0).
e Accessor double getDistancesTo (Point pl, Point p2).
p.getDistancesTo (pl, p2) returns the sum of distances

between p and p1, and between p and p2.

e Accessor double getTriDistances (Point pl, Point p2).
p.getDistancesTo (pl, p2) returnsthe sum of distances

between p and p1, between p and p2, and between p1 and p2.
e

/|

OOP: Helper (Accessor) Methods (3.2)

class Point {
double x; double y;

double getDistanceFromOrigin ()

{

return Math.sqrt (Math.pow(x - 0, 2) + Math.pow(y — 0, 2)); }
double getDistancesTo (Point pl, Point p2) {
return
Math.sqgrt (Math.pow(x — pl.x, 2) + Math.pow(y - pl.y, 2))
+
Math.sqgrt (Math.pow(x - p2.x, 2), Math.pow(y — p2.y, 2)); }
double getTriDistances (Point pl, Point p2) {
return
Math.sqgrt (Math.pow(x — pl.x, 2) + Math.pow(y — pl.y, 2))
+
Math.sqgrt (Math.pow(x - p2.x, 2) + Math.pow(y - p2.y, 2))
+
Math.sqgrt (Math.pow(pl.x — p2.x, 2) + Math.pow(pl.y — p2.y, 2));

81of88

2))

R
OOP: Helper (Accessor) Methods (3.3) }%

¢ The code pattern
Math.sqrt (Math.pow(... — ..., 2) + Math.pow(... —
is written down explicitly every time we need to use it.
e Create a helper method out of it, with the right parameter and
{

return types:

double getDistanceFrom(double otherX, double otherY)
2)

return
2));

+
Math.pow(otherY - this.y,
e

Math.sqrt (Math.pow(ohterX - this.x,

OOP: Helper (Accessor) Methods (3.4)

/|

LASSONDE
i

class Point {
double x; double y;
double getDistanceFrom(double otherX, double otherY)
return Math.sqrt (Math.pow(ohterX — this.x, 2) +
Math.pow(otherY - this.y, 2));
}
double getDistanceFromOrigin () {
return this.getDistanceFrom(0, 0);
}
double getDistancesTo (Point pl, Point p2) {
return this.getDistanceFrom(pl.x, pl.y) +
this.getDistanceFrom(p2.x, p2.y);
}
double getTriDistances (Point pl, Point p2) {
return this.getDistanceFrom(pl.x, pl.y) +
this.getDistanceFrom(p2.x, p2.y) +
pl.getDistanceFrom(p2.x, p2.y)

{

e

/|

OOP: Helper (Mutator) Methods (4.1)

|

class Student {
String name;

double balance;

Student (String n, double b) {

name = nj;
balance = b;

Jouble val)

o

reScholarship (

void recei
void payLi
void payCafeCoupons (dou

volid transfer (Student other, double val)

double b)

o N
ng n,

OOP: Helper (Mutator) Methods (4.2.1)

{

* /'/

class Student {
/* name, balance, Student (Stri
void receiveScholarship(double val)
balance + val;
{

balance
void payLibraryOverdue (double val)
val;

balance -
{

}

balance
void payCafeCoupons (double val)
val;

}

balance -
double val)

balance
void transfer (Student other,
val;

{

}
balance = balance -
other.balance = other.balance + val;
e

repetitions!
*/

double b)

OOP: Helper (Mutator) Methods (4.2.2)
*/

/* code smells:

Student (String n,

T
class Student {

/* name, balance,

void receiveScholarship(double val)

balance = balance + val;
{

}
void payLibraryOverdue (double val)

balance = balance — val;
{

{

}

void payCafeCoupons (double val)
balance = balance — val;
double val)

}
void transfer (Student other,

balance = balance — val;
balance = other.balance + val;
}
}
e

double b)

/* Eliminate code smell.

OOP: Helper (Mutator) Methods (4.3)
*/

Student (String n,
/* Helper Method */

class Student {
{

balance,

/* name,
void deposit (double val)

balance + valj;
/% Helper Method =/

{

}

{

}

void transfer (Student other,
this. withdraw (val);
other. deposit (val);
}
e

balance =
void withdraw (double val)
balance = balance - valj;
void receiveScholarship(double val) { this. deposit (val);
‘ void payLibraryOverdue (double val) { this. withdraw (val); h
void payCafeCoupons (double val) { this. withdraw (val) }
double val)

Index (1) _;HASSONDE
Where are we? Where will we go?

