Wrap-Up

EECS3311 A: Software Design

YORK u e

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

/|

What You Learned Lassonoe
e Design Principles:
o Abstraction [contracts, architecture, math models]

Think above the code level

o Information Hiding

o Single Choice Principle

o Open-Closed Principle

o Uniform Access Principle
¢ Design Patterns:

o Singleton
Iterator
State/Template
Composite
Visitor
Observer
Event-Driven Design
Undo/Redo, Command [lab 4]
Model-View-Controller [project]

0O 0O O 0O o O O o

;

Why Java Interfaces Unacceptable ADTS (1) cssovoe

Interface List<E>

‘E - the type of elements in this List'

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Implementing Classes:
AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArrayList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

'An ordered collection (also known as a sequence).' he user of this interface has precise control over where in the list each element is
inserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of
elements are parameterized as E.

¢ A reasonably intuitive overview of the ADT.

aat11 Java 8 | ist API

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTS (2) wassonce

Methods described in a natural language can be ambiguous:

E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation)A)

Parameters:

index - index of the element to replace

element - element to be stored at the specified position

Returns:

the element previously at the specified position

Throws:

UnsupportedOperationException - if the set operation is not supported by this list

ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOonundsExceptlon - if the index is out of range (index < @ || index >= slze()))

[RSEER

Why Eiffel Contract Views are ADTs (1)

LASSONDE
it

class interface ARRAYED_CONTAINER
feature
assign_at

s: STRING)

require
valid index: 1 <= 1 and 1 <= count
ensure
size_unchanged:
imp.count = (old imp.twin) .count

item_assigned:
imp [1] ~ s
others_unchanged:

across
1 |..| imp.count as j
all
j.item /= i implies imp [j.item] ~ (old imp.twin)
end
count: INTEGER
invariant
consistency: imp.count = count

ARI CON

end —— cI

[j.item]

Why Eiffel Contract Views are ADTs (2)

Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

g ARRAYED _CONTAINER R

feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's".

require
valid_inde

ensure
size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[il ~ 5
()Ihers_unchanged(Vj 11 <j=<imp.count: j#i=>imp[j] ~ (old imp.twin) [i])

feature -- { NONE }
-- Implementation of an arrayed-container
imp: ARRAY[STRING]

invariant
consistency: imp.count = count

_ J

Beyond this course... (1) Lassonpe

e How do | program in a language not supporting DbC natively?
o Document your contracts (e.g., JavaDoc)
o But, it’s critical to ensure (manually) that contracts are in sync
with your latest implementations.
o Incorporate contracts into your Unit and Regression tests

e How do | program in a language without a math library ?
o Again, before diving into coding, always start by
thinking above the code level .
o Plan ahead how you intend for your system to behaviour at
runtime, in terms of interactions among mathematical objects .
o Use efficient data structures to support the math operations.
e SEQ refined to ARRAY Or LINKED_LIST
e FUN refined to HASH_TABLE
e REL refined to a graph
o Document your code with contracts specified in terms of the
math models.
zaia1 Test!

Beyond this course... (2) Lassonoe

Software Fundamentals
Collected Papers by
David L. Parnas o Software fundamentals:
collected papers by David L.
Parnas
¢ Design Techniques:

o Tabular Expressions
o Information Hiding

Contributions bty

Wish You All the Best v

¢ | hope you learned something from this course.
* Feel free to get in touch and let me know how you're doing :D

e Exam Review Sessions:
3pm to 5pm Monday December 9
1pm to 3pm Wednesday December 11
3pm to 5pm Thursday December 12

Course Evaluation LassonDE

Compliments or Complaints on my teaching?

http://courseevaluations.vyorku.ca/

http://courseevaluations.yorku.ca/

Index (1) e

What You | earned
Why Java Interfaces Unacceptable ADTs (1)

Why Java Interfaces Unacceptable ADTs (2)

Why Eiffel Contract Views are ADTs (1)

Why Eiffel Contract Views are ADTs (2)

Beyond this course. .. (1)

Beyond this course... (2)

Wish You All the Best

Course Evaluation

ilofddl
e

	What You Learned
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Beyond this course… (1)
	Beyond this course… (2)
	Wish You All the Best
	Course Evaluation

