
Wrap-Up

EECS3311 A: Software Design
Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What You Learned
● Design Principles:
○ Abstraction [contracts, architecture, math models]

Think above the code level
○ Information Hiding
○ Single Choice Principle
○ Open-Closed Principle
○ Uniform Access Principle

● Design Patterns:
○ Singleton
○ Iterator
○ State/Template
○ Composite
○ Visitor
○ Observer
○ Event-Driven Design
○ Undo/Redo, Command [lab 4]
○ Model-View-Controller [project]

2 of 11

Why Java Interfaces Unacceptable ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
3 of 11

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Why Java Interfaces Unacceptable ADTs (2)
Methods described in a natural language can be ambiguous:

4 of 11

Why Eiffel Contract Views are ADTs (1)
class interface ARRAYED_CONTAINER
feature -- Commands
assign_at (i: INTEGER; s: STRING)

-- Change the value at position ’i’ to ’s’.
require
valid_index: 1 <= i and i <= count

ensure
size_unchanged:
imp.count = (old imp.twin).count

item_assigned:
imp [i] ∼ s

others_unchanged:
across
1 |..| imp.count as j

all
j.item /= i implies imp [j.item] ∼ (old imp.twin) [j.item]

end
count: INTEGER

invariant
consistency: imp.count = count

end -- class ARRAYED_CONTAINER

5 of 11

Why Eiffel Contract Views are ADTs (2)
Even better, the direct correspondence from Eiffel operators to
logic allow us to present a precise behavioural view.

6 of 11

Beyond this course. . . (1)
● How do I program in a language not supporting DbC natively?
○ Document your contracts (e.g., JavaDoc)
○ But, it’s critical to ensure (manually) that contracts are in sync

with your latest implementations.
○ Incorporate contracts into your Unit and Regression tests

● How do I program in a language without a math library ?
○ Again, before diving into coding, always start by

thinking above the code level .
○ Plan ahead how you intend for your system to behaviour at

runtime, in terms of interactions among mathematical objects .
○ Use efficient data structures to support the math operations.
● SEQ refined to ARRAY or LINKED LIST
● FUN refined to HASH TABLE
● REL refined to a graph

○ Document your code with contracts specified in terms of the
math models.

○ Test!7 of 11

Beyond this course. . . (2)

● Software fundamentals:
collected papers by David L.
Parnas

● Design Techniques:
○ Tabular Expressions
○ Information Hiding

8 of 11

Wish You All the Best

● I hope you learned something from this course.
● Feel free to get in touch and let me know how you’re doing :D
● Exam Review Sessions:

3pm to 5pm Monday December 9
1pm to 3pm Wednesday December 11
3pm to 5pm Thursday December 12

9 of 11

Course Evaluation

Compliments or Complaints on my teaching?

http://courseevaluations.yorku.ca/

10 of 11

http://courseevaluations.yorku.ca/

Index (1)

What You Learned

Why Java Interfaces Unacceptable ADTs (1)

Why Java Interfaces Unacceptable ADTs (2)

Why Eiffel Contract Views are ADTs (1)

Why Eiffel Contract Views are ADTs (2)

Beyond this course. . . (1)

Beyond this course. . . (2)

Wish You All the Best

Course Evaluation
11 of 11

	What You Learned
	Why Java Interfaces Unacceptable ADTs (1)
	Why Java Interfaces Unacceptable ADTs (2)
	Why Eiffel Contract Views are ADTs (1)
	Why Eiffel Contract Views are ADTs (2)
	Beyond this course… (1)
	Beyond this course… (2)
	Wish You All the Best
	Course Evaluation