Object Orientation:

Observe, Model, and Execute

Object-Oriented Programming (OOP)

OO0 Thinking: Templates vs. Instances (1.1)
OO0 Thinking: Templates vs. Instances (1.2)
OO0 Thinking: Templates vs. Instances (1.3)
00 Thinking: Templates vs. Instances (2.1

OO0 Thinking: Templates vs. Instances (2.2)
00 Thinking: Templates vs. Instances (2.3)

OOP: Classes ~ Templates
OQP:

Define Constructors for Creating Objects (1.1)
QOP:

Define Constructors for Creating Objects (1.2)

Index (2) _;HASSONDE
QOP:

Define Constructors for Creating Objects (2.1)

QOP:

Define Constructors for Creating Objects (2.2)

Visualizing Objects at Runtime (1)
Visualizing Objects at Runtime (2.1)
Visualizing Objects at Runtime (2.2)
Visualizing Objects at Runtime (2.3)
Visualizing Objects at Runtime (2.4)
The this Reference (1)

The this Reference (2)

The this Reference (3)

The this Reference (4)

The this Reference (5)
e

Index (3) _;HASSONDE
The this Reference (6.1): Common Error
The this Reference (6.2): Common Error
OOP: Methods (1.1)

OOP: Methods (1.2)

OOP: Methods (2)

OOP: Methods (3)

OOP: The Dot Notation (1)

QO0P: Method Calls

OOP: Class Constructors (1)

OOP: Class Constructors (2)

OOP: Class Constructors (3)

OOP: Class Constructors (4)

OOP: Object Creation (1)

OOP: Object Creation (2)
e

Index (4) ;ASSONDE

OOP: Object Creation (3)
OOP: Object Creation (4)

OOP: Object Creation (5)
OOP: Object Creation (6)
QOP: Mutator Methods
QOP: Accessor Methods
QOP: Use of Mutator vs. Accessor Methods
QOP: Method Parameters
OOP: Object Alias (1)
OOP: Object Alias (2.1)
OOP: Object Alias (2.2)
Java Data Types (1)

Java Data Types (2)

Java Data Types (3.1)
e

IndeX (5) _;HASSONDE

Java Data Types (3.2.1)

Java Data Types (3.2.2)
Java Data Types (3.3.1)

Java Data Types (3.3.2)

The this Reference (7.1): Exercise
The this Reference (7.2): Exercise
OOP: The Dot Notation (2)

OOP: The Dot Notation (3.1)

OOP: The Dot Notation (3.2)

OOP: The Dot Notation (3.3)

OOP: The Dot Notation (3.4)
OOP: Equality (1

OOP: Equality (2

Static Variables (1)
e

Index (6) ;ASSONDE

Static Variables (2)
Static Variables (3)

Static Variables (4.1): Common Error
Static Variables (4.2): Common Error
Static Variables (5.1): Common Error
Static Variables (5.2): Common Error
Static Variables (5.3): Common Error
OOP: Helper Methods (1)

OOP: Helper (Accessor) Methods (2.1)

OOP: Helper (Accessor) Methods (2.2.1)
OOP: Helper (Accessor) Methods (2.2.2)
OOP: Helper (Accessor) Methods (2.3)
OOP: Helper (Accessor) Methods (3.1)

OOP: Helper (Accessor) Methods (3.2)
e

Index (7) e
OOP: Helper (Accessor) Methods (3.3)

OOP: Helper (Accessor) Methods (3.4)

OOP: Helper (Mutator) Methods (4.1)

OOP: Helper (Mutator) Methods (4.2.1)

OOP: Helper (Mutator) Methods (4.2.2)

OOP: Helper (Mutator) Methods (4.3)

e

Using API in Java

EECS1021:
Object Oriented Programming:

YORKIN " imeai™

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes o

Understand:

e Self-Exploration of Java API

Method Header

Parameters vs. Arguments

Non-Static Methods and Collection Library
Static Methods and Math Library

/|

Application Programming Interface (API) ssono:

e Each time before you start solving a problem:
o As a beginner, crucial to implement everything by yourself.
o As you get more experienced, first check to see if it is already
solved by one of the library classes or methods.
Rule of the Thumb: Do NOT REINVENT THE WHEEL!

