Wrap-Up

EECS1021:

Object Oriented Programming: from Sensors to Actuators Winter 2019

CHEN-WEI WANG

Why this Course?

- Computational thinking (CT) is a fundamental skill for everyone, not just for computer scientists.
 - Reference: Wing, J.M., 2006. Computational thinking. Communications of the ACM, 49(3), pp.33 35.
 - Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple levels of abstraction.
 - Level of Java Code: How Programs Behave at Runtime
 - Above the Level of Code:
 Logical rationale
 behind some functioning/malfunctioning code.
- Being able to think abstractly without seeing changes on a physical device is an important skill you are expected to acquire when graduating.
 - Think of programming interviews at Google: Given problems described in English, solve it on a whiteboard.

What You Learned (1)

- Procedural Programming in Java
 - primitive data types
 - assignments
 - casting vs. coercion for numbers
 - Boolean expressions, logical operators, short-circuit evaluation
 - o if-statements
 - Solving problems iteratively: for vs. while loops
 - one-dimensional arrays

What You Learned (2)

- Object-Oriented Programming in Java
 - o classes, attributes, objects, reference data types
 - o methods: constructors, accessors, mutators, helper
 - dot notation, context objects, method calls
 - aliasing
 - Java API: Math, Scanner, ArrayList, Hashtable
- keywords: final, this, static

What You Learned (3)

- Integrated Development Environment (IDE) for Java: Eclipse
 - o Compile Time vs. Runtime
 - Syntax Errors
 - Type Errors
 - Logical Errors
 - Creating Console App's via Classes with main method
 - User interactions
 - Breakpoints and Debugger

Beyond this course...

Java Tutorials

https://www.youtube.com/playlist?list=PL5dxAmCmjv_ 5NRNPG30iWZWAqmvCjiLfG

• Two-Dimensional Arrays

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS1022_W18

Advanced Object-Oriented Programming

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F18

Wish You the Best

- What you have learned will be assumed in EECS2030.
- Do not abandon Java during the break!!

Course Evaluation

courseevaluations.yorku.ca