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What You Learned
● Design Principles:
○ Abstraction [ contracts, architecture, math models ]

Think above the code level
○ Information Hiding
○ Single Choice Principle
○ Open-Closed Principle
○ Uniform Access Principle

● Design Patterns:
○ Singleton
○ Iterator
○ State/Template
○ Composite
○ Visitor
○ Observer
○ Event-Driven Design
○ Undo/Redo, Command [ lab 4 ]
○ Model-View-Controller [ project ]
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Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
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https://docs.oracle.com/javase/8/docs/api/?java/util/List.html


Why Java Interfaces Unacceptable ADTs (2)
Methods described in a natural language can be ambiguous:

4 of 11



Why Eiffel Contract Views are ADTs (1)
class interface ARRAYED_CONTAINER
feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position ’i’ to ’s’.
require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:
imp.count = (old imp.twin).count

item_assigned:
imp [i] ∼ s

others_unchanged:
across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER
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Why Eiffel Contract Views are ADTs (2)
Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.
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Beyond this course. . . (1)
● How do I program in a language not supporting DbC natively?
○ Document your contracts (e.g., JavaDoc)
○ But, it’s critical to ensure (manually) that contracts are in sync

with your latest implementations.
○ Incorporate contracts into your Unit and Regression tests

● How do I program in a language without a math library ?
○ Again, before diving into coding, always start by

thinking above the code level .
○ Plan ahead how you intend for your system to behaviour at

runtime, in terms of interactions among mathematical objects .
○ Use efficient data structures to support the math operations.
● SEQ refined to ARRAY or LINKED LIST
● FUN refined to HASH TABLE
● REL refined to a graph

○ Document your code with contracts specified in terms of the
math models.
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Beyond this course. . . (2)

● Software fundamentals:
collected papers by David L.
Parnas

● Design Techniques:
○ Tabular Expressions
○ Information Hiding

8 of 11



Wish You All the Best

● I hope you learned something from this course.
● Feel free to get in touch and let me know how you’re doing :D
● Exam Review Sessions:

3pm to 5pm Monday December 9
1pm to 3pm Wednesday December 11
3pm to 5pm Thursday December 12
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Course Evaluation

Compliments or Complaints on my teaching?

http://courseevaluations.yorku.ca/
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