* An Application Programming Interface (API) is a collection of
programming facilities for reuse and building your applications.

e Java API contains a library of classes (e.g., Math, ArrayList,
HashMap) and methods (e.g., sqrt, add, remove):

https://docs.oracle.com/javase/8/docs/api/
¢ To use a library class, put a corresponding import statement:

import java.util.ArrayList;
class MyClass |
ArrayList myList;

}
3013

https://docs.oracle.com/javase/8/docs/api/

/|

Classes vs. Methods

e A method is a named block of code reusable by its name.
e.g., As a user of the sqrt method (from the Math class):
¢ Implementation code of sqrt is hidden from you.
¢ You only need to know how to call it in order to use it.

o A non-static method must be called using a | context object |.

e.g., lllegal to call ArrayList.add ("Suyeon"). Instead:

SSONDE

|

ArrayList<String> list = new ArrayList<String>();
list.add("Suyeon")

o A static method can be called using the] name of its class |.
e.g., By calling Math.sqgrt (1.44), you are essentially reusing a
block of code, hidden from you, that will be executed and calculate the
square root of the input value you supply (i.e., 1.44).

e A class contains a collection of related methods.
e.g., The Math class supports methods related to more advanced
mathematical computations beyond the simple arithmetical
operations we have seen so far (i.e., +, -, , /, and %).

e

/|

Parameters vs. Arguments LASSONDE

e Parameters of a method are its input variables that you read
from the API page.
€.g., double pow(double a, double b) has:
o two parameters a and b, both of type double
o one output/return value of type double

e Arguments of a method are the specific input values that you
supply/pass in order to use it.

e.g., To use the pow method to calculate 3.4%, we call it by
writing Math.pow (3.4, 5).

e Argument values must conform to the corresponding parameter
types.
€.0., Math.pow ("three point four", "5") isan invalid
call!

5.0f13

/|

Header of a Method Lassonpe

Header of a method informs users of the intended usage:

o Name of method
o List of inputs (a.k.a. parameters) and their types
o Type of the output (a.k.a. return type)

e Methods with the void return type are mutators.
o Methods with non-void return types are accessors.

e.g. In Java API, the Method Summary section lists headers
and descriptions of methods.

/|

Example Method Headers: Math Class v

* The class Math contains methods for performing basic numeric
operations such as the elementary exponential, logarithm,

square root, and trigonometric functions.
Modifier and Type Method and Description

static double abs(double a)
Returns the absolute value of a double value.

static float abs(float a)
Returns the absolute value of a float value.

static int abs(int a)
Returns the absolute value of an int value.

static long abs(long a)
Returns the absolute value of a long value.

e Method Overloading : multiple methods sharing the same
name, but with distinct lists of parameters (e.g., abs method).
e The abs method being static allows us to write

Math.abs (-2.5).
Zatil

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

ks

N
Case Study: Guessing a Number 4%

Problem: Your program:
o internally and randomly sets a number between 0 and 100
repeatedly asks the user to enter a guess, and hints if they got it,

o
or should try something smaller or larger
o once the user got it and still wishes to continue, repeat the game

with a different number
Hints:
random ()
Returns a double value with a positive sign, greater than or equal to

static double
0.0 and less than 1.0.

* 100

(int) Math.random/()
or
(int) (Math.random() = 100)
??
e

/|

-
Example Method Headers: ArrayList Class Lissono:
An ArrayList acts like a “resizable” array (indices start with 0).

| gl

~

size()
Returns the number of elements in this list.

int
boolean add(E e)
Appends the specified element to the end of this list.
void add(int index, E element)
Inserts the specified element at the specified position in this list.
boolean contains(Object o)
Returns true if this list contains the specified element.
E remove(int index)
Removes the element at the specified position in this list.
boolean remove (Object o)
Removes the first occurrence of the specified element from this list, if it
is present.

