
Common Eiffel Errors:
Contracts vs. Implementations

EECS3311 A: Software Design
Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Contracts vs. Implementations: Definitions

In Eiffel, there are two categories of constructs:
○ Implementations
● are step-by-step instructions that have side-effects

e.g., . . . := . . . , across . . . as . . . loop . . . end

● change attribute values
● do not return values
● ≈ commands

○ Contracts
● are Boolean expressions that have no side-effects

e.g., . . . = . . . , across . . . as . . . all . . . end

● use attribute and parameter values to specify a condition
● return a Boolean value (i.e., True or False)
● ≈ queries

2 of 23

Contracts vs. Implementations: Where?

● Instructions for Implementations: inst1, inst2
● Boolean expressions for Contracts: exp1, exp2, exp3, exp4, exp5

class
ACCOUNT

feature -- Queries
balance: INTEGER

require
exp1

do
inst1

ensure
exp2

end

feature -- Commands
withdraw

require
exp3

do
inst2

ensure
exp4

end
invariant

exp5
end -- end of class ACCOUNT

3 of 23

Implementations:
Instructions with No Return Values
● Assignments

balance := balance + a

● Selections with branching instructions:
if a > 0 then acc.deposit (a) else acc.withdraw (-a) end

● Loops
from
i := a.lower

until
i > a.upper

loop
Result :=
Result + a[i]

i := i + 1
end

from
list.start

until
list.after

loop
list.item.wdw(10)
list.forth

end

across
list as cursor

loop
sum :=
sum + cursor.item

end

4 of 23

Contracts:
Expressions with Boolean Return Values
● Relational Expressions (using =, /=, ∼, /∼, >, <, >=, <=)

a > 0

● Binary Logical Expressions (using and, and then, or, or else,
implies)
(a.lower <= index) and (index <= a.upper)

● Logical Quantification Expressions (using all, some)
across
a.lower |..| a.upper as cursor

all
a [cursor.item] >= 0

end

● old keyword can only appear in postconditions (i.e., ensure).
balance = old balance + a

5 of 23

Contracts: Common Mistake (1)

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
. . .

ensure
balance := old balance - a

end
. . .

Colon-Equal sign (:=) is used to write assignment instructions.

6 of 23

Contracts: Common Mistake (1) Fixed

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
. . .

ensure
balance = old balance - a

end
. . .

7 of 23

Contracts: Common Mistake (2)

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
. . .

ensure
across
a as cursor

loop
. . .

end
. . .

across . . . loop . . .end is used to create loop instructions.

8 of 23

Contracts: Common Mistake (2) Fixed

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
. . .

ensure
across
a as cursor

all -- if you meant ∀, or use some if you meant ∃
. . . -- A Boolean expression is expected here!

end
. . .

9 of 23

Contracts: Common Mistake (3)

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
. . .

ensure
old balance - a

end
. . .

Contracts can only be specified as Boolean expressions.

10 of 23

Contracts: Common Mistake (3) Fixed

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
. . .

ensure
postcond_1: balance = old balance - a
postcond_2: old balance > 0

end
. . .

11 of 23

Contracts: Common Mistake (4)
class
ACCOUNT

feature
withdraw (a: INTEGER)
require
old balance > 0

do
. . .

ensure
. . .

end
. . .

● Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
withdraw) and post-state values (after the execution of
withdraw).

● Pre-state values (right before the feature is executed) are
indeed the old values, so there’s no need to qualify them!12 of 23

Contracts: Common Mistake (4) Fixed

class
ACCOUNT

feature
withdraw (a: INTEGER)
require
balance > 0

do
. . .

ensure
. . .

end
. . .

13 of 23

Contracts: Common Mistake (5)
class LINEAR_CONTAINER
create make
feature -- Attributes
a: ARRAY[STRING]

feature -- Queries
count: INTEGER do Result := a.count end
get (i: INTEGER): STRING do Result := a[i] end

feature -- Commands
make do create a.make_empty end
update (i: INTEGER; v: STRING)
do . . .
ensure -- Others Unchanged

across
1 |..| count as j

all
j.item /= i implies old get(j.item) ∼ get(j.item)

end
end

end

Compilation Error :
○ Expression value to be cached before executing update?

[Current.get(j.item)]
○ But, in the pre-state, integer cursor j does not exist!