Returns the index of the first occurrence of the specified element in this

int index0f (Object o)
list, or -1 if this list does not contain the element.
E get(int index)
Returns the element at the specified position in this list.
e

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

/|

Case Study: Using an ArrayList LassonDE
1 import java.util.ArrayList;
2 public class ArrayListTester {
3 public static void main(String[] args) {
4 ArrayList<String> list = new ArrayList<String>();
5 println(list.size());
6 println(list.contains("A"));
7 println(list.indexOf("A"));
8 list.add("A");
9 list.add("B");
10 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
11 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
12 list.add(l, "C");
13 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
14 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
15 list.remove ("C");
16 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
17 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
18
19 for(int i = 0; i < list.size(); i ++) {
20 println(list.get(i));
21 }
22 }
23 |}

See Java Data Types (3.3.1) — (3.3.2) in Classes and Objects for another

example on ArrayList.
Anofiy

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2019/W/EECS1021/slides/04-Classes-and-Objects.pdf

/|

Example Method Headers: HashTable Class o

A HashTable acts like a two-column table of (searchable) keys

and values.

int

boolean

boolean

size()
Returns the number of keys in this hashtable.

containsKey (Object key)
Tests if the specified object is a key in this hashtable.

containsValue(Object value)
Returns true if this hashtable maps one or more keys to this value.

get(Object key)
Returns the value to which the specified key is mapped, or null if this
map contains no mapping for the key.

put(K key, V value)
Maps the specified key to the specified value in this hashtable.

remove (Object key)
Removes the key (and its corresponding value) from this hashtable.

https://docs.oracle.com/javase/8/docs/api/java/util/Hashtable.html

/|

\n,

Case Study: Using a HashTable LASSONDE

i

1 import java.util.Hashtable;

2 | public class HashTableTester {

3 public static void main(String[] args) {

4 Hashtable<String, String> grades = new Hashtable<String, String>();

5 System.out.println("Size of table: " + grades.size());

6 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));

7 System.out.println("Value B+ exists: " + grades.containsValue("B+"));

8 grades.put ("Alan", "A");

9 grades.put ("Mark", "B+");

10 grades.put ("Tom", "C");

1 System.out.println("Size of table: " + grades.size());

12 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));

13 System.out.println("Key Mark exists: " + grades.containsKey("Mark"));

14 System.out.println("Key Tom exists: " + grades.containsKey("Tom"));

15 System.out.println("Key Simon exists: " + grades.containsKey("Simon"));
16 System.out.println("Value A exists: " + grades.containsValue("A"));

17 System.out.println("Value B+ exists: " + grades.containsValue("B+"));

18 System.out.println("Value C exists: " + grades.containsValue("C"));

19 System.out.println("Value A+ exists: " + grades.containsValue("A+"));
20 System.out.println("Value of existing key Alan: " + grades.get ("Alan"));
21 System.out.println("Value of existing key Mark: " + grades.get ("Mark"));
22 System.out.println("Value of existing key Tom: " + grades.get ("Tom"));
23 System.out.println("Value of non-existing key Simon: " + grades.get ("Simon"));
24 grades.put ("Mark", "F");
25 System.out.println("Value of existing key Mark: " + grades.get ("Mark"));
26 grades.remove ("Alan") ;
27 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
28 System.out.println("Value of non-existing key Alan: " + grades.get("Alan"));
29 }
30 |)lafdd

Index (1) ;ASSONDE

Learning Outcomes

Application Programming Interface (API
Classes vs. Methods

Parameters vs. Arguments

Header of a Method
Example Method Headers: Math Class

Case Study: Guessing a Number

Example Method Headers: ArrayList Class

Case Study: Using an ArrayList
Example Method Headers: HashTable Class

Case Study: Using a HashTable

13.0t13

Wrap-Up

EECS1021:
Object Oriented Programming:

YORKIN " imeai™

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Why this Course?

SSONDE

|

e Computational thinking (CT) is a fundamental skill for
everyone, not just for computer scientists.

o Reference: wina. J.M.. 2006. Computational thinking. Communications of the ACM, 49(3). pp.33 — 35.
o Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of

abstraction.
e Level of Java Code: How Programs Behave at Runtime
e Above the Level of Code:
Logical rationale behind some functioning/malfunctioning code.

¢ Being able to think abstractly without seeing changes on a
physical device is an important skill you are expected to acquire
when graduating.

o Think of programming interviews at Google: Given problems
described in English, solve it on a whiteboard.

e

http://www.cs.cmu.edu/~./15110-s13/Wing06-ct.pdf
https://youtu.be/XKu_SEDAykw

/|

What You Learned (1)

|

SSONDE

e Procedural Programming in Java

O 0O O O O O o

primitive data types

assignments

casting vs. coercion for numbers

Boolean expressions, logical operators, short-circuit evaluation
if-statements

Solving problems iteratively: for vs. while loops
one-dimensional arrays

What You Learned (2)

|

SSONDE

» Object-Oriented Programming in Java

o classes, attributes, objects, reference data types
methods: constructors, accessors, mutators, helper
dot notation, context objects, method calls

aliasing

Java APl: Math, Scanner, ArrayList, Hashtable

e keywords: final, this, static

[e]

O O O

What You Learned (3)

LASSONDE
i

» Integrated Development Environment (IDE) for Java: Eclipse
o Compile Time vs. Runtime
o Syntax Errors
¢ Type Errors
o Logical Errors

o Creating Console App’s via Classes with main method
o User interactions

o Breakpoints and Debugger

|

Beyond this course. ..

SSONDE

o Java Tutorials

https://www.yvoutube.com/playlist?1list=PL5dxAmCmjv
SNRNPG30iWZWAamvCiiLfG

e Two-Dimensional Arrays

https://www.eecs.yorku.ca/~jackie/teaching/lectures/
index.html#EECS1022 W18

¢ Advanced Object-Oriented Programming

https://www.eecs.yorku.ca/~jackie/teaching/lectures/
index.html#EECS2030 F18

folg

https://www.youtube.com/playlist?list=PL5dxAmCmjv_5NRNPG3OiWZWAqmvCjiLfG
https://www.youtube.com/playlist?list=PL5dxAmCmjv_5NRNPG3OiWZWAqmvCjiLfG
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS1022_W18
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS1022_W18
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F18
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F18

/|

Wish You the Best v

e What you have learned will be assumed in EECS2030.

e Do not abandon Java during the break!!

Course Evaluation LassonDE

courseevaluations.yorku.ca

	01-Elementary-Programming
	Learning Outcomes
	Entry Point of Execution: the ``main'' Method
	Development Process
	Compile Time vs. Run Time
	Compile Time Errors vs. Run Time Errors
	Always Document Your Code
	Literals (1)
	Operations
	Java Data Types
	Assignments
	Named Constants vs. Variables
	Expressions (1)
	Multiple Executions of Same Print Statement
	Case Study 1: Compute the Area of a Circle
	Input and Output
	Useful Methods for Scanner
	Variables: Common Mistakes (1)
	Variables: Common Mistakes (2)
	Case Study 2: Display Time
	Where May Assignment Sources Come From?
	Numerical Type Conversion: Coercion
	Numerical Type Conversion: Casting
	Numerical Type Conversion: Exercise
	Expressions (2.1)
	Expressions (2.2)
	Augmented Assignments
	Literals (2)
	Escape Sequence
	print vs. println
	Identifiers and Naming Conventions in Java
	Beyond this lecture…

	02-Selections
	Learning Outcomes
	Motivating Examples (1.1)
	Motivating Examples (1.2)
	Motivating Examples (2.1)
	Motivating Examples (2.2)
	The boolean Data Type
	Syntax of if Statement
	Semantics of if Statement (1.1)
	Semantics of if Statement (1.2)
	Semantics of if Statement (2.1.1)
	Semantics of if Statement (2.1.2)
	Semantics of if Statement (2.2)
	Semantics of if Statement (2.3)
	Two-Way if Statement without else Part
	Multi-Way if Statement with else Part
	Multi-Way if Statement without else Part
	Case Study: Error Handing of Input Radius (1)
	Case Study: Error Handing of Input Radius (2)
	One if Stmt vs. Multiple if Stmts (1)
	One if Stmt vs. Multiple if Stmts (2)
	One if Stmt vs. Multiple if Stmts (3)
	Scope of Variables (1)
	Scope of Variables (2.1)
	Scope of Variables (2.2)
	Scope of Variables (2.3)
	Primitive Statement vs. Compound Statement
	Compound if Statement: Example
	Logical Operators
	Logical Operators: Negation
	Logical Operators: Conjunction
	Logical Operators: Disjunction
	Logical Operators: Laws (1)
	Logical Operators: Laws (2.1)
	Logical Operators: Laws (2.2)
	Logical Operators: Laws (3.1)
	Logical Operators: Laws (3.2)
	Operator Precedence
	Operator Associativity
	Short-Circuit Evaluation (1)
	Short-Circuit Evaluation (2)
	Common Error 1: Independent if Statements with Overlapping Conditions
	Overlapping Conditions: Exercise (1)
	Overlapping Conditions: Exercise (2)
	Overlapping Conditions: Exercise (3)
	General vs. Specific Boolean Conditions (1)
	General vs. Specific Boolean Conditions (2)
	Common Error 2: if-elseif Statement with Most General Condition First (1)
	Common Error 2: if-elseif Statement with Most General Condition First (2)
	Common Error 3: Missing Braces (1)
	Common Error 3: Missing Braces (2)
	Common Error 4: Misplaced Semicolon
	Common Error 5: Variable Not Properly Re-Assigned
	Common Error 6: Ambiguous else (1)
	Common Error 6: Ambiguous else (2)
	Common Pitfall 1: Updating Boolean Variable