14 of 23

Contracts: Common Mistake (5) Fixed
class LINEAR_CONTAINER
create make
feature -- Attributes
a: ARRAY[STRING]

feature -- Queries
count: INTEGER do Result := a.count end
get (i: INTEGER): STRING do Result := a[i] end

feature -- Commands
make do create a.make_empty end
update (i: INTEGER; v: STRING)
do . . .
ensure -- Others Unchanged

across
1 |..| count as j

all
j.item /= i implies (old Current).get(j.item) ∼ get(j.item)

end
end

end

○ The idea is that the old expression should not involve the local
cursor variable j that is introduced in the postcondition.

○ Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.

15 of 23

Implementations: Common Mistake (1)

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
balance = balance + 1

end
. . .

● Equal sign (=) is used to write Boolean expressions.
● In the context of implementations, Boolean expression values

must appear:
○ on the RHS of an assignment ;
○ as one of the branching conditions of an if-then-else statement; or
○ as the exit condition of a loop instruction.

16 of 23

Implementations: Common Mistake (1) Fixed

class
ACCOUNT

feature
withdraw (a: INTEGER)
do
balance := balance + 1

end
. . .

17 of 23

Implementations: Common Mistake (2)

class
BANK

feature
min_credit: REAL
accounts: LIST[ACCOUNT]

no_warning_accounts: BOOLEAN
do
across
accounts as cursor

all
cursor.item.balance > min_credit

end
end

. . .

Again, in implementations, Boolean expressions cannot appear
alone without their values being “captured”.

18 of 23

Implementations: Common Mistake (2) Fixed

1 class
2 BANK
3 feature
4 min_credit: REAL
5 accounts: LIST[ACCOUNT]
6
7 no_warning_accounts: BOOLEAN
8 do
9 Result :=

10 across
11 accounts as cursor
12 all
13 cursor.item.balance > min_credit
14 end
15 end
16 . . .

Rewrite L10 – L14 using across . . . as . . . some . . . end.
Hint: ∀x ●P(x) ≡ ¬(∃x ● ¬P(x))

19 of 23

Implementations: Common Mistake (3)

class
BANK

feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
Result :=
across
accounts as cursor

loop
Result := Result + cursor.item.balance

end
. . .

end
. . .

In implementations, since instructions do not return values, they
cannot be used on the RHS of assignments.

20 of 23

Implementations: Common Mistake (3) Fixed

class
BANK

feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
across
accounts as cursor

loop
Result := Result + cursor.item.balance

end
end

21 of 23

Index (1)
Contracts vs. Implementations: Definitions
Contracts vs. Implementations: Where?
Implementations:
Instructions with No Return Values
Contracts:
Expressions with Boolean Return Values
Contracts: Common Mistake (1)
Contracts: Common Mistake (1) Fixed
Contracts: Common Mistake (2)
Contracts: Common Mistake (2) Fixed
Contracts: Common Mistake (3)
Contracts: Common Mistake (3) Fixed
Contracts: Common Mistake (4)
Contracts: Common Mistake (4) Fixed
Contracts: Common Mistake (5)

22 of 23

Index (2)
Contracts: Common Mistake (5) Fixed

Implementations: Common Mistake (1)

Implementations: Common Mistake (1) Fixed

Implementations: Common Mistake (2)

Implementations: Common Mistake (2) Fixed

Implementations: Common Mistake (3)

Implementations: Common Mistake (3) Fixed

23 of 23

	Contracts vs. Implementations: Definitions
	Contracts vs. Implementations: Where?
	Implementations: Instructions with No Return Values
	Contracts: Expressions with Boolean Return Values
	Contracts: Common Mistake (1)
	Contracts: Common Mistake (1) Fixed
	Contracts: Common Mistake (2)
	Contracts: Common Mistake (2) Fixed
	Contracts: Common Mistake (3)
	Contracts: Common Mistake (3) Fixed
	Contracts: Common Mistake (4)
	Contracts: Common Mistake (4) Fixed
	Contracts: Common Mistake (5)
	Contracts: Common Mistake (5) Fixed
	Implementations: Common Mistake (1)
	Implementations: Common Mistake (1) Fixed
	Implementations: Common Mistake (2)
	Implementations: Common Mistake (2) Fixed
	Implementations: Common Mistake (3)
	Implementations: Common Mistake (3) Fixed