	03-Loops
	Learning Outcomes
	Motivation of Loops
	The for Loop (1)
	The for Loop (2)
	The for Loop (3)
	The for Loop: Exercise (1)
	The for Loop: Exercise (2)
	The for Loop: Exercise (3)
	The while Loop (1)
	The while Loop (2)
	The while Loop: Exercise (1)
	The while Loop: Exercise (2)
	Primitive Statement vs. Compound Statement
	Compound Loop: Exercise (1.1)
	Compound Loop: Exercise (1.2)
	Compound Loop: Exercise (1.3)
	Converting between for and while Loops (1)
	Converting between for and while Loops (2)
	Stay Condition (SC) vs. Exit Condition (1)
	Stay Condition (SC) vs. Exit Condition (2)
	Problems, Data Structures, and Algorithms
	Arrays: A Simple Data Structure
	Arrays: Initialization and Indexing
	Arrays: Iterations
	The for Loop: Exercise (3)
	The for Loop: Exercise (4)
	The for Loop: Exercise (5)
	Array Iterations: Translating for to while (1)
	Array Iterations: Translating for to while (2)
	Compound Loop: Exercise (2)
	Compound Loop: Exercise (3)
	Compound Loop: Exercise (3) Demo
	Compound Loop: Exercise (4.1)
	Compound Loop: Exercise (4.1) Demo (1)
	Compound Loop: Exercise (4.1) Demo (2)
	Compound Loop: Exercise (4.2)
	Compound Loop: Exercise (4.2) Demo (1)
	Compound Loop: Exercise (4.2) Demo (2)
	Compound Loop: Exercise (4.3) Summary
	Compound Loop: Exercise (5)
	Compound Loop: Exercise (5) Demo [A]
	Compound Loop: Exercise (5) Demo [B]
	Compound Loop: Exercise (5) Demo [C]
	Checking Properties of Arrays (1)
	Checking Properties of Arrays (1): Demo
	Checking Properties of Arrays (2)
	Checking Properties of Arrays (2) Demo
	Observations
	Arrays: Indexing and Short-Circuit Logic (1)
	Arrays: Indexing and Short-Circuit Logic (2)
	Arrays: Indexing and Short-Circuit Logic (3.1)
	Arrays: Indexing and Short-Circuit Logic (3.2)
	Arrays: Indexing and Short-Circuit Logic (4)
	Parallel Loops vs. Nested Loops
	Nested Loops: Finding Duplicates (1)
	Nested Loops: Finding Duplicates (2)
	Nested Loops: Finding Duplicates (3)
	Nested Loops: Finding Duplicates (4)
	Nested Loops: Finding Duplicates (5)
	Nested Loops: Finding Duplicates (6)
	Nested Loops: Finding Duplicates (7)
	Common Error (1): Improper Initialization of Loop Counter
	Common Error (2): Improper Stay Condition
	Common Error (3): Improper Update to Loop Counter
	Common Error (4): Improper Update of Stay Condition
	Common Error (5): Improper Start Value of Loop Counter
	Common Error (6): Wrong Syntax
	Common Error (7): Misplaced Semicolon

	04-Classes-and-Objects
	Where are we? Where will we go?
	Object Orientation: Observe, Model, and Execute
	Object-Oriented Programming (OOP)
	OO Thinking: Templates vs. Instances (1.1)
	OO Thinking: Templates vs. Instances (1.2)
	OO Thinking: Templates vs. Instances (1.3)
	OO Thinking: Templates vs. Instances (2.1)
	OO Thinking: Templates vs. Instances (2.2)
	OO Thinking: Templates vs. Instances (2.3)
	OOP: Classes Templates
	OOP: Define Constructors for Creating Objects (1.1)
	OOP: Define Constructors for Creating Objects (1.2)
	OOP: Define Constructors for Creating Objects (2.1)
	OOP: Define Constructors for Creating Objects (2.2)
	Visualizing Objects at Runtime (1)
	Visualizing Objects at Runtime (2.1)
	Visualizing Objects at Runtime (2.2)
	Visualizing Objects at Runtime (2.3)
	Visualizing Objects at Runtime (2.4)
	The this Reference (1)
	The this Reference (2)
	The this Reference (3)
	The this Reference (4)
	The this Reference (5)
	The this Reference (6.1): Common Error
	The this Reference (6.2): Common Error
	OOP: Methods (1.1)
	OOP: Methods (1.2)
	OOP: Methods (2)
	OOP: Methods (3)
	OOP: The Dot Notation (1)
	OOP: Method Calls
	OOP: Class Constructors (1)
	OOP: Class Constructors (2)
	OOP: Class Constructors (3)
	OOP: Class Constructors (4)
	OOP: Object Creation (1)
	OOP: Object Creation (2)
	OOP: Object Creation (3)
	OOP: Object Creation (4)
	OOP: Object Creation (5)
	OOP: Object Creation (6)
	OOP: Mutator Methods
	OOP: Accessor Methods
	OOP: Use of Mutator vs. Accessor Methods
	OOP: Method Parameters
	OOP: Object Alias (1)
	OOP: Object Alias (2.1)
	OOP: Object Alias (2.2)
	Java Data Types (1)
	Java Data Types (2)
	Java Data Types (3.1)
	Java Data Types (3.2.1)
	Java Data Types (3.2.2)
	Java Data Types (3.3.1)
	Java Data Types (3.3.2)
	The this Reference (7.1): Exercise
	The this Reference (7.2): Exercise
	OOP: The Dot Notation (2)
	OOP: The Dot Notation (3.1)
	OOP: The Dot Notation (3.2)
	OOP: The Dot Notation (3.3)
	OOP: The Dot Notation (3.4)
	OOP: Equality (1)
	OOP: Equality (2)
	Static Variables (1)
	Static Variables (2)
	Static Variables (3)
	Static Variables (4.1): Common Error
	Static Variables (4.2): Common Error
	Static Variables (5.1): Common Error
	Static Variables (5.2): Common Error
	Static Variables (5.3): Common Error
	OOP: Helper Methods (1)
	OOP: Helper (Accessor) Methods (2.1)
	OOP: Helper (Accessor) Methods (2.2.1)
	OOP: Helper (Accessor) Methods (2.2.2)
	OOP: Helper (Accessor) Methods (2.3)
	OOP: Helper (Accessor) Methods (3.1)
	OOP: Helper (Accessor) Methods (3.2)
	OOP: Helper (Accessor) Methods (3.3)
	OOP: Helper (Accessor) Methods (3.4)
	OOP: Helper (Mutator) Methods (4.1)
	OOP: Helper (Mutator) Methods (4.2.1)
	OOP: Helper (Mutator) Methods (4.2.2)
	OOP: Helper (Mutator) Methods (4.3)

	05-API
	Learning Outcomes
	Application Programming Interface (API)
	Classes vs. Methods
	Parameters vs. Arguments
	Header of a Method
	Example Method Headers: Math Class
	Case Study: Guessing a Number
	Example Method Headers: ArrayList Class
	Case Study: Using an ArrayList
	Example Method Headers: HashTable Class
	Case Study: Using a HashTable

	06-Wrapup
	Why this Course?
	What You Learned (1)
	What You Learned (2)
	What You Learned (3)
	Beyond this course…
	Wish You the Best
	Course Evaluation